首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A novel member of the mouse CMP-NeuAc:beta-N-acetylgalactosaminide alpha2,6-sialyltransferase (ST6GalNAc) subfamily, designated ST6GalNAc VI, was identified by BLAST analysis of expressed sequence tags. The sequence of the cDNA clone of ST6GalNAc VI encoded a type II membrane protein with 43 amino acids composing the cytoplasmic domain, 21 amino acids composing the transmembrane region, and 269 amino acids composing the catalytic domain. The predicted amino acid sequence showed homology to the previously cloned ST6GalNAc III, IV, and V, with common amino acid sequences in sialyl motif L and S among these four enzymes. A fusion protein with protein A and extracts from L cells transfected with ST6GalNAc VI in an expression vector showed enzyme activity of alpha2,6-sialyltransferase for GM1b, GT1b, and GD1a but not toward glycoproteins. Thin layer chromatography-immunostaining revealed that the products were GD1alpha, GQ1balpha, and GT1aalpha. Northern blotting revealed that this gene was expressed in a wide range of mouse tissues such as colon, liver, heart, spleen, and brain. It is concluded that this enzyme is a novel sialyltransferase involved in the synthesis of alpha-series gangliosides in the nervous tissues and many other tissues.  相似文献   

5.
Sialoglycans on the cell surface of human colon cancer (HCC) cells have been implicated in cellular adhesion and metastasis. To clarify the role of N-acetylneuraminic acid (NeuAc) linked alpha2,3 to galactose (Gal) on the surface of HCC cells, we studied the intercellular adhesion of HCC cell lines expressing increasing NeuAcalpha2,3Gal-R. Our model system consisted of the HCC SW48 cell line, which inherently possesses low levels of cell surface alpha2,3 and alpha2,6 sialoglycans. To generate SW48 clonal variants with elevated cell surface NeuAcalpha2,3Gal-R linkages, we transfected the expression vector, pcDNA3, containing either rat liver cDNA encoding Galbeta1,3(4)GlcNAc alpha2,3 sialyltransferase (ST3Gal III) or human placental cDNA encoding Galbeta1,3GalNAc/Galbeta1,4GlcNAc alpha2,3 sialyltransferase (ST3Gal IV) into SW48 cells. Selection of neomycin-resistant clones (600 microgram G418/ml) having a higher percentage of cells expressing NeuAcalpha2,3Gal-R (up to 85% positive Maackia amurenis agglutinin staining compared with 30% for wild type cells) was performed. These ST3Gal III and ST3Gal IV clonal variants demonstrated increased adherence to IL-1beta-activated human umbilical vein endothelial cells (HUVEC) (up to 90% adherent cells compared with 63% for wild type cells). Interestingly, ST3Gal III and ST3Gal IV clonal variants also bound non-activated HUVEC up to 4-fold more effectively than wild type cells. Cell surface NeuAcalpha2,3Gal-R expression within the various SW48 clonal variants correlated directly with increased adhesion to HUVEC (r=0.84). Using HCC HT-29 cells, which express high levels of surface NeuAcalpha2,3Gal-R, addition of synthetic sialyl, sulfo or GalNAc Lewis X structures were found to specifically inhibit intercellular adhesion. At 1.0mM, NeuAcalpha2,3Galbeta1,3(Fucalpha1, 4)GlcNAc-OH and Galbeta1,4(Fucalpha1,3)GlcNAcbeta1,6(SE-6Galbeta1++ +, 3)GalNAcalpha1-O-methyl inhibited HT-29 cell adhesion to IL-1beta-stimulated HUVEC by 100% and 68%, respectively. GalNAcbeta1, 4(Fucalpha1,3)GlcNAcbeta1-O-methyl and GalNAcbeta1,4(Fucalpha1, 3)GlcNAcbeta1,6Manalpha1,6Manbeta1-0-C30H61, however, did not possess inhibitory activity. In conclusion, these studies demonstrated that cell surface NeuAcalpha2,3Gal-R expression is involved in HCC cellular adhesion to HUVEC. These specific carbohydrate-mediated intercellular adhesive events may play an important role in tumor angiogenesis, metastasis and growth control.  相似文献   

