首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Using fMRI, we showed that an area in the ventral temporo-occipital cortex (area vTO), which is part of the human homolog of the ventral stream of visual processing, exhibited priming for both identical and depth-rotated images of objects. This pattern of activation in area vTO corresponded to performance in a behavioral matching task. An area in the caudal part of the intraparietal sulcus (area cIPS) also showed priming, but only with identical images of objects. This dorsal-stream area treated rotated images as new objects. The difference in the pattern of priming-related activation in the two areas may reflect the respective roles of the ventral and dorsal streams in object recognition and object-directed action.  相似文献   

2.
Ventral and dorsal streams are visual pathways deputed to transmit information from the photoreceptors of the retina to the lateral geniculate nucleus and then to the primary visual cortex (V1). Several studies investigated whether one pathway is more vulnerable than the other during development, and whether these streams develop at different rates. The results are still discordant. The aim of the present study was to understand the functionality of the dorsal and the ventral streams in two populations affected by different genetic disorders, Noonan syndrome (NS) and 22q11.2 deletion syndrome (22q11.2DS), and explore the possible genotype–phenotype relationships. ‘Form coherence’ abilities for the ventral stream and ‘motion coherence’ abilities for the dorsal stream were evaluated in 19 participants with NS and 20 participants with 22q11.2DS. Collected data were compared with 55 age‐matched controls. Participants with NS and 22q11.2DS did not differ in the form coherence task, and their performance was significantly lower than that of controls. However, in the motion coherence task, the group with NS and controls did not differ, and both obtained significantly higher scores than the group with 22q11.2DS. Our findings indicate that deficits in the dorsal stream are related to the specific genotype, and that in our syndromic groups the ventral stream is more vulnerable than the dorsal stream.  相似文献   

3.
4.
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.  相似文献   

5.
We used contrast-agent enhanced functional magnetic resonance imaging (fMRI) in the alert monkey to map the cortical regions involved in the extraction of 3D shape from the monocular static cues, texture and shading. As in the parallel human imaging study [1], we contrasted the 3D condition to several 2D control conditions. The extraction of 3D shape from texture (3D SfT) involves both ventral and parietal regions, in addition to early visual areas. Strongest activation was observed in CIP, with decreasing strength towards the anterior part of the intraparietal sulcus (IPS). In the ventral stream 3D SfT sensitivity was observed in a ventral portion of TEO. The extraction of 3D shape from shading (3D SfS) involved predominantly ventral regions, such as V4 and a dorsal potion of TEO. These results are similar to those obtained earlier in human subjects and indicate that the extraction of 3D shape from texture is performed in both ventral and dorsal regions for both species, as are the motion and disparity cues, whereas shading is mainly processed in the ventral stream.  相似文献   

6.
Corticocortical connections from the posterior association area to the posterior part of the superior temporal sulcal cortex (STs area) were studied in the monkey by means of retrograde axonal transport of horseradish peroxidase (HRP) or wheatgerm-agglutinin-conjugated HRP (WGA-HRP). After injecting 0.05-0.2 microliter of 50% HRP or 5% WGA-HRP into the STs area, labeled cells were examined in various cortical regions. The dorsal wall of the STs receives fibers mainly from the inferior parietal lobule (area 7) and superior temporal gyrus (area 22), whereas the ventral wall and floor part of the STs receive fibers from the posterior inferotemporal gyrus (area TEO) and prestriate cortex (areas 18 and 19). The deeper parts of the dorsal wall close to the floor region of the STs area also receive many fibers from the cortical walls surrounding the intraparietal, lunate and lateral sulci. Both the dorsal and ventral cortical walls of the intraparietal sulcus send fibers mainly to the deep dorsal wall of the STs. The ventral wall of the STs, on the other hand, receives fibers only from the ventral wall of the intraparietal sulcus. The medial surface of the prestriate cortex and the parahippocampal region send fibers to both walls of the STs. In the prestriate-STs projections originating from areas around the parieto-occipital sulcus, a topographic correlation is present; area 19 located anterior to the sulcus projects to the dorsal wall, whereas area 18 situated posterior to the sulcus projects to the ventral wall. Only the dorsal wall receives fibers from the cingulate (areas 23 and 24) and subparietal gyri (area 7). The deeper part of the dorsal wall and the ventral wall of the posterior STs area are interconnected with each other, while the upper part of the dorsal wall does not appear to receive fibers from the ventral wall.  相似文献   

