首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Hepatic progenitor cells (HPCs) in adult liver are promising for treatment of liver diseases. A biliary-derived HPC population in adult mice has been characterized by co-expression of stem cell marker Sry (sex determining region Y)-box 9 (SOX9) and biliary marker cytokeratin 7 (CK7). However, isolation of these HPCs in adult healthy liver without any selection procedures remains a big challenge in this field. Here, by establishing a simple and efficient method to isolate and expand the CK7+SOX9+ HPCs in vitro as clones, we acquired a stable and largely scalable cell source. The CK7+SOX9+ progenitor cells were then further induced to differentiate into hepatocyte-like cells with expression of mature hepatocyte markers albumin (Alb) and hepatocyte nuclear factor 4 alpha (HNF4α), both in vitro and in vivo in the presence of hepatocyte growth factor (HGF) and fibroblast growth factor 9 (FGF9). Furthermore, we found that the HPCs are highly responsive to transforming growth factor-beta (TGF-β) signals. Collectively, we identified and harvested a CK7+SOX9+ progenitor cell population from adult mouse liver by a simple and efficient approach. The exploration of this HPC population offers an alternative strategy of generating hepatocyte-like cells for cell-based therapies of acute and chronic liver disorders.  相似文献   

2.
3.
Terry C  Dhawan A  Mitry RR  Hughes RD 《Cryobiology》2006,53(2):149-159
Hepatocytes isolated from unused donor livers are being used for transplantation in patients with acute liver failure and liver-based metabolic defects. As large numbers of hepatocytes can be prepared from a single liver and hepatocytes need to be available for emergency and repeated treatment of patients it is essential to be able to cryopreserve and store cells with good thawed cell function. This review considers the current status of cryopreservation of human hepatocytes discussing the different stages involved in the process. These include pre-treatment of cells, freezing solution, cryoprotectants and freezing and thawing protocols. There are detrimental effects of cryopreservation on hepatocyte structure and metabolic function, including cell attachment, which is important to the engraftment of transplanted cells in the liver. Cryopreserved human hepatocytes have been successfully used in clinical transplantation, with evidence of replacement of missing function. Further optimisation of hepatocyte cryopreservation protocols is important for their use in hepatocyte transplantation.  相似文献   

4.
Liver diseases caused by viral infection, alcohol abuse and metabolic disorders can progress to end‐stage liver failure, liver cirrhosis and liver cancer, which are a growing cause of death worldwide. Although liver transplantation and hepatocyte transplantation are useful strategies to promote liver regeneration, they are limited by scarce sources of organs and hepatocytes. Mesenchymal stem cells (MSCs) restore liver injury after hepatogenic differentiation and exert immunomodulatory, anti‐inflammatory, antifibrotic, antioxidative stress and antiapoptotic effects on liver cells in vivo. After isolation and culture in vitro, MSCs are faced with nutrient and oxygen deprivation, and external growth factors maintain MSC capacities for further applications. In addition, MSCs are placed in a harsh microenvironment, and anoikis and inflammation after transplantation in vivo significantly decrease their regenerative capacity. Pre‐treatment with chemical agents, hypoxia, an inflammatory microenvironment and gene modification can protect MSCs against injury, and pre‐treated MSCs show improved hepatogenic differentiation, homing capacity, survival and paracrine effects in vitro and in vivo in regard to attenuating liver injury. In this review, we mainly focus on pre‐treatments and the underlying mechanisms for improving the therapeutic effects of MSCs in various liver diseases. Thus, we provide evidence for the development of MSC‐based cell therapy to prevent acute or chronic liver injury. Mesenchymal stem cells have potential as a therapeutic to prolong the survival of patients with end‐stage liver diseases in the near future.  相似文献   