6.
7.
8.
9.
10.
We found endo-alpha-N-acetylgalactosaminidase in most bifidobacterial strains, which are predominant bacteria in the human colon. This enzyme catalyzes the liberation of galactosyl beta1,3-N-acetyl-D-galactosamine (Galbeta1,3GalNAc) alpha-linked to serine or threonine residues from mucin-type glycoproteins. The gene (engBF) encoding the enzyme has been cloned from Bifidobacterium longum JCM 1217. The protein consisted of 1,966 amino acid residues, and the central domain (590-1381 amino acid residues) exhibited 31-53% identity to hypothetical proteins of several bacteria including Clostridium perfringens and Streptococcus pneumoniae. The recombinant protein expressed in Escherichia coli liberated Galbeta1,3GalNAc disaccharide from Galbeta1,3GalNAcalpha1pNP and asialofetuin, but did not release GalNAc, Galbeta1,3(GlcNAcbeta1,6)GalNAc, GlcNAcbeta1,3GalNAc, and Galbeta1,3GlcNAc from each p-nitrophenyl (pNP) substrate, and also did not release sialo-oligosaccharides from fetuin, indicating its strict substrate specificity for the Core 1-type structure. The stereochemical course of hydrolysis was determined by (1)H NMR and was found to be retention. Site-directed mutagenesis of a total of 22 conserved Asp and Glu residues suggested that Asp-682 and Asp-789 are critical residues for the catalytic activity of the enzyme. The enzyme also exhibited transglycosylation activity toward various mono- and disaccharides and 1-alkanols, demonstrating its potential to synthesize neoglycoconjugates. This is the first report for the isolation of a gene encoding endo-alpha-N-acetylgalactosaminidase from any organisms and for the establishment of a new glycoside hydrolase family (GH family 101).  相似文献   

11.
Sialyl-Tn is a carbohydrate antigen overexpressed in several epithelial cancers, including breast cancer, and usually associated with poor prognosis. Sialyl-Tn is synthesized by a CMP-Neu5Ac:GalNAcalpha2,6-sialyltransferase: CMP-Neu5Ac: R-GalNAcalpha1-O-Ser/Thr alpha2,6-sialyltransferase (EC 2.4.99.3) (ST6GalNAc I), which transfers a sialic acid residue in alpha2,6-linkage to the GalNAcalpha1-O-Ser/Thr structure. However, established breast cancer cell lines express neither ST6GalNAc I nor sialyl-Tn. We have previously shown that stable transfection of MDA-MB-231, a human breast cancer cell line, with ST6GalNAc I cDNA induces sialyl-Tn antigen (STn) expression. We report here the modifications of the O-glycosylation pattern of a MUC1-related recombinant protein secreted by MDA-MB-231 sialyl-Tn positive cells. We also show that sialyl-Tn expression and concomitant changes in the overall O-glycan profiles induce a decrease of adhesion and an increase of migration of MDA-MB-231. Moreover, STn positive clones exhibit an increased tumour growth in severe combined immunodeficiency (SCID) mice. These observations suggest that modification of the O-glycosylation pattern induced by ST6GalNAc I expression are sufficient to enhance the tumourigenicity of MDA-MB-231 breast cancer cells.  相似文献   

