首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
N-acetylglutamate synthase (NAGS) is a mitochondrial enzyme that catalyzes the formation of N-acetylglutamate, an essential allosteric activator of carbamyl phosphate synthetase I, the first enzyme of the urea cycle. Liver NAGS deficiency has previously been found in a small number of patients with hyperammonemia. The mouse and human NAGS genes have recently been cloned and expressed in our laboratory. We searched for mutations in the NAGS gene of two families with presumed NAGS deficiency. The exons and exon/intron boundaries of the NAGS gene were sequenced from genomic DNA obtained from the parents of an infant from the Faroe Islands who died in the neonatal period and from two Hispanic sisters who presented with acute neonatal hyperammonemia. Both parents of the first patient were found to be heterozygous for a null mutation in exon 4 (TGG-->TAG, Trp324Ter). Both sisters from the second family were homozygous for a single base deletion in exon 4 (1025delG) causing a frameshift and premature termination of translation. The finding of deleterious mutations in the NAGS gene confirms the genetic origin of NAGS deficiency. This disorder can now be diagnosed by DNA testing allowing for carrier detection and prenatal diagnosis.  相似文献   

2.
D R Deshmukh  C D Rusk 《Enzyme》1989,41(3):168-174
Young ferrets develop hyperammonemia soon after eating an arginine-free diet, whereas adult ferrets do not develop hyperammonemia after an identical treatment. Earlier reports indicate that young or adult rats do not develop hyperammonemia and encephalopathy after a single meal of an arginine-free diet. The effects of a single feeding of an arginine-free diet on the urea cycle enzyme activities in the liver of young and adult ferrets is reported. Ornithine carbamyl transferase, carbamyl phosphate synthetase and ornithine aminotransferase activities in the livers of adult ferrets were significantly higher than those in the livers of young ferrets. A single meal of an arginine-free diet did not alter the urea cycle enzyme activities in the liver of young or adult ferrets. The levels of urea cycle enzymes in the liver and kidney of young ferrets were comparable to those in rat liver and kidney. The results suggest that the hyperammonemia observed in young ferrets following a single meal of an arginine-free diet may not be due to the deficiency of enzyme activities.  相似文献   

3.
Carbamoyl phosphate synthetase 1(CPS1) deficiency(CPS1D) is an inborn error of the urea cycle having autosomal(2q34) recessive inheritance that can cause hyperammonemia and neonatal death or mental retardation. We analyzed the effects on CPS1 activity, kinetic parameters and enzyme stability of missense mutations reported in patients with CPS1 deficiency that map in the 20-k Da C-terminal domain of the enzyme. This domain turns on or off the enzyme depending on whether the essential allosteric activator of CPS1, N-acetylL-glutamate(NAG), is bound or is not bound to it. To carry out the present studies, we exploited a novel system that allows the expression in vitro and the purification of human CPS1, thus permitting site-directed mutagenesis. These studies have clarified disease causation by individual mutations, identifying functionally important residues, and revealing that a number of mutations decrease the affinity of the enzyme for NAG. Patients with NAG affinity-decreasing mutations might benefit from NAG site saturation therapy with N-carbamyl-Lglutamate(a registered drug, the analog of NAG). Our results, together with additional present and prior site-directed mutagenesis data for other residues mapping in this domain, suggest an NAG-triggered conformational change in the b4-a4 loop of the C-terminal domain of this enzyme. This change might be an early event in the NAG activation process. Molecular dynamics simulations that were restrained according to the observed effects of the mutations are consistent with this hypothesis, providing further backing for this structurally plausible signaling mechanism by which NAG could trigger urea cycle activation via CPS1.  相似文献   

