首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
The resistance of mice to lethal infection by murine CMV (MCMV) is under complex host genetic control with contributions from both H-2 and non-H-2 genes. We have previously shown that an autosomal, non-MHC encoded gene, Cmv-1, controls MCMV replication in the spleen. We have investigated the mechanism by which the Cmv-1 resistance gene confers protection against MCMV infection. Using H-2 compatible irradiation bone marrow chimeras, the enhanced resistance to MCMV infection that is associated with the Cmv-1l allele in the C57BL background was shown to be mediated by an irradiation-sensitive bone marrow-derived cell population, or a factor produced by these cells. The lack of correlation between serum IFN titers and the strain distribution pattern of Cmv-1 in CXB recombinant inbred mouse strains suggests that IFN does not mediate resistance conferred by this gene. Similarly, the lack of effect of in vivo depletion of mature CD4+ and CD8+ T cells on virus replication in C57BL/6J mice indicates that T cells are unlikely to be involved. In contrast, in vivo depletion of NK cells by injection of the anti-NK1.1 mAb PK136 abrogated restricted splenic virus replication in C57BL/6J----BALB.B chimeric mice and in the Cmv-1l CXB strains. These data indicate that the effect of the Cmv-1 gene is mediated by NK cells. The significant augmentation in NK cell activity after MCMV infection of the susceptible Cmv-1h strains (BALB/cBy), CXBG/By, CXBH/By, CXBI/By, and CXBK/By) indicates the existence in these mice of NK cells that are functionally and phenotypically distinct from those in Cmv-1l strains. NK cells present in the Cmv-1h strains are unable to restrict efficiently splenic MCMV replication in vivo, possibly due to a lack of specificity for virus-infected target cells. Finally, flow cytometric analysis of NK1-1 expression in CXB and BXD RI mice together with MCMV replication studies in the BXD RI strains indicate that Cmv-1 is closely linked to NK1.1 and other loci that reside on a distal segment of murine chromosome 6 in a region that has recently been defined as the natural killer complex.  相似文献   

2.
Effect of graft-versus-host disease on anti-tumor immunity   总被引:1,自引:0,他引:1  
BCL1, a spontaneous B cell leukemia of BALB/c origin, is rejected by C.B-20 (Ighb, H-40b) but not BALB/c (Igha, H-40a) mice. Adoptive transfer of C.B-20 anti-BCL1 effector cells specific for the minor histocompatibility Ag H-40a protects irradiated C.B-20 but not BALB/c recipients. Because C.B-20 donor cells could potentially generate graft-vs-host disease (GVHD) in BALB/c recipients, we investigated the possibility that GVHD prevents the anti-tumor effect. GVHD was induced in (C.B-20 X B10.D2)F1 [H-2d, H-40b X H-2d,H-40b] recipients after injection of B10.D2-primed C.B-20 donor cells. GVHD was indicated by the histologic appearance of tissue sections from C.B-20----F1 livers, target organs of GVHD, which showed a marked mononuclear cell infiltrate around the portal tracts and central veins. In addition, splenic lymphocytes from these mice had altered CD4/CD8 ratios and were unable to respond to the polyclonal activators Con A and LPS. The mitogen unresponsiveness was at least partially due to the presence of a suppressor cell, because proliferation of normal spleen cells to Con A and LPS was suppressed upon addition of C.B-20----F1 spleen cells. Further immune dysfunction was evident by the inability of T cells from mice with GVHD to generate a CTL response to H-2 alloantigens. Addition of C.B-20----F1 spleen cells to F1 responder cells at the induction of culture did not prevent generation of CTL, indicating that a suppressor cell was not responsible for the lack of CTL activity. In this setting of GVHD, F1 recipients were able to reject BCL1 upon adoptive transfer of C.B-20 anti-BCL1 effector cells. These data indicate that GVHD-induced immune dysfunction does not inhibit the activity of antileukemia T cells.  相似文献   