7.
Our understanding of multisensory integration has advanced because of recent functional neuroimaging studies of three areas in human lateral occipito-temporal cortex: superior temporal sulcus, area LO and area MT (V5). Superior temporal sulcus is activated strongly in response to meaningful auditory and visual stimuli, but responses to tactile stimuli have not been well studied. Area LO shows strong activation in response to both visual and tactile shape information, but not to auditory representations of objects. Area MT, an important region for processing visual motion, also shows weak activation in response to tactile motion, and a signal that drops below resting baseline in response to auditory motion. Within superior temporal sulcus, a patchy organization of regions is activated in response to auditory, visual and multisensory stimuli. This organization appears similar to that observed in polysensory areas in macaque superior temporal sulcus, suggesting that it is an anatomical substrate for multisensory integration. A patchy organization might also be a neural mechanism for integrating disparate representations within individual sensory modalities, such as representations of visual form and visual motion.  相似文献   

8.
The ventral form vision pathway of the primate brain comprises a sequence of areas that include V1, V2, V4 and the inferior temporal cortex (IT) [1]. Although contour extraction in the V1 area and responses to complex images, such as faces, in the IT have been studied extensively, much less is known about shape extraction at intermediate cortical levels such as V4. Here, we used functional magnetic resonance imaging (fMRI) to demonstrate that the human V4 is more strongly activated by concentric and radial patterns than by conventional sinusoidal gratings. This is consistent with global pooling of local V1 orientations to extract concentric and radial shape information in V4. Furthermore, concentric patterns were found to be effective in activating the fusiform face area. These findings support recent psychophysical [2,3] and physiological [4,5] data indicating that analysis of concentric and radial structure represents an important aspect of processing at intermediate levels of form vision.  相似文献   

9.
Neuropsychological and functional MRI data suggest that two functionally and anatomically dissociable streams of visual processing exist: a ventral perception-related stream and a dorsal action-related stream. However, relatively little is known about how the two streams interact in the intact brain during the production of adaptive behavior. Using functional MRI and a virtual three-dimensional paradigm, we aimed at examining whether the parieto-occipital junction (POJ) acts as an interface for the integration and processing of information between the dorsal and ventral streams in the near and far space processing. Virtual reality three-dimensional near and far space was defined by manipulating binocular disparity, with -68.76 arcmin crossed disparity for near space and +68.76 arcmin uncrossed disparity for near space. Our results showed that the POJ and bilateral superior occipital gyrus (SOG) showed relative increased activity when responded to targets presented in the near space than in the far space, which was independent of the retinotopic and perceived sizes of target. Furthermore, the POJ showed the enhanced functional connectivity with both the dorsal and ventral streams during the far space processing irrespective of target sizes, supporting that the POJ acts as an interface between the dorsal and ventral streams in disparity-defined near and far space processing. In contrast, the bilateral SOG showed the enhanced functional connectivity only with the ventral stream if retinotopic sizes of targets in the near and far spaces were matched, which suggested there was a functional dissociation between the POJ and bilateral SOG.  相似文献   

10.
Both dorsal and ventral cortical visual streams contain neurons sensitive to binocular disparities, but the two streams may underlie different aspects of stereoscopic vision. Here we investigate stereopsis in the neurological patient D.F., whose ventral stream, specifically lateral occipital cortex, has been damaged bilaterally, causing profound visual form agnosia. Despite her severe damage to cortical visual areas, we report that DF''s stereo vision is strikingly unimpaired. She is better than many control observers at using binocular disparity to judge whether an isolated object appears near or far, and to resolve ambiguous structure-from-motion. DF is, however, poor at using relative disparity between features at different locations across the visual field. This may stem from a difficulty in identifying the surface boundaries where relative disparity is available. We suggest that the ventral processing stream may play a critical role in enabling healthy observers to extract fine depth information from relative disparities within one surface or between surfaces located in different parts of the visual field.  相似文献   