4.
The mitochondrial enzyme N-acetylglutamate synthase (NAGS) produces N-acetylglutamate serving as an allosteric activator of carbamylphosphate synthetase 1, the first enzyme of the urea cycle. Autosomal recessively inherited NAGS deficiency (NAGSD) leads to severe neonatal or late-onset hyperammonemia. To date few patients have been described and the gene involved was described only recently. In this study, another three families affected by NAGSD were analyzed for NAGS gene mutations resulting in the identification of three novel missense mutations (C200R [c.598T > C], S410P [c.1228T > C], A518T [c.1552G > A]). In order to investigate the effects of these three and two additional previously published missense mutations on enzyme activity, the mutated proteins were overexpressed in a bacterial expression system using the NAGS deficient E. coli strain NK5992. All mutated proteins showed a severe decrease in enzyme activity providing evidence for the disease-causing nature of the mutations. In addition, we expressed the full-length NAGS wild type protein including the mitochondrial leading sequence, the mature protein as well as a highly conserved core protein. NAGS activity was detected in all three recombinant proteins but varied regarding activity levels and response to stimulation by l-arginine. In conclusion, overexpression of wild type and mutated NAGS proteins in E. coli provides a suitable tool for functional analysis of NAGS deficiency.  相似文献   

5.
When rats were placed on a low-protein (5%) diet for 24 h or less, liver mitochondrial acetylglutamate decreased rapidly, carbamyl phosphate synthetase (ammonia) and ornithine transcarbamylase decreased little, and carbamyl phosphate synthesis (measured as citrulline) by isolated mitochondria occurred at very low rates. The matrix acetylglutamate content of these mitochondria, whether coupled or uncoupled, was increased similarly by preincubating them with added acetylglutamate, but citrulline synthesis increased from less than 1 to 2.3 nmol min-1 mg-1 in the coupled state, and from less than 1 to 35 nmol min-1 mg-1 in the uncoupled state. However, when coupled mitochondria were incubated with the substrates required for the synthesis of acetylglutamate in the matrix, citrulline synthesis increased to 48 nmol min-1 mg-1; this rate was similar to that of mitochondria from control rats (fed a normal diet). When mitochondria from controls were incubated with up to 5mM acetylglutamate, citrulline synthesis by coupled mitochondria was increased by 10 to 40%, while synthesis by uncoupled mitochondria was 1.5 to 4 times higher than that observed with the coupled mitochondria; matrix acetylglutamate in both conditions rose to levels similar to those in the medium. The reason for the different behavior of carbamyl phosphate synthetase (ammonia) in coupled and uncoupled mitochondria was not apparent; neither oxidative phosphorylation nor ornithine transport were limiting in the coupled system. These observations are an example of the restrictions imposed upon enzymatic systems by the conditions existing in the mitochondrial matrix, and of the different behavior of carbamyl phosphate synthetase in situ and in solution. In addition, they show that conclusions about the characteristics of the enzyme in coupled mitochondria based on observations made in uncoupled mitochondria are not necessarily justified.  相似文献   

6.
Carbamoyl phosphate synthetase I, the most abundant protein of rat liver mitochondria, plays a key role in synthesis of urea. Because aging affects some liver functions, and because there is no information on the levels of carbamoyl phosphate synthetase I during aging, we assayed the activity of this enzyme and determined immunologically the level of carbamoyl phosphate synthetase I in liver homogenates from young (4 months) and old (18 or 26 months) rats. In addition, we used electron microscopic immunogold procedures to locate and measure the amount of the enzyme in the mitochondrial matrix. There is no significant change in enzyme activity or enzyme protein content with age, although there is a higher concentration of the enzyme in the mitochondria (c. 1.5 times greater) from old rats, which is compensated by a decrease in the fractional volume of the mitochondrial compartment during aging.  相似文献   

7.
After the urea cycle was proposed, considerable efforts were put forth to identify critical intermediates. This was then followed by studies of dietary and nutritional control of urea cycle enzyme activity and allosteric effectors of urea cycle enzymes. Correlation of urea cycle enzyme activity with isolated cell experiments indicated conditions where enzyme activity would be rate limiting. At physiological levels of ammonia the activation of carbamoyl-phosphate synthetase (EC 6.3.4.16) by N-acetylglutamate (NAG) is important. Various levels of NAG corresponded well with changes in the rate of citrulline and urea synthesis. Arginine was found to be an allosteric activator of N-acetylglutamate synthetase (EC 2.3.1.1). Therefore, it was possible that the rate of carbamoyl phosphate synthesis was dependent on the level of urea cycle intermediates, particularly arginine. Evidence for arginine in the regulation of NAG synthesis is not as clear as for NAG on carbamoyl phosphate synthetase I. The concentration of hepatic arginine is not necessarily an indication of the mitochondrial concentration. Only mitochondrial arginine stimulates the N-acetylglutamate synthetase. Recent studies indicate that the mitochondrial concentration of arginine is higher than the cytosolic concentration and is well above the Ka for N-acetylglutamate synthetase. Therefore, it appears that changes in arginine concentration are not physiologically important in regulating levels of NAG. However, it is possible that responses to the effector may vary with time after eating, and it may be this responsiveness that controls the level of NAG and thereby urea synthesis.  相似文献   