3.
Immunization of C57BL/6 mice with BALB.B spleen cells in vivo and subsequent boosting in mixed lymphocyte culture result in the generation of cytolytic T lymphocytes (CTLs) which are specific for a limited number of immunodominant antigens. Experiments are described which suggest the existence of a hierarchy of immunodominance in this donor: host combination. Two antigens, CTT-1.3 and CTT-2.3, are dominant in the C57BL/6 anti-BALB.B CTL response. The distribution of these antigens among CXB recombinant inbred (RI) strains suggests that they segregate as single gene traits. Elimination of the CTT-1.3 and CTT-2.3 antigens by complementation in the responder, or elimination from the priming and boosting stages by the selection.of CXB RI strain mice as responders or stimulators, reveals a second level of immunodominant antigens which include CTT-3.3 and CTT-4.3. CXB mice which express one of the CTT-1.3 or CTT-2.3 antigens will produce CTLs specific for the other antigen upon priming and boosting with BALB.B cells. Expression of both antigens in responders results in the generation of CTLs specific for the second level, dominant antigens. Immunodominance is not confined to the C57BL/6 anti-BALB.B system but can also be observed in the BALB.B anti-C57BL/6 and B10.D2 anti-DBA/2 systems. Finally, generation of CTLs following priming and boosting with dominant and dominated antigens presented on different cells confirmed that immunodominance can only be observed when the dominant and dominated antigens are presented on the same cells. These observations suggest that immunodominance is revealed at the level of antigen-presenting cells primarily involved in vivo priming.  相似文献   

4.
The Ag specificity and MHC restriction of the CTL response to adenovirus 5 (Ad5) in three strains of mice, C57BL/10 (H-2b), BALB/c (H-2d), and C3H/HeJ (H-2k), were tested. Polyclonal Ad5-specific CTL were prepared by priming mice in vivo with live Ad5 virus followed by secondary in vitro stimulation of the spleen cells with virus-infected syngeneic cells. The Ad5-specific CTL were Db restricted in C57BL/10 and Kk restricted in C3H/HeJ. In BALB/c mice both Kd- and Dd/Ld-restricted CTL were detected. The polyclonal Ad5-specific CTL response in C57BL/10 mice is directed exclusively against the products of the E1A region, which comprises only 5% of the Ad5 genome. In BALB/c mice E1A is at best a very minor target Ag and in C3H/HeJ mice E1A is not recognized at all. Using the H-2 congenic mouse strains B10.BR (H-2k) and C3H.SW (H-2b) it was shown that the immunodominance of E1A is H-2 dependent. The 19-kDa glycoprotein encoded in the E3 region of Ad5, which binds to class I MHC in the endoplasmic reticulum and prevents its translocation to the cell surface, does not affect the specificity of the CTL response in C57BL/10 mice toward E1A. However, it affects the MHC restriction of the Ad5-specific response in BALB/c mice, selectively inhibiting generation of Kd-restricted CTL.  相似文献   

5.
Grafts can be rejected even when matched for MHC because of differences in the minor histocompatibility Ags (mH-Ags). H4- and H60-derived epitopes are known as immunodominant mH-Ags in H2(b)-compatible BALB.B to C57BL/6 transplantation settings. Although multiple explanations have been provided to explain immunodominance of Ags, the role of vascularization of the graft is yet to be determined. In this study, we used heart (vascularized) and skin (nonvascularized) transplantations to determine the role of primary vascularization of the graft. A higher IFN-γ response toward H60 peptide occurs in heart recipients. In contrast, a higher IFN-γ response was generated against H4 peptide in skin transplant recipients. Peptide-loaded tetramer staining revealed a distinct antigenic hierarchy between heart and skin transplantation: H60-specific CD8(+) T cells were the most abundant after heart transplantation, whereas H4-specific CD8(+) T cells were more abundant after skin graft. Neither the tissue-specific distribution of mH-Ags nor the draining lymph node-derived dendritic cells correlated with the observed immunodominance. Interestingly, non-primarily vascularized cardiac allografts mimicked skin grafts in the observed immunodominance, and H60 immunodominance was observed in primarily vascularized skin grafts. However, T cell depletion from the BALB.B donor prior to cardiac allograft induces H4 immunodominance in vascularized cardiac allograft. Collectively, our data suggest that immediate transmigration of donor T cells via primary vascularization is responsible for the immunodominance of H60 mH-Ag in organ and tissue transplantation.  相似文献   