11.
Human cortical regions involved in extracting depth from motion   总被引:11,自引:0,他引:11  
We used functional magnetic resonance imaging (fMRI) to investigate brain regions involved in extracting three-dimensional structure from motion. A factorial design included two-dimensional and three-dimensional structures undergoing rigid and nonrigid motions. As predicted from monkey data, the human homolog of MT/V5 was significantly more active when subjects viewed three-dimensional (as opposed to two-dimensional) displays, irrespective of their rigidity. Human MT/V5+ (hMT/V5+) is part of a network with right hemisphere dominance involved in extracting depth from motion, including a lateral occipital region, five sites along the intraparietal sulcus (IPS), and two ventral occipital regions. Control experiments confirmed that this pattern of activation is most strongly correlated with perceived three-dimensional structure, in as much as it arises from motion and cannot be attributed to numerous two-dimensional image properties or to saliency.  相似文献   

12.
Shmuelof L  Zohary E 《Neuron》2005,47(3):457-470
Neuropsychological case studies suggest the existence of two functionally separate visual streams: the ventral pathway, central for object recognition; and the dorsal pathway, engaged in visually guided actions. However, a clear dissociation between the functions of the two streams has not been decisively shown in intact humans. In this study, we demonstrate dissociation between dorsal and ventral fMRI activation patterns during observation of object manipulation video clips. Parietal areas, such as anterior intraparietal sulcus (aIPS) display grasp viewing-dependent adaptation (i.e., fMR adaptation during repeated viewing of the same object-grasping movement) as well as a contralateral preference for the viewed manipulating hand. Ventral regions, such as the fusiform gyrus, show similar characteristics (i.e., adaptation, contralateral preference), but these depend on object identity. Our results support the hypothesized functional specialization in the visual system and suggest that parietal areas (such as aIPS) are engaged in action recognition, as well as in action planning.  相似文献   

13.
The size of a resonant source can be estimated by the acoustic-scale information in the sound [1-3]. Previous studies revealed that posterior superior temporal gyrus (STG) responds to acoustic scale in human speech when it is controlled for spectral-envelope change (unpublished data). Here we investigate whether the STG activity is specific to the processing of acoustic scale in human voice or whether it reflects a generic mechanism for the analysis of acoustic scale in resonant sources. In two functional magnetic resonance imaging (fMRI) experiments, we measured brain activity in response to changes in acoustic scale in different categories of resonant sound (human voice, animal call, and musical instrument). We show that STG is activated bilaterally for spectral-envelope changes in general; it responds to changes in category as well as acoustic scale. Activity in left posterior STG is specific to acoustic scale in human voices and not responsive to acoustic scale in other resonant sources. In contrast, the anterior temporal lobe and intraparietal sulcus are activated by changes in acoustic scale across categories. The results imply that the human voice requires special processing of acoustic scale, whereas the anterior temporal lobe and intraparietal sulcus process auditory size information independent of source category.  相似文献   

14.
Visual processing of color starts at the cones in the retina and continues through ventral stream visual areas, called the parvocellular pathway. Motion processing also starts in the retina but continues through dorsal stream visual areas, called the magnocellular system. Color and motion processing are functionally and anatomically discrete. Previously, motion processing areas MT and MST have been shown to have no color selectivity to a moving stimulus; the neurons were colorblind whenever color was presented along with motion. This occurs when the stimuli are luminance-defined versus the background and is considered achromatic motion processing. Is motion processing independent of color processing? We find that motion processing is intrinsically modulated by color. Color modulated smooth pursuit eye movements produced upon saccading to an aperture containing a surface of coherently moving dots upon a black background. Furthermore, when two surfaces that differed in color were present, one surface was automatically selected based upon a color hierarchy. The strength of that selection depended upon the distance between the two colors in color space. A quantifiable color hierarchy for automatic target selection has wide-ranging implications from sports to advertising to human-computer interfaces.  相似文献   

15.
The hypothesis that ventral/anterior left inferior frontal gyrus (LIFG) subserves semantic processing and dorsal/posterior LIFG subserves phonological processing was tested by determining the pattern of functional connectivity of these regions with regions in left occipital and temporal cortex during the processing of words and word-like stimuli. In accordance with the hypothesis, we found strong functional connectivity between activity in ventral LIFG and activity in occipital and temporal cortex only for words, and strong functional connectivity between activity in dorsal LIFG and activity in occipital and temporal cortex for words, pseudowords, and letter strings, but not for false font strings. These results demonstrate a task-dependent functional fractionation of the LIFG in terms of its functional links with posterior brain areas.  相似文献   