5.
Liver disease is an important clinical problem, impacting over 30 million Americans and over 600 million people worldwide. It is the 12th leading cause of death in the United States and the 16th worldwide. Due to a paucity of donor organs, several thousand Americans die yearly while waiting for liver transplantation. Unfortunately, alternative tissue sources such as fetal hepatocytes and hepatic cell lines are unreliable, difficult to reproduce, and do not fully recapitulate hepatocyte phenotype and functions. As a consequence, alternative cell sources that do not have these limitations have been sought. Human embryonic stem (hES) cell- and induced pluripotent stem (iPS) cell-derived hepatocyte-like cells may enable cell based therapeutics, the study of the mechanisms of human disease and human development, and provide a platform for screening the efficacy and toxicity of pharmaceuticals. iPS cells can be differentiated in a step-wise fashion with high efficiency and reproducibility into hepatocyte-like cells that exhibit morphologic and phenotypic characteristics of hepatocytes. In addition, iPS-derived hepatocyte-like cells (iHLCs) possess some functional hepatic activity as they secrete urea, alpha-1-antitrypsin, and albumin. However, the combined phenotypic and functional traits exhibited by iHLCs resemble a relatively immature hepatic phenotype that more closely resembles that of fetal hepatocytes rather than adult hepatocytes. Specifically, iHLCs express fetal markers such as alpha-fetoprotein and lack key mature hepatocyte functions, as reflected by drastically reduced activity (~ 0.1%) of important detoxification enzymes (i.e. CYP2A6, CYP3A4). These key differences between iHLCs and primary adult human hepatocytes have limited the use of stem cells as a renewable source of functional adult hepatocytes for in vitro and in vivo applications. Unfortunately, the developmental pathways that control hepatocyte maturation from a fetal into an adult hepatocyte are poorly understood, which has hampered the field in its efforts to induce further maturation of iPS-derived hepatic lineage cells. This review analyzes recent developments in the derivation of hepatocyte-like cells, and proposes important points to consider and assays to perform during their characterization. In the future, we envision that iHLCs will be used as in vitro models of human disease, and in the longer term, provide an alternative cell source for drug testing and clinical therapy.  相似文献   

6.
Diabetes mellitus is one of the most severe endocrine metabolic disorders in the world that has serious medical consequences with substantial impacts on the quality of life. Type 2 diabetes is one of the main causes of diabetic liver diseases with the most common being non‐alcoholic fatty liver disease. Several factors that may explain the mechanisms related to pathological and functional changes of diabetic liver injury include: insulin resistance, oxidative stress and endoplasmic reticulum stress. The realization that these factors are important in hepatocyte damage and lack of donor livers has led to studies concentrating on the role of stem cells (SCs) in the prevention and treatment of liver injury. Possible avenues that the application of SCs may improve liver injury include but are not limited to: the ability to differentiate into pancreatic β‐cells (insulin producing cells), the contribution for hepatocyte regeneration, regulation of lipogenesis, glucogenesis and anti‐inflammatory actions. Once further studies are performed to explore the underlying protective mechanisms of SCs and the advantages and disadvantages of its application, there will be a greater understand of the mechanism and therapeutic potential. In this review, we summarize the findings regarding the role of SCs in diabetic liver diseases.  相似文献   

7.
The role of fat metabolism during human pregnancy and in placental growth and function is poorly understood. Mitochondrial fatty acid oxidation disorders in an affected fetus are associated with maternal diseases of pregnancy, including preeclampsia, acute fatty liver of pregnancy, and the hemolysis, elevated liver enzymes, and low platelets syndrome called HELLP. We have investigated the developmental expression and activity of six fatty acid beta-oxidation enzymes at various gestational-age human placentas. Placental specimens exhibited abundant expression of all six enzymes, as assessed by immunohistochemical and immunoblot analyses, with greater staining in syncytiotrophoblasts compared with other placental cell types. beta-Oxidation enzyme activities in placental tissues were higher early in gestation and lower near term. Trophoblast cells in culture oxidized tritium-labeled palmitate and myristate in substantial amounts, indicating that the human placenta utilizes fatty acids as a significant metabolic fuel. Thus human placenta derives energy from fatty acid oxidation, providing a potential explanation for the association of fetal fatty acid oxidation disorders with maternal liver diseases in pregnancy.  相似文献   