6.
The role of L3T4+ (CD4+) Th cells in generation of CTL specific for discrete minor histocompatibility Ag was investigated. Suppression of the function of Th cells in vivo by chronic treatment with anti-L3T4 mAb prevented congenic strains of mice from being primed and from generating CTL specific for Ag encoded by the minor histocompatibility loci--H-3, H-1, and B2m. Analysis of proliferative responses and lymphokine secretion of cells from animals primed with one of these minor H Ag, beta 2-microglobulin, but not treated with anti-L3T4 antibodies, indicated that L3T4- class I MHC-restricted T cells were themselves responsible for the very great majority of the observed minor H Ag-specific proliferation and secretion of lymphokines associated with both T cell proliferation and activation of CTL. All together, the data indicate that in responses against discrete minor H Ag, L3T4+Th-independent CTL are generated through an L3T4+Th-dependent pathway.  相似文献   

7.
CD8 T lymphocytes (CTL) responsive to immunodominant minor histocompatibility (minor H) Ags are thought to play a disproportionate role in allograft rejection in MHC-identical solid and bone marrow transplant settings. Although many studies have addressed the mechanisms underlying immunodominance in models of infectious diseases, cancer immunotherapy, and allograft immunity, key issues regarding the molecular basis of immunodominance remain poorly understood. In this study, we exploit the minor H Ag system to understand the relationship of the various biochemical parameters of Ag presentation and recognition to immunodominance. We show that the duration of individual minor H Ag presentation and the avidity of T cell Ag recognition influence the magnitude and, hence, the immunodominance of the CTL response to minor H Ags. These properties of CTL Ag presentation and recognition that contribute to immunodominance have implications not only for tissue transplantation, but also for autoimmunity and tumor vaccine design.  相似文献   

8.
Lethal graft-vs-host disease (GVHD) can be induced between MHC-matched murine strains expressing multiple minor histocompatibility Ag differences. In the B6->BALB.B model, both CD4(+) and CD8(+) donor T cells can mediate lethal GVHD, whereas in the B6->CXB-2 model, only CD8(+) T cells are lethal. TCR Vbeta CDR3-size spectratyping was previously used to analyze CD8(+) and CD4(+) T cell responses in lethally irradiated BALB.B and CXB-2 recipients, which showed significant overlap in the reacting repertoires. However, CD4(+) T cells exhibited unique skewing of the Vbeta2 and 11 families in only BALB.B recipients. These Vbeta family reactivities were confirmed by immunohistochemical staining of lingual epithelial infiltrates, and by positive and negative selection Vbeta family transfer experiments for GVHD induction in BALB.B recipients. We have now extended these studies to examine the T cell repertoire responses involved in target tissue damage. Infiltrating B6 host-presensitized CD8(+) and CD4(+) T cells were isolated 8-10 days post-transplant from the spleens, intestines and livers of CXB-2 and BALB.B transplant recipients. For both T cell subsets, the results indicated overlapping tissue skewings between the recipients, also between the tissues sampled within the respective recipients as well as tissue specific responses unique to both the BALB.B and CXB-2 infiltrates. Most notably, the CD4(+) Vbeta 11(+) family was skewed in the intestines of BALB.B but not CXB-2 recipients. Taken together, these data suggest that there are likely to be target tissue-related anti-multiple minor histocompatibility Ag-specific responses in each of the strain recipients, which may also differ from those found in peripheral lymphoid organs.  相似文献   

9.
Although it is well known that an H-2-restricted cytotoxic T cell response to minor histocompatibility antigens (MIHA) can be primed in vivo with H-2 disparate spleen cells, it has not been previously possible to induce cytotoxic T lymphocyte (CTL) precursors (CTLp) in vitro by this type of challenge. In this work, we demonstrate that the inability to cross challenge in vitro is due to the existence of inhibitory effects that can be obviated by cell fractionation, and to insufficient priming in vivo. BALB/c CTLp (H-2d) that have been repeatedly primed in vivo with B10.D2 can be challenged in vitro with C57BL10/J (H-2b) or B10.BR (H-2k)-adherent cells to generate CTL able to lyse B10.D2 (H-2d) target cells. The H-2 restriction properties of the cross-challenged CTL specific for MIHA were analyzed by using the technique of cold target competition. Within the limits of detection in bulk cultures, the entire response appeared to be H-2 unrestricted, whether the cross challenge was with intact C57BL10/J-adherent cells, or with membrane fragments of C57BL10/J presented by BALB/c adherent cells. The frequency of CTLp responsive to cross challenge was analyzed by limiting dilution, with cold target competition at each cell number to establish the restriction properties of the MIHA-specific CTL induced. We were able to detect two subsets of H-2-unrestricted CTLp responsive to intact C57BL10/J-adherent cells; one present at high frequency (1/250 T cells) and subject to suppressive effects at high cell number, and a second present at lower frequency (1/9800 T cells). There appeared to be a relatively infrequent subset of H-2-restricted CTLp as well (1/52,500 T cells). The frequency of CTLp responsive to cross challenge is of comparable magnitude to the frequency of H-2-restricted CTLp responsive to H-2-matched cells bearing MIHA. These observations are discussed in relationship to immunodominance and clonal dominance effects in the response to MIHA.  相似文献   