8.
N-乙酰谷氨酸合成酶催化生成的N-乙酰谷氨酸(NAGS)对于哺乳动物尿素循环第一个酶—氨基甲酰磷酸合成酶I变象异构激活是必需的。N-乙酰谷氨酸合成酶定位于肝脏和小肠线粒体基质中,通过提供N-乙酰谷氨酸调节氨基甲酰磷酸合成酶I的活性来调节尿素合成。我们用RT-PCR方法从宁乡猪肝脏中扩增了N-乙酰谷氨酸合成酶的开发阅读框,并将此基因连接到原核表达载体上,构建了pET-NAGS质粒。将重组质粒转化到Ec.oliBL21(DE3),在IPTG诱导下表达His-NAGS融合蛋白。通过SDS-PAGE,得出NAGS分子量约为40kDa。一步亲和层析纯化后,我们将纯化后的NAGS蛋白注射到新西兰大白兔中制备多克隆抗体。通过免疫组化和免疫印迹测试抗体,结果表明此抗体有较好的抗原性和特异性。据我们所知,这是第一次在大肠杆菌中表达来源于宁乡猪的NAGS。  相似文献   

9.
10.
Complete genetic deficiency of adenosine deaminase (ADA) results in a fatal syndrome of severe combined immunodeficiency (SCID). Genetic partial deficiency of ADA, with no detectable enzyme activity in erythrocytes but with variable amounts of enzyme activity detectable in other cells, is usually associated with normal immunologic function but can give rise to a late-onset, cellular immunodeficiency syndrome. We have previously described four different mutant alleles in four such partially ADA-deficient children. We have now examined ADA in lymphoid cells from five additional newly ascertained children with partial ADA deficiency with respect to electrophoretic mobility in starch gel, isoelectric point, heat-stability, and apparent Km and Vmax. These techniques identify at least five different abnormal alleles in these five additional unrelated subjects. Three of these abnormal alleles result in expression of abnormal allelic isozymes (allozymes) different from those previously described. These are: (1) an acidic allozyme that is less acidic than the acidic allozyme we have previously reported; (2) an allozyme that is even less acidic than (1); and (3) an allozyme with apparently normal charge but which is so heat sensitive that the lability to heat can easily be detected at physiologic to febrile temperatures. Two abnormal alleles detected in these five children could correspond with previously reported mutants. These are (4) a basic allozyme that could (but probably doesn't) correspond to the basic allozyme we have previously reported and (5) a "null" allele that cannot be differentiated by these methods from any other "null" allele seen in complete ADA- -SCIDs. Three of the five new patients are genetic compounds, identified either by the presence of two electrophoretically distinguishable allozymes or by family studies that demonstrate presence of a "null" allele in addition to an electrophoretically abnormal allozyme. In three patients, one or both allozymes are phenotypically indistinguishable from an abnormal allozyme also seen in a different individual. Determination of the nucleotide sequence will be required to determine whether or not the phenotypically indistinguishable mutations are indeed genotypically identical. The newly ascertained individuals appear to share a common ethnic West Indian background, out of proportion to the frequency of this ethnic background in the newborn population from which they were ascertained, suggesting that partial ADA deficiency may confer a selective advantage to the homozygous or heterozygous phenotype.  相似文献   