8.
Melichar H  Li O  Ross J  Haber H  Cado D  Nolla H  Robey EA  Winoto A 《PloS one》2011,6(5):e19854
Directed differentiation of human embryonic stem cells (hESCs) into any desired cell type has been hailed as a therapeutic promise to cure many human diseases. However, substantial roadblocks still exist for in vitro differentiation of hESCs into distinct cell types, including T lymphocytes. Here we examined the hematopoietic differentiation potential of six different hESC lines. We compare their ability to develop into CD34(+) or CD34(+)CD45(+) hematopoietic precursor populations under several differentiation conditions. Comparison of lymphoid potential of hESC derived- and fetal tissue derived-hematopoietic precursors was also made. We found diverse hematopoietic potential between hESC lines depending on the culture or passage conditions. In contrast to fetal-derived hematopoietic precursors, none of the CD34(+) precursors differentiated from hESCs were able to develop further into T cells. These data underscore the difficulties in the current strategy of hESC forward differentiation and highlight distinct differences between CD34(+) hematopoietic precursors generated in vitro versus in vivo.  相似文献   

9.
Metabolic diseases reach epidemic proportions. A better knowledge of the associated alterations in the metabolic pathways in the liver is necessary. These studies need in vitro human cell models. Several human hepatoma models are used, but the response of many metabolic pathways to physiological stimuli is often lost. Here, we characterize two human hepatocyte cell lines, IHH and HepaRG, by analysing the expression and regulation of genes involved in glucose and lipid metabolism. Our results show that the glycolysis pathway is activated by glucose and insulin in both lines. Gluconeogenesis gene expression is induced by forskolin in IHH cells and inhibited by insulin in both cell lines. The lipogenic pathway is regulated by insulin in IHH cells. Finally, both cell lines secrete apolipoprotein B-containing lipoproteins, an effect promoted by increasing glucose concentrations. These two human cell lines are thus interesting models to study the regulation of glucose and lipid metabolism.  相似文献   

10.
11.
We are developing cell therapy approaches on non-human primates as a preclinical model for the treatment of hepatic metabolic diseases. In foetuses, the tissues, including liver, are in expansion, which should facilitate hepatocytes engraftment, and the immune system becomes fully mature only after birth. We have set out conditions for isolation of fetal hepatocytes from macaca mulatta at the end of the 2nd trimester of gestation (90-100 days), their cryopreservation and retroviral transduction. Two different routes of administration of hepatocytes were evaluated: the umbilical vein which was deleterious for the foetuses, and the intraparenchymatous injection which was well tolerated by the animals. Administration of hepatocytes into the hepatic parenchyma resulted in microchimerism and allogenic cells were visualized 9 days after transplantation. Another approach has been to immortalize simian foetal hepatocytes using a retroviral vector expressing SV40 Large T flanked by lox sites. A cell line has been established for 2 years, which is not tumorigenic when injected subcutaneously into nude mice and display characteristics of bipotent hepatoblasts, precursors of hepatocytes and biliary cells. After orthotopic transplantation into nude mice via the portal vein, these cells expressed albumin until the sacrifice of the animals (17 days). The next steps will be to define conditions for transplantation of retrovirally transduced fetal primary and/or immortalized hepatocytes into young foetuses (60 days of gestation) and post-natally.  相似文献   

12.
Hepatocyte transplantation is considered a potential treatment for liver diseases and a bridge for patients awaiting liver transplantation, but its application has been hampered by a limited supply of hepatocytes. Embryonic stem (ES) cells established from early mouse and human embryos are pluripotent, and proliferate indefinitely in an undifferentiated state in vitro. Since differentiation from ES cells seems to recapitulate early embryonic development, if hepatocytes could be efficiently generated in vitro, ES cells might become a source of transplantable hepatocytes for cell replacement therapy. Hepatocytes have been generated from ES cells in vitro, and the hepatocytes differentiated from ES cells have been found to express many hepatocyte-related genes and perform hepatic functions. However, it remains unclear whether the hepatocytes differentiated from ES cells are derived from definitive endoderm or primitive endoderm. Because visceral endoderm, which expresses many hepatocyte-related genes, is derived from primitive endoderm and is fated to form extraembryonic yolk sac tissues, not to form hepatocytes, ES cells must be directed to a definitive endoderm lineage in vitro. This article discusses the differentiation of ES cells into hepatocytes in vitro in comparison with early embryogenesis, and describes the efficacy of ES cell-derived hepatocyte transplantation.  相似文献   