10.
The phenotype of T cells that initiate graft-vs-host disease (GVHD) in response to minor histocompatibility antigens (minor HA) was determined in three H-2 compatible strain combinations by using negative selection with monoclonal antibodies to Lyt-2 and L3T4 antigens to test the hypothesis that Lyt-2-positive T cells alone initiate GVHD. The phenotype of T cells required to initiate GVHD was different in each of the three strain combinations studied. Both Lyt-2+ and L3T4+ LP spleen cells were necessary to cause lethal GVHD in C57BL/6 recipients. In the reciprocal transplant, Lyt-2+, but not L3T4+ C57BL/6 spleen cells were sufficient to initiate GVHD in LP recipients. In contrast, L3T4+, but not Lyt-2+ B10.D2 spleen cells were found to initiate GVHD in BALB/c recipients. The optimal response to minor HA requires both Lyt-2+ and L3T4+ T cells because a mixture of the two subsets of spleen cells resulted in a more severe form of GVHD than either subset alone in all three strain combinations studied. This study demonstrates that L3T4+ cells participate in the initiation of GVHD in response to minor HA. The dominant T cell subset that initiates GVHD varies with the specific strain combination tested. The specific minor HA expressed in the transplant recipient, the H-2 type, and possibly non-major histocompatibility complex immune response genes of the donor strain appear to determine the phenotype of the initiator T cells.  相似文献   

11.
Cytotoxic effector T cells putatively specific for multiple non-H-2 histocompatibility (H) antigens were generated by immunizing and boosting C57BL/6 and B6.C-H-2 dmice with BALB.B and BALB/c stimulator cells, respectively. The generated effectors were tested for cell-mediated lympholysis on a panel of targets whose BALB/c-derived non-H-2 H antigens were donated by CXB recombinant inbred mice. The spectrum of reactivity of cytotoxic effector T cells with CXB targets demonstrated that the effectors did not recognize multiple H antigens but rather preferentially recognized a single immunodominant non-H-2 H antigen. The identity of the immunodominant H antigen was determined by the H-2 genotype of the stimulator cells when (B6 × B6.C-H-2 d)F 1 cytotoxic effectors were tested. These observations indicate that despite the fact that responders were challenged with more than 40 individual non-H-2 H antigens, they preferentially responded to a single immunodominant antigen.  相似文献   

12.
Fetal gonadal size was measured on Days 13, 16 and 19 of gestation in the C57BL/6ByEss (B) and BALB/cByEss (C) inbred strains, their two reciprocal F1 hybrids (CXB and BXC) and in the CXBD and CXBE recombinant inbred lines. At Day 13, CXB F1 fetuses, with C57 fathers and BALB mothers, had significantly larger testes and ovaries than did fetuses of the other 5 stocks. On Day 16, BALB fetuses had significantly larger testes than did C57, while at Day 19 C57 fetuses had significantly larger testes than did BALB fetuses. The CXB and BXC F1 fetuses had significantly larger testes than did mice of the two parental strains on Days 16 and 19, even though the mothers of all 4 kinds of fetus came from the same two inbred strains. C57 and BALB mice did not differ significantly in ovarian size, but had significantly smaller ovaries than did mice of the other genotypes on Days 16 and 19. CXBD mice had the largest ovaries, followed by those of the F1 hybrids. Ovarian size in CXBE mice was similar to that in the CXB hybrids. There were strong maternal effects on gonad size on Days 13 and 19 of gestation. The genes that influenced fetal testicular and ovarian growth appeared to differ from those expressed post-natally at 30 and 60 days.  相似文献   