12.
A novel member of the human CMP-NeuAc:beta-galactoside alpha2, 3-sialyltransferase (ST) subfamily, designated ST3Gal VI, was identified based on BLAST analysis of expressed sequence tags, and a cDNA clone was isolated from a human melanoma line library. The sequence of ST3Gal VI encoded a type II membrane protein with 2 amino acids of cytoplasmic domain, 32 amino acids of transmembrane region, and a large catalytic domain with 297 amino acids; and showed homology to previously cloned ST3Gal III, ST3Gal IV, and ST3Gal V at 34, 38, and 33%, respectively. Extracts from L cells transfected with ST3Gal VI cDNA in a expression vector and a fusion protein with protein A showed an enzyme activity of alpha2, 3-sialyltransferase toward Galbeta1,4GlcNAc structure on glycoproteins and glycolipids. In contrast to ST3Gal III and ST3Gal IV, this enzyme exhibited restricted substrate specificity, i.e. it utilized Galbeta1,4GlcNAc on glycoproteins, and neolactotetraosylceramide and neolactohexaosylceramide, but not lactotetraosylceramide, lactosylceramide, or asialo-GM1. Consequently, these data indicated that this enzyme is involved in the synthesis of sialyl-paragloboside, a precursor of sialyl-Lewis X determinant.  相似文献   

13.
14.
The substrate requirements, linkage specificity, and kinetic mechanism of a pure sialyltransferase from porcine submaxillary glands have been examined. The enzyme transfers sialic acid from the donor nucleotide, CMP-NeuAc, into the sequence NeuAcalpha2 leads to 3Galbeta1 leads to 3GalNAc, which is found in both glycoproteins and gangliosides. It forms only the alpha2 leads to 3 linkage with the disaccharide Gal/beta1 leads to 3GalNAc or antifreeze glycoprotein, which, along with asialoglycoproteins containing the sequence Gal/beta1 leads to 3GalNAcalpha1 leads to O-Thr/Ser, are the best acceptor substrates. Low molecular weight galactosides linked beta1 leads to 3 to glycose residues other than N-acetylgalactosamine are poor acceptors with relatively high Km values, while those in beta1 leads to 4 or beta1 leads to 6 linkages have both high Km and low Vmax. With glycoprotein and ganglioside acceptors this substrate specificity appears to be even more strict, with the sequence Gal/beta1 leads to 3GalNAc serving as the exclusive acceptor. Thus the present enzyme is not responsible either for the sequence, NeuAcalpha2 leads to 3Galbeta1 leads to 4GlcNAc, found in the asparagine-linked chains of certain glycoproteins, or for the synthesis of hematoside, NeuAcalpha2 leads to 3Galbeta1 leads to 4Glcbeta1 leads to 1Cer. Initial rate kinetic studies, with and without inhibitors, suggest that the transferase has an equilibrium random order mechanism.  相似文献   

15.
16.
We have previously cloned chondroitin-4-sulfotransferase (C4ST) cDNA from mouse brain. In this paper, we report cloning and characterization of GalNAc 4-sulfotransferase (GalNAc4ST), which transfers sulfate to position 4 of the nonreducing terminal GalNAc residue. The obtained cDNA contains a single open reading frame that predicts a type II transmembrane protein composed of 424 amino acid residues. Identity of the amino acid sequence between GalNAc4ST and human C4ST was 30%. When the cDNA was transfected in COS-7 cells, sulfotransferase activity toward carbonic anhydrase VI was overexpressed but no sulfotransferase activity toward chondroitin or desulfated dermatan sulfate was increased over the control. Sulfation of carbonic anhydrase VI by the recombinant GalNAc4ST occurred at position 4 of the GalNAc residue of N-linked oligosaccharides. The recombinant GalNAc4ST transferred sulfate to position 4 of GalNAc residue of p-nitrophenyl GalNAc, indicating that this sulfotransferase transfers sulfate to position 4 at the nonreducing terminal GalNAc residue. Dot blot analysis showed that the message of GalNAc4ST was expressed strongly in the human pituitary, suggesting that the cloned GalNAc4ST may be involved in the synthesis of the nonreducing terminal GalNAc 4-sulfate residues found in the N-linked oligosaccharides of pituitary glycoprotein hormones.  相似文献   