13.
Mammalian carboxylesterases hydrolyze a wide range of xenobiotic and endogenous compounds, including lipid esters. Physiological functions of carboxylesterases in lipid metabolism and energy homeostasis in vivo have been demonstrated by genetic manipulations and chemical inhibition in mice, and in vitro through (over)expression, knockdown of expression, and chemical inhibition in a variety of cells. Recent research advances have revealed the relevance of carboxylesterases to metabolic diseases such as obesity and fatty liver disease, suggesting these enzymes might be potential targets for treatment of metabolic disorders. In order to translate pre-clinical studies in cellular and mouse models to humans, differences and similarities of carboxylesterases between mice and human need to be elucidated. This review presents and discusses the research progress in structure and function of mouse and human carboxylesterases, and the role of these enzymes in lipid metabolism and metabolic disorders.  相似文献   

14.
Hepatoblasts, hepatic stem/progenitor cells in liver development, have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In regenerative medicine and drug screening for the treatment of severe liver diseases, human induced pluripotent stem (iPS) cell-derived mature functional hepatocytes are considered to be a potentially good cell source. However, induction of proliferation of these cells is difficult ex vivo. To circumvent this problem, we generated hepatic progenitor-like cells from human iPS cells using serial cytokine treatments in vitro. Highly proliferative hepatic progenitor-like cells were purified by fluorescence-activated cell sorting using antibodies against CD13 and CD133 that are known cell surface markers of hepatic stem/progenitor cells in fetal and adult mouse livers. When the purified CD13highCD133+ cells were cultured at a low density with feeder cells in the presence of suitable growth factors and signaling inhibitors (ALK inhibitor A-83-01 and ROCK inhibitor Y-27632), individual cells gave rise to relatively large colonies. These colonies consisted of two types of cells expressing hepatocytic marker genes (hepatocyte nuclear factor 4α and α-fetoprotein) and a cholangiocytic marker gene (cytokeratin 7), and continued to proliferate over long periods of time. In a spheroid formation assay, these cells were found to express genes required for mature liver function, such as cytochrome P450 enzymes, and secrete albumin. When these cells were cultured in a suitable extracellular matrix gel, they eventually formed a cholangiocytic cyst-like structure with epithelial polarity, suggesting that human iPS cell-derived hepatic progenitor-like cells have a bipotent differentiation ability. Collectively these data indicate that this novel procedure using an in vitro expansion system is useful for not only liver regeneration but also for the determination of molecular mechanisms that regulate liver development.  相似文献   

15.
Mesenchymal stem cells (MSCs) have exhibited therapeutic effects in multiple animal models so that are promising liver substitute for transplantation treatment of end-stage liver diseases. However, it has been shown that over-manipulation of these cells increased their tumorigenic potential, and that reducing the in vitro culture time could minimize the risk. In this study, we used a D-galactosamine plus lipopolysaccharide (Gal/LPS)-induced acute liver failure mouse model, which caused death of about 50% of the mice with necrosis of more than 50% hepatocytes, to compare the therapeutic effects of human umbilical cord MSCs (hUCMSCs) before and after induction of differentiation into hepatocyte (i-Heps). Induction of hUCMSCs to become i-Heps was achieved by treatment of the cells with a group of growth factors within 4 weeks. The resulted i-Heps exhibited a panel of human hepatocyte biomarkers including cytokeratin (hCK-18), α-fetoprotein (hAFP), albumin (hALB), and hepatocyte-specific functions glycogen storage and urea metabolism. We demonstrated that transplantation of both cell types through tail vein injection rescued almost all of the Gal/LPS-intoxicated mice. Although both cell types exhibited similar ability in homing at the mouse livers, the populations of the hUCMSCs-derived cells, as judged by expressing hAFP, hCK-18 and human hepatocyte growth factor (hHGF), were small. These observations let us to conclude that the hUCMSCs was as effective as the i-Heps in treatment of the mouse acute liver failure, and that the therapeutic effects of hUCMSCs were mediated largely via stimulation of host hepatocyte regeneration, and that delivery of the cells through intravenous injection was effective.  相似文献   

16.