11.
12.
ATP-citrate lyase (EC 4.1.3.8) was purified to homogeneity from the liver of rats maintained on a diet containing no fat and high carbohydrate. The procedure involves two steps: dye-ligand chromatography on yellow MX-6G Sepharose CL-4B and ion-exchange chromatography on DEAE-Trisacryl. The specific activity of the enzyme was 10 mumol X min-1 X mg-1 at 25 degrees C, which is equal to the highest specific activity reported to date. The yield was also the highest reported to date, being in excess of 50%, and the enzyme isolated by this procedure has little proteolytic nicking. The pure enzyme was used to establish a coupled fluorometric assay for N-acetylglutamate synthetase (amino-acid acetyltransferase, EC 2.3.1.1) based on coupling coenzyme A production to the oxidation of NADH via ATP-citrate lyase and malate dehydrogenase. The method is easy to perform compared with existing methods and enables the measurement of 100 pmol X min-1 of N-acetylglutamate synthetase activity. The method is generally applicable for measurement of enzymes which produce coenzyme A. The fluorometric method was used to measure the Km for glutamate and acetyl coenzyme A at pH 7.0 and 25 degrees C, which were 8.2 and 0.4 mM, respectively. Arginine at 1 microM gave half-maximal activation of N-acetylglutamate synthetase.  相似文献   

13.
A low citrullinogenesis (less than 60 per cent of the adult value) was observed throughout the suckling period when mitochondria isolated from newborn rat liver were incubated in vitro with L-glutamate or succinate as oxidizable substrates. The adult value was reached after weaning. From birth to weaning, intact mitochondria synthesized more citrulline when supplemented with L-glutamate than with succinate. The low citrullinogenesis could not be explained by low carbamoylphosphate synthetase-I and ornithine transcarbamoylase activities that reached adult values at birth. The decreased citrullinogenesis seen for the first three days of life seemed to be related to the low intramitochondrial concentration of N-acetylglutamate, an activator of the carbamoylphosphate synthetase-I. The concentration of this activator did not differ from that reported for adult rat liver mitochondria after the fourth day of life. The discrepancy between the normal value of N-acetylglutamate concentration and the low activity of the N-acetylglutamate synthetase (15 to 30 per cent of the adult activity) is discussed on the basis of acetyl-CoA or L-glutamate availability in mitochondria isolated from newborn or young rats.  相似文献   

14.
15.
Regulation of fatty acid synthetase has been studied in the obese-hyperglycemic mouse and compared with regulation in non obese, littermate control animals. The mechanisms underlying the regulatory changes were defined by immunochemical techniques. Several major conclusions are justified from the data obtained: (1) Although the hepatic specific activity of fatty acid synthetase is higher in obese than in non obese animals pair-fed chow, no difference in hepatic activities is apparent in animals pair-fed the fat-free diet; (2) The higher enzymatic activity in obese animals fed chow is related to a higher content of enzyme, and this higher content is associated with a higher rate of enzyme synthesis; (3) The decrease in hepatic synthetase activity with starvation is distinctly more striking in non obese than in obese animals, and the changes in activity reflect changes in content of enzyme; (4) With starvation there is a decrease in synthesis of enzyme in obese and non obese animals, but only in non obese animals is there also a marked increase in the rate of synthetase degradation (t1/2 = 24 h during starvation, t1/2 = 76 h during normalfeeding); (5) Refeeding starved mice a fat-free diet results in a more striking increase in hepatic synthetase activity in non obese than in obese animals; (6) Administration of triiodothyronine causes a more marked increase in hepatic synthetase activity in non obese than in obese animals. The data thus define a variety of differences in regulation of hepatic fatty acid synthetase in mutant and normal animals. The roles of enzyme synthesis and degradation in the etiology of these differences are defined, and possible mechanisms underlying regulation of synthetase synthesis and degradation in normal mammalian liver are suggested by the observations.  相似文献   