13.
Keratinocytes express la antigen (Ia) during cutaneous graft-vs-host disease (GVHD); it is, however, unclear whether this Ia is adsorbed from alloactivated donor lymphocytes or from Ia-bearing host Langerhans cells (LC), or whether it is actively synthesized by host keratinocytes. We therefore sought to determine the origin of keratinocyte Ia in a murine model of GVHD. Lethally irradiated C3H/He (H-2k) mice developed characteristic histopathologic changes of acute cutaneous GVHD 7 days after injection of BALB/c (H-2d) bone marrow and spleen cells, and expressed keratinocyte Ia of host (Iak) but not donor (Iad) origin in immunofluorescence studies. To determine whether the Ia was synthesized by keratinocytes or adsorbed from host LC, we investigated GVHD that was induced in chimeric mice. Parental strain A mice were made chimeric by lethal irradiation and reconstitution with (A X B)F1 bone marrow cells as follows: (BALB/c X C3H/He)F1 (H-2d,k) leads to C3H/He (H-2k), B6C3F1 (H-2b,k) leads to C57BL/6 (H-2b), and B6C3F1 (H-2b,k) leads to C3H/He (H-2k). After 3 mo, the LC in the skin of these chimeric mice were mainly of F1 haplotype. The chimeric mice were again lethally irradiated and injected with marrow and spleen cells from a third strain of mouse (C57BL/6, H-2b or BALB/c, H-2d) histoincompatible with both F1 parental strains. In the ensuing GVHD, the chimeric recipients only expressed keratinocyte Ia syngeneic to the original haplotype of the animal (strain A), despite the fact that the majority of their LC were derived from F1 marrow and expressed Ia of both F1 parental strain haplotypes (strains A and B). Together, these findings indicate that keratinocyte Ia in GVHD is synthesized by keratinocytes and is not derived from donor lymphocytes or adsorbed from host LC.  相似文献   

14.
The parent-into-immunocompetent-F(1) model of graft-vs-host disease (GVHD) induces immune dysregulation, resulting in acute or chronic GVHD. The disease outcome is thought to be determined by the number of parental anti-F(1) CTL precursor cells present in the inoculum. Injection of C57BL/6 (B6) splenocytes into (B6 x DBA/2)F(1) (B6D2F(1)) mice (acute model) leads to extensive parental cell engraftment and early death, whereas injection of DBA/2 cells (chronic model) results in little parental cell engraftment and a lupus-like disease. This study demonstrated that injection of BALB/c splenocytes into (BALB/c x B6)F(1) (CB6F(1)) mice resulted in little engraftment of parental lymphocytes and the development of lupus as expected. Injection of B6 splenocytes into CB6F(1) initiated an initial burst of parental cell engraftment similar to that of B6 into B6D2F(1). However, the acute disease resolved, and the CB6F(1) mice went on to develop chronic GVHD with detectable Abs to ssDNA, dsDNA, and extractable nuclear Ags. Limiting dilution CTL assays determined that B6 splenocytes have CTL precursor frequencies of 1/1000 against both CB6F(1) and B6D2F(1), whereas DBA/2 and BALB/c splenocytes have a CTL precursor frequency of 1/20,000 for their respective F(1)s. The Th cell precursor frequency for B6 anti-DBA/2 was 3-fold higher than that for B6 anti-BALB/c determined by limiting dilution proliferation assays. These results indicate the importance of adequate allospecific helper as well as effector T cells for the induction and maintenance of acute GVHD in this model, and presents an unexpected model in which initial acute GVHD is replaced by the chronic form of disease.  相似文献   

15.
Minor histocompatibility Ags elicit cell-mediated immune responses and graft rejection in individuals receiving MHC-matched tissues. H60 represents a dominant Ag that elicits a strong CTL response in C57BL/6 mice immunized against BALB.B. An 8-aa peptide in the H60 protein is presented by H-2K(b) and this is recognized by the TCR as an alloantigen. The intact H60 glycoprotein is a ligand for the costimulatory NKG2D receptor that is expressed by activated CD8(+) T cells. Thus, H60 may provide both an allogeneic peptide and its own costimulation. We show that mutation of an H-2K(b)-binding anchor residue in the H60 peptide completely abrogates binding of H60 glycoprotein to NKG2D and a synthetic H60 peptide partially blocks the binding of NKG2D to its ligand. Ligands of the human NKG2D receptor are remarkably polymorphic, suggesting that these may also serve as minor histocompatibility Ags.  相似文献   