16.
BACKGROUND: In anorthoscopic viewing conditions, observers can perceive a moving object through a narrow slit even when only portions of its contour are visible at any time. We used fMRI to examine the contribution of early and later visual cortical areas to dynamic shape integration. Observers' success at integrating the shape of the slit-viewed object was manipulated by varying the degree to which the stimulus was dynamically distorted. Line drawings of common objects were either moderately distorted, strongly distorted, or shown undistorted. Phenomenologically, increasing the stimulus distortion made both object shape and motion more difficult to perceive.RESULTS: We found that bilateral cortical activity in portions of the ventral occipital cortex, corresponding to known object areas within the lateral occipital complex (LOC), was inversely correlated with the degree of stimulus distortion. We found that activity in left MT+, the human cortical area specialized for motion, showed a similar pattern as the ventral occipital region. The LOC also showed greater activity to a fully visible moving object than to the undistorted slit-viewed object. Area MT+, however, showed more equivalent activity to both the slit-viewed and fully visible moving objects.CONCLUSIONS: In early retinotopic cortex, the distorted and undistorted stimuli elicited the same amount of activity. Higher visual areas, however, were correlated with the percept of the coherent object, and this correlation suggests that the shape integration is mediated by later visual cortical areas. Motion information from the dorsal stream may project to the LOC to produce the shape percept.  相似文献   

17.
The representation of egomotion in the human brain   总被引:1,自引:0,他引:1  
An essential function of visual processing is to establish the position of the body in space and, in concert with the other sense systems, to monitor movement of the whole body, or "egomotion." A key cue to egomotion is optic flow. For example, forward motion through the environment generates an expanding pattern of flow on the retina, and (with eyes fixed centrally) the direction of heading corresponds to the center of expansion [1]. In macaques, visual cortical area MST is sensitive to optic-flow structure [2, 3], and it has been suggested that MST has a central role in the computation of heading [4]. However, here we identify two areas of the human brain that represent visual cues to egomotion more directly than does MST. These areas respond strongly to a single optic-flow stimulus but become relatively unresponsive when the stimulus is surrounded with further flow patches and thereby made inconsistent with egomotion. One is putative area VIP in the anterior portion of the intraparietal sulcus. The other is a new visual area, which we refer to as cingulate sulcus visual area (CSv). Areas V1-V4 and MT respond about equally to both types of flow stimulus. MST has intermediate properties, responding well to multiple patches but with a modest preference for a single, egomotion-compatible patch. We suggest that MST is merely an intermediate processing stage for visual cues to egomotion and that such cues are more comprehensively encoded by VIP and CSv.  相似文献   

18.
The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a 'What' pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception ('Where'), more recent accounts suggest it primarily serves non-conscious visually guided action ('How'). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively.  相似文献   

19.
Marois R  Leung HC  Gore JC 《Neuron》2000,25(3):717-728
The primate visual system is considered to be segregated into ventral and dorsal streams specialized for processing object identity and location, respectively. We reexamined the dorsal/ventral model using a stimulus-driven approach to object identity and location processing. While looking at repeated presentations of a standard object at a standard location, subjects monitored for any infrequent "oddball" changes in object identity, location, or identity and location (conjunction). While the identity and location oddballs preferentially activated ventral and dorsal brain regions respectively, each oddball type activated both pathways. Furthermore, all oddball types recruited the lateral temporal cortex and the temporo-parietal junction. These findings suggest that a strict dorsal/ventral dual-stream model does not fully account for the perception of novel objects in space.  相似文献   

20.
In monkeys, posterior parietal and premotor cortex play an important integrative role in polymodal motion processing. In contrast, our understanding of the convergence of senses in humans is only at its beginning. To test for equivalencies between macaque and human polymodal motion processing, we used functional MRI in normals while presenting moving visual, tactile, or auditory stimuli. Increased neural activity evoked by all three stimulus modalities was found in the depth of the intraparietal sulcus (IPS), ventral premotor, and lateral inferior postcentral cortex. The observed activations strongly suggest that polymodal motion processing in humans and monkeys is supported by equivalent areas. The activations in the depth of IPS imply that this area constitutes the human equivalent of macaque area VIP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号