16.
Fatty acid synthetase, partially purified by gel filtration with Sepharose 4B from goose liver, showed the same relative rate of incorporation of methylmalonyl-CoA (compared to malonyl-CoA) as that observed with the purified fatty acid synthetase from the uropygial gland. In the presence of acetyl-CoA, methylmalonyl-CoA was incorporated mainly into 2,4,6,8-tetramethyldecanoic acid and 2,4,6,8,10-pentamethyl-dodecanoic acid by the enzyme from both sources. Methylmalonyl-CoA was a competitive inhibitor with respect to malonyl-CoA for the enzyme from the gland just as previously observed for fatty acid synthetase from other animals. Furthermore, rabbit antiserum prepared against the gland enzyme cross-reacted with the liver enzyme, and Ouchterlony double-diffusion analyses showed complete fusion of the immunoprecipitant lines. The antiserum inhibited both the synthesis of n-fatty acids and branched fatty acids catalyzed by the synthetase from both liver and the uropygial gland. These results suggest that the synthetases from the two tissues are identical and that branched and n-fatty acids are synthesized by the same enzyme. Immunological examination of the 105,000g supernatant prepared from a variety of organs from the goose showed that only the uropygial gland contained a protein which cross-reacted with the antiserum prepared against malonyl-CoA decarboxylase purified from the gland. Thus, it is concluded that the reason for the synthesis of multimethyl-branched fatty acids by the fatty acid synthetase in the gland is that in this organ the tissue-specific and substrate-specific decarboxylase makes only methylmalonyl-CoA available to the synthetase. Fatty acid synthetase, partially purified from the mammary gland and the liver of rats, also catalyzed incorporation of [methyl-14C]methylmalonyl-CoA into 2,4,6,8-tetramethyldecanoic acid and 2,4,6,8-tetramethylundecanoic acid with acetyl-CoA and propionyl-CoA, respectively, as the primers. Evidence is also presented that fatty acids containing straight and branched regions can be generated by the fatty acid synthetase from the rat and goose, from methylmalonyl-CoA in the presence of malonyl-CoA or other precursors of n-fatty acids. These results provide support for the hypothesis that, under the pathological conditions which result in accumulation of methylmalonyl-CoA, abnormal branched acids can be generated by the fatty acid synthetase.  相似文献   

17.
N-Acetyl-L-glutamate synthetase (EC 2.3.1.1) catalyses the synthesis of N-acetyl-L-glutamate, an allosteric activator of carbamoyl-phosphate synthetase I in the liver of ureotelic animals, and the first enzyme is activated specifically by arginine. We have proposed that arginine can stimulate acetylglutamine synthetase in vivo and thereby increase the mitochondrial content of acetylglutamate. The effects of arginine on acetylglutamate synthesis in isolated mitochondria were investigated in detail in the present work. When rat liver mitochondria were isolated and incubated with [14C]glutamate and unlabelled acetate as substrates, acetyl[14C]glutamate synthesis in the mitochondria was more extensive in the presence than in the absence of L-arginine. There was no significant difference between the specific radioactivities of intramitochondrial [14C]glutamate in the presence and absence of arginine. When rat liver mitochondria were incubated with [14C]acetate and unlabelled glutamate as substrates, arginine also stimulated acetyl[14C]glutamate synthesis in the isolated mitochondria. L-Lysine or L-homoarginine, which does not activate acetylglutamate synthetase, had no effect on acetylglutamate synthesis, in the isolated mitochondria. The arginine concentration giving half-maximal synthesis of acetylglutamate in isolated mitochondria was about 50 microM, which is in the range of physiological concentrations of arginine in the liver. As we previously reported [Kawamoto, Ishida, Mori & Tatibana (1982) Eur. J. Biochem. 123, 637-641], the sensitivity of acetylglutamate synthetase to arginine activation undergoes marked changes after food ingestion. The extent of arginine activation of acetylglutamate synthesis in isolated mitochondria correlated well with the sensitivity of acetylglutamate synthetase extracted from the mitochondria to arginine activation. These data lend further support to the idea that arginine itself activates the mitochondrial synthesis of acetylglutamate.  相似文献   

18.
N-Acetyl-L-glutamate (NAG), the activator of mitochondrial carbamoyl phosphate synthetase (CPS), is demonstrated by several methods, including a new HPLC assay, in the brain of mammals and of chicken. The brain levels of NAG are 200–300 times lower than the levels of N-acetyl-l-aspartate (NAA), and are similar to the levels of NAG in rat liver. The NAG levels in chicken liver are very low. Although NAG is mitochondrial in the liver, it is cytosolic in brain. Using enzyme activity and immuno assays we did not detect CPS in brain (detection limit, 12.5 g/g brain), excluding that brain NAG is involved in citrullinogenesis. The regional distribution of brain NAG differs from that of NAA and resembles that of N-acetyl-l-aspartyl-l-glutamate (NAAG), suggesting that NAG and NAAG are related. NAG might be involved in the modulation of NAAG degradation.Special issue dedicated to Dr. Santiago Grisolía  相似文献   