16.
Considerable progress has been made in defining the relative contributions of CD4+ and CD8+ cells to GVHD. Studies in mice have shown that, in isolation, each T cell subset is able to induce lethal GVHD in irradiated hosts. For hosts differing at the MHC (H-2), CD4+ cells cause GVHD directed to H-2 class II antigens whereas CD8+ cells produce GVHD to H-2 class I antigens. With H-2-matched hosts expressing multiple minor H antigens, induction of lethal GVHD is largely under the control of CD8+ cells. Which particular minor H antigens provide the targets for GVHD in mice is still unclear. Clarifying this question is complicated by the finding that the target antigens for GVHD do not necessarily correlate with the targets for cytotoxicity measured in vitro; moreover, immunodominance occurs when T cells are exposed to multiple minor H antigens in vivo. In terms of clinical application, there is a need to devise animal models for improving the success of HLA-matched bone marrow transplantation. Selectively depleting the marrow inoculum of CD8+ cells and preimmunizing the donor against viral pathogens are two procedures which are currently under study.  相似文献   

17.
A model for bone marrow transplantation across minor histocompatibility barriers was developed by using mouse strains that were H-2 identical and mutually non-reactive in MLC. Acute graft-vs-host disease was induced only when donor lymphoid cells were included in the marrow inoculum, in both C57BL/6 recipients of LP cells and BALB/c recipients of B10.D2/nSN cells. GVHD was prevented by treating the lymphoid cells with anti-Thy 1.2 and C before transplantation. Spleen cells from mice with acute GVHD were not directly cytotoxic to recipient strain target cells. However, when spleen cells from mice with GVHD were boosted in vitro to recipient strain stimulator cells they generated a specific anti-recipient cytotoxic response. Spleen cells from mice without GVHD did not generate a cytotoxic response in vitro. The cytotoxic effector cells and their precursors were shown to be T lymphocytes. This model and the in vitro method described may be useful in further studies of the immunobiology of GVHD due to minor histocompatibility antigens and of transplantation tolerance.  相似文献   

18.
Con A splenic lymphoblasts were incubated with phosphatidyl-inositol specific phospholipase C (PIPLC) derived from Bacillus thuringiensis and subsequently analyzed for Qa-2 Ag with the Qa-2 reactive mAb Qa-m2. This treatment completely removed Qa-2 detectable Ag on lymphoblasts from H-2d animals, indicating that these molecules are likely anchored to the cell membrane through phosphatidyl inositol (PI). Although exposure of lymphoblasts from H-2b mice to PIPLC greatly reduced Qa-2 expression, a subpopulation of cells retained a limited quantity of the Ag. Bulk cultured anti-Qa-2 CTL generated against the Qa-2 region from H-2b haplotype mice lysed Qa-2+ targets from B6.K2 (H-2b) and BALB/cJ (H-2d) animals. Pretreatment of these lymphoblast targets with PIPLC completely abolished lysis of the BALB/cJ target cells, whereas lysis of B6 targets was reduced only slightly. Anti-Qa-2 CTL clones tested against PIPLC-treated B6 target cells revealed two patterns of reactivity. One group of clones was unaffected in its ability to lyse PIPLC-pretreated targets and cross-reacted on Q6d/Ld molecules expressed on transfected L cells. A second group was unable to lyse PIPLC-pretreated lymphoblasts and cross-reacted on Q7d/Ld targets. These data suggest that H-2b-derived lymphoblasts express two different types of Qa-2 molecules with respect to PIPLC sensitivity; one type is sensitive to PIPLC and cross-reactive with Q7d, the other type is resistant to PIPLC and cross-reactive with Q6d. In contrast, H-2d lymphoblasts express only the PIPLC-sensitive type of molecules. It was also noted that bulk cultured anti-Qa-2 CTL more readily lysed H-2b target cells expressing a smaller quantity of PIPLC-resistant Ag than H-2d targets expressing a larger amount of PIPLC-sensitive Ag. Further, anti-Qa-2 CTL clones readily lysed PIPLC-treated target cells expressing very low levels of serologically detectable Qa-2. This suggests that recognition of class I molecules anchored to the membrane via a PIPLC-resistant linkage may more readily activate CTL for expression of lytic activity than molecules anchored through PI.  相似文献   