17.
The cDNA encoding a second type of mouse beta-galactoside alpha2,6-sialyltransferase (ST6Gal II) was cloned and characterized. The sequence of mouse ST6Gal II encoded a protein of 524 amino acids and showed 77.1% amino acid sequence identity with human ST6Gal II. Recombinant ST6Gal II exhibited alpha2,6-sialyltransferase activity toward oligosaccharides that have the Galbeta1,4GlcNAc sequence at the nonreducing end of their carbohydrate groups, but it exhibited relatively low and no activity toward some glycoproteins and glycolipids, respectively. On the other hand, ST6Gal I, which has been known as the sole member of the ST6Gal-family for more than ten years, exhibited broad substrate specificity toward oligosaccharides, glycoproteins, and a glycolipid, paragloboside. The ST6Gal II gene was mainly expressed in brain and embryo, whereas the ST6Gal I gene was ubiquitously expressed, and its expression levels were higher than those of the ST6Gal II gene. The ST6Gal II gene is located on chromosome 17 and spans over 70 kb of mouse genomic DNA consisting of at least 6 exons. The ST6Gal II gene has a similar genomic structure to the ST6Gal I gene. In this paper, we have shown that ST6Gal II is a counterpart of ST6Gal I.  相似文献   

18.
Based on sequence homology with the previously cloned human cerebroside sulfotransferase (CST) cDNA, a novel sulfotransferase was cloned by screening a human fetal brain cDNA library. The novel sulfotransferase gene was present on human chromosome 11q13; the location was different from human CST and from that of the recently cloned human beta-Gal 3'-sulfotransferase (GP3ST). The isolated cDNA contained an open reading frame that encoded a predicted protein of 431 amino acid residues with type II transmembrane topology. The amino acid sequence showed 33% identity with that of human CST and 38% with that of human GP3ST. The recombinant enzyme expressed in Chinese hamster ovary cells catalyzed transfer of sulfate to position 3 of non-reducing beta-galactosyl residues in Galbeta1-4GlcNAc. Type 2 chains served as good acceptors, whereas type 1 chains served as poor acceptors, and intermediate activity was found toward Galbeta1-3GalNAc. Therefore, the substrate specificity was different from that of GP3ST. CST activity was not detected in the newly cloned enzyme. Northern blotting analysis showed that the sulfotransferase mRNA was strongly expressed in the thyroid and moderately expressed in the brain, heart, kidney, and spinal cord. Co-transfection of the enzyme cDNA and fucosyltransferase III into COS-7 cells resulted in expression of (SO(4)-3)Galbeta1-4(Fucalpha1-3)GlcNAc and a small amount of (SO(4)-3)Galbeta1-3(Fucalpha1-4)GlcNAc. These results indicated that the newly cloned enzyme is a novel Gal-3-O-sulfotransferase and is involved in biosynthesis of the (SO(4)-3)Galbeta1-4(Fucalpha1-3)GlcNAc structure.  相似文献   

19.
Torii T  Fukuta M  Habuchi O 《Glycobiology》2000,10(2):203-211
We have previously cloned keratan sulfate Gal-6-sulfotransferase (KSGal6ST), which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 6 of Gal residue of keratan sulfate. In this study, we examined whether KSGal6ST could transfer sulfate to sialyl N -acetyllactosamine oligosaccharides or fetuin oligo-saccharides. KSGal6ST expressed in COS-7 cells catalyzed transfer of sulfate to NeuAcalpha2-3Galbeta1-4GlcNAc (3'SLN), NeuAcalpha2-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4Gl cNAc (SL1L1), NeuAcalpha2-3Galbeta1-4(6-sulfo)GlcNAcbeta1-3(6-sulfo) Galbeta1-4(6-su lfo)GlcNAc (SL2L4), and their desialylated derivatives except for Galbeta1-4GlcNAc, but not to NeuAcalpha2-3Galbeta1-4(Fucalpha1-3)GlcNAc (SLex). When the sulfated product formed from 3'SLN was degraded with neuraminidase and reduced with NaBH(4), the resulting sulfated disaccharide alditol showed the same retention time in SAX-HPLC as that of [(3)H]Gal(6SO(4))beta1-4GlcNAc-ol. KSGal6ST also catalyzed sulfation of fetuin. When the sulfated oligosaccharides released from the sulfated fetuin after sequential digestion with proteinase and neuraminidase were subjected to a reaction sequence of hydrazin-olysis, deaminative cleavage and NaBH(4)reduction, the major product was co-eluted with [(3)H]Gal(6SO(4))beta1-4anhydromannitol in SAX-HPLC. These observations show that KSGal6ST is able to sulfate position 6 of Gal residue of 3'SLN and fetuin oligosaccharides. The relative rates of the sulfation of SL2L4 was much higher than the rate of the sulfation of keratan sulfate. These results suggest that KSGal6ST may function in the sulfation of sialyl N -acetyllactosamine oligosaccharide chains attached to glycoproteins.  相似文献   