Background

Due to significant limitations to the access to orthotropic liver transplantation, cell therapies for liver diseases have gained large interest worldwide.

Scope of review

To revise current literature dealing with cell therapy for liver diseases. We discussed the advantages and pitfalls of the different cell sources tested so far in clinical trials and the rationale underlying the potential benefits of transplantation of human biliary tree stem cells (hBTSCs).

Major conclusions

Transplantation of adult hepatocytes showed transient benefits but requires immune-suppression that is a major pitfall in patients with advanced liver diseases. Mesenchymal stem cells and hematopoietic stem cells transplanted into patients with liver diseases are not able to replace resident hepatocytes but rather they target autoimmune or inflammatory processes into the liver. Stem cells isolated from fetal or adult liver have been recently proposed as alternative cell sources for advanced liver cirrhosis and metabolic liver disease. We demonstrated the presence of multipotent cells expressing a variety of endodermal stem cell markers in (peri)-biliary glands of bile ducts in fetal or adult human tissues, and in crypts of gallbladder epithelium. In the first cirrhotic patients treated in our center with biliary tree stem cell therapy, we registered no adverse event but significant benefits.

General significance

The biliary tree stem cell could represent the ideal cell source for the cell therapy of liver diseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

17.
Hepatocyte transplantation (HTX) could be an attractive treatment for patients with liver failure and liver-based metabolic disease. Human primary hepatocytes are ideal in this modality, but the shortage of human livers available for hepatocyte isolation severely limits the use of this form of therapy. A tightly regulated human hepatocyte cell line that grows economically in culture and exhibits differentiated liver functions would be an attractive alternative to the primary human hepatocytes. To test the feasibility, human hepatocytes were immortalized by a retroviral vector expressing simian virus 40 large T antigen and herpes simplex virus-thymidine kinase. A highly differentiated immortal hepatocyte line NKNT-3 was established. NKNT-3 cells grew in chemically defined serum-free medium, retained highly differentiated liver functions, and were sensitivity to ganciclovir as a prodrug. Essentially unlimited availability of NKNT-3 cells may be clinically useful for HTX and bioartificial liver.  相似文献   

18.
Here we describe a comparative study of phenotypic properties of hepatic cells in situ and in vitro. We analyzed the expression levels and distribution patterns of ABC transporters MRP2 and MDR1, pan-cytokeratin, cytokeratin 18, albumin, alpha-fetoprotein and the specific hepatocyte marker OCH1E5 in the fetal and adult rat as well as human liver tissue and in human fetal hepatocytes of WRL 68 cell line using peroxidase immunohistochemistry or immunofluorescence. Transporters MRP2 and MDR1 were expressed in all examined liver tissues, except rat ED13 embryo. The immunopositivity of these proteins was localized to the canalicular membrane of differentiating and mature hepatocytes but in the later developmental stages and in the adult liver tissues it was also found in the apical membrane of cholangiocytes. In WRL 68 cells, MRP2 and MDR1 immunoreactivity appeared after 5-6 days of cultivation and both transporters were fully expressed in the plasmalemma and in the cytoplasm 9 days after the passage. In conclusion, we observed only moderate variances reflecting diverse ontogenetic phases between the fetal and adult liver tissue. To study functions of hepatocytes in vitro, WRL 68 cells have to differentiate prior to the examination. Our findings indicate that WRL 68 cells can undergo differentiation in vitro and their antigenic profile closely resembles hepatocytes in the human liver.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号