19.
The major objectives of this study were to define the roles of adrenal glucocorticoids and glucagon in the long-term regulation of fatty acid synthetase and acetyl-CoA carboxylase of mammalian adipose tissue and liver. Particular emphasis was given to elucidation of the mechanisms whereby these hormones produce their regulatory effects on enzymatic activity. To dissociate mental manipulation, nutritional conditions were ridgidly controlled in the experiments described. Administration of glucocorticoids to adult rats led to a marked reductionin activities of fatty acid synthetase and carboxylase in adipose in adipose tissue but no change occurred in liver. Adrenalectomy produced an increase in activities of these lipogenic enzymes in adipose tissure, but, again, no change was noted in liver. The decrease in enzymatic activities in adipose tissue with glucocorticoid administration correlated well with a decrease in fatty acid synthesis, determined in vivo by the 3-H2O method. The mechanisms whereby glucocorticoids led to a decrease in fatty acid synthetase activity were elucidated by the use of immunochemical techniques. Thus, the decrease in fatty acid synthetase activity observed in adipose tissue was shown to reflect a decrease in content of enzyme, and not a change in catalytic efficiency. The mechanism underlying the decrease in enzyme content is a decrease in synthesis of the enzyme. The relation of the effects of glucocorticoids to the effects of certain other hormones involved in regulation of lipogenesis was investigated in hypophysectomized and in diabetic animals. Thus, the observation that the glucocorticoid effect on synthetase and carboxylase occurred in adipose tissue of hypophysectomized rats indicated that alterations in levels of other pituitary-regulated hormones were not necessary for the effect. That glucocorticoids play some role in regulation of synthetase and carboxylase in liver, at lease in the diabetic state, was shown by the observation that the low activities of these enzymes in diabetic animals could be restored to normal by adrenalectomy. An even more pronounced restorative effect was apparent in adipose tissue of adrenalectomized, diabetic animals. Administration of glucagon during the refeeding of starved rats resulted in a marked reduction in the induction of fatty acid synthetase, acetyl-CoA carboxylase and in the rate of incorporation of 3-H from 3-H2O into fatty acids in liver, but no change in these parameters occurred in adipose tissue. Administration of theophylline resulted in intermediate reduction in liver. The mechanisms whereby glucagon led tto a decrease in fatty acid synthetase activity were elucidated by the use of immunochemical techniques. Thus, the changes in fatty acid synthetase activity were shown to reflect reductions in content of enzyme. The mechanism underlying these reductions in content is reduced synthesis of enzyme.  相似文献   

20.
1. The glycogen present in the liver of rat foetuses was labelled by injecting a trace amount of [6-(3)H]glucose into the mother at 19.5 days of gestation. The radioactivity incorporated in the glycogen 4h after the administration of the label was still present 38h later. A large proportion of this radioactivity was on the outer chains of the polysaccharide. These results indicate that there is normally almost no glycogen degradation in the foetal liver. In contrast, glycogen breakdown occurs very rapidly in the livers of foetuses whose mother is anaesthetized. 2. Glycogen synthetase is present in the liver at day 16 of gestation at a concentration as high as 30% of that in the adult, but essentially as an inactive (b) enzyme. The appearance of synthetase phosphatase between days 18 and 19 corresponds to that of synthetase a and to the beginning of glycogen synthesis. From day 19 to 21.5 the amount of synthetase a present in the foetal liver is just sufficient to account for the actual rate of glycogen deposition. 3. The content of total phosphorylase in the foetal liver increases continuously from day 16 to birth. However, a precise measurement of the a and b forms of the enzyme in the liver of non-anaesthetized foetuses is not possible. Taking the rate of glycogenolysis as an appropriate index of phosphorylase activity, we conclude that this enzyme is almost entirely in the inactive form in the foetal liver under normal conditions. 4. The accumulation of glycogen in the liver during late pregnancy may therefore be explained by a relatively slow rate of synthesis and a nearly total absence of degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号