20.
The distribution of sialic acid residues as well as other glycosidic sugars has been investigated in the horse oviductal isthmus during anoestrus, oestrus and pregnancy by means of lectin and pre-lectin methods. Ciliated cells and non-ciliated (secretory) cells exhibited different lectin binding profiles that were found to change during the investigated stages. Ciliated cells did not show any reactivity in the basal cytoplasm, while the supra-nuclear cytoplasm displayed a few of oligosaccharides with terminal and internal alphamannose (Man) and/or alphaglucose (Glc) during oestrus and pregnancy and a moderate presence of oligosaccharides terminating in alphafucose (Fuc) during oestrus; cilia exhibited a more complex glycoconjugate pattern for the presence of oligosaccharides terminating in N-acetylgalactosamine (GalNAc), GalNAcalpha1,3 GalNAcalpha1,3galactose(Gal)beta1,4Galbeta1,4N-acetylglucosamine(GlcNAc), Fuc, sialic acid (Neu5Ac)-aGalNAc belonging or not to the GalNAca1,3GalNAca1,3 Galb1,4 Galb1, 4GlcNAc sequence, and. alphaGalNAc and Neu5Aca 2,6Gal/GalNAc increased during oestrus. Cilia displayed terminal Galbeta1,3 GalNAc in pregnancy, terminal alphaGal in anoestrus and pregnancy and terminal or internal D-GlcNAc during anoestrus and pregnancy, respectively. The whole cytoplasm of non-ciliated cells showed oligosaccharides terminating with alphaGalNAc, Neu5Aca2,6Gal/GalNAc, Neu5Ac GalNAca 1,3GalNAcalpha1,3Galbeta1,4Galbeta1,4GlcNAc during the investigated stages, as well as GlcNAc in anoestrus and pregnancy. The supra-nuclear zone of non-ciliated cells exhibited oligosaccharides with terminal Galbeta1,4GlcNAc and internal Man during oestrus and pregnancy as well as terminal alphaGal and Fuc in oestrus and Neu5Ac-Galbeta1,3GalNAc in pregnancy. The luminal surface of non-ciliated cells showed glycans terminating with alphaGalNAc and/or Neu5Ac GalNAcalpha1,3 GalNAcalpha1,3Galbeta1,4Galbeta1,4GlcNAc in all specimens, oligosaccharides with terminal Galbeta1,4GlcNAc and internal Man during oestrus and pregnancy, Neu5Ac alpha2,6Gal/GalNAc in anoestrus and oestrus, and glycans terminating with Galbeta1,3GalNAc, Neu5A acalpha2,3 Galbeta1, 4GlcNac, Neu5ac-Galbeta1,3GalNAc, Neu5Ac-Galbeta1,4 GlcNAc in pregnancy. These findings show the presence of sialoglycoconjugates in the oviductal isthmus of the mare as well as the existence of great modifications in the glycoconjugates linked to different physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号