19.
When (B10.BR X CWB)F1 (BWF1; H-2k/b) mice carrying the H-42b allele at the minor H-42 locus were injected with H-42a C3H.SW (CSW; H-2b) or C3H (H-2k) spleen cells (SC), self-H-2Kb restricted anti-H-42a pCTL in the BWF1 recipients were primed and differentiated to anti-H-42a CTL after in vitro stimulation with (B10.BR X CSW)F1 (BSF1; H-2k/b, H-42b/a) SC. In contrast, anti-H-42a pCTL in H-42b mice were inactivated by injection with H-42-congenic H-42a SC, and stable anti-H-42a CTL tolerance was induced. Preference of H-2Kb restriction of anti-H-42a CTL was strict, and self-H-2Kb-restricted anti-H-42a CTL did not lyse target cells carrying H-42a antigen in the context of H-2Kbm1. Involvement of suppressor cells in the anti-H-42a CTL tolerance was ruled out by the present cell transfer study and the previous cell-mixing in vitro study. Notably, treatment with anti-Thy-1.2 antibody (Ab) plus complement (C) wiped out the ability of CSW SC in the priming of anti-H-42a pCTL of BWF1 mice but left that of C3H SC unaffected, and injection of the anti-Thy-1.2 Ab plus C-treated CSW SC induced anti-H-42a CTL tolerance in the BWF1 recipients. Furthermore, H-42a/b, I-Ab/bm12 [CSW X B6.CH-2bm12 (bm12)]F1 SC could not prime anti-H-42a pCTL in H-42b, I-Ab (CWB X B6)F1 recipients, whereas H-42a/b, I-Ab (CSW X B6)F1 SC primed anti-H-42a pCTL in H-42b, I-Ab/bm12 (CWB X bm12)F1 recipients. The unresponsiveness of anti-H-42a pCTL in H-42b mice to H-42-congenic H-42a SC was sometimes corrected by immunization of H-42b female mice with H-42-congenic H-42a male SC. Taking all of the results together, we propose the following. Unresponsiveness of anti-H-42a pCTL in H-42b mice to H-42-congenic H-42a SC is caused by "veto cells" contained in the antigenic H-42a SC. Anti-H-42a pCTL in the H-42b recipients directly interacting with H-42-congenic H-42a SC, which bear H-42a antigen and H-2Kb restriction element, are inactivated or vetoed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Immunization of mice with multiple non-H-2 histocompatibility antigens results in the generation of cytolytic T lymphocytes that are specific for a limited number of immunodominant antigens. The experiments presented in this communication were designed to reveal immunodominance in pairwise combinations of autosomal and sex-linked non-H-2 histocompatibility (H) antigens. Priming and boosting responders with the male antigen, H-Y, paired with the H-4.2, H-7.1, or H-3.1 antigens, resulted in the generation of cytolytic T cells specific for the autosomal H antigens but not the H-Y antigen. Furthermore, co-immunization and boosting of C57BL/6 female responder spleen cells with BALB.B male cells resulted in the generation of cytolytic T cells specific for the BALB.B immunodominant antigens but not H-Y. No dominance was observed in H-4-plus H-7-incompatible combinations. Co-immunization of three different H-3 congenic strains with H-3.1 plus H-Y demonstrated that an efficient anti-H-3.1 T cell response is required for observing H-3.1 immunodominance over H-Y. Co-expression of H-3.1 and H-Y on the same priming and boosting cells was required for immunodominance. In fact, immunization with H-3.1 and H-Y presented on different cells resulted in normal generation of H-Y-specific cytolytic T cells, but no generation of H-3.1-specific cytolytic T cells resulted unless H-Y-specific cells were stimulated in the mixed lymphocyte cultures. These observations suggest that in vitro T cell responses to paired, non-H-2 H antigens may be independent, competitive, or synergistic, depending on the identity of the antigens and the priming and boosting conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号