首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Analysis of genetic diversity among indigenous rhizobia and its symbiotic effectiveness with soybean cultivar is important for development of knowledge about rhizobial ecology. In India, little is known about the genetic resources and diversity of rhizobia nodulating soybean. Indigenous bradyrhizobia isolated from root nodules of soybean plants, collected from traditional cultivating regions of two states (Madhya Pradesh and Uttar Pradesh) of India, were screened for bacteriophage sensitivity to identify successful broad host range symbiotic effectivity. Of 172 rhizobial isolates, 91 showed sensitivities to eight lytic phages and form ten groups on the basis of sensitivity patterns. The genetic diversity of 23 isolates belonging to different phage groups was assessed along with that of strains USDA123 and USDA94 by the restriction fragment length polymorphism (RFLP) analysis of 16S rDNA, intergenic spacer (IGS) (16S–23S rDNA), and DnaK regions. RFLP analysis of 16S rDNA formed 5 groups, whereas 19 and 9 groups were revealed by IGS and the DnaK genes, respectively. The IGS regions showed many amplified polymorphic bands. Nine isolates which revealed high RFLP polymorphism in the abovementioned regions (16S rRNA, IGS, DnaK) were used for 16S rRNA sequence analyses. The results indicate that taxonomically, all isolates were related to Rhizobium etli, Bradyrhizobium spp., and Bradyrhizobium yuanmingense. The doubling time of isolates varied from 9 h (MPSR155) to 16.2 h (MPSR068) in YM broth. Five isolates which did not show cross infectivity with isolated phage strains were studied for symbiotic efficiency. All isolates showed broad host range symbiotic effectiveness forming effective nodules on Vigna mungo, Vigna radiata, Vigna unguiculata, and Cajanus cajan. The present study provides information on genetic diversity and host range symbiosis of indigenous soybean rhizobia typed by different phages.  相似文献   

2.
Eighty-eight root-nodule isolates from Lespedeza spp. grown in temperate and subtropical regions of China were characterized by a polyphasic approach. Nine clusters were defined in numerical taxonomy and SDS-PAGE analysis of whole cell proteins. Based upon further characterizations of amplified 16S rDNA restriction analysis (ARDRA), PCR-based restriction fragment length polymorphism of ribosomal IGS, 16S rDNA sequence analysis and DNA-DNA hybridization, these isolates were identified as Bradyrhizobium japonicum, B. elkanii, B. yuanmingense, Mesorhizobium amorphae, M. huakuii, Sinorhizobium meliloti and three genomic species related to B. yuanmingense, Rhizobium gallicum and R. tropici. The Bradyrhizobium species and R. tropici-related rhizobia were mainly isolated from the subtropical region and the species of Mesorhizobium, S. meliloti and R. gallicum-related species were all isolated from the temperate region. Phylogenetic analyses of nifH and nodC indicated that the symbiotic genes of distinct rhizobial species associated with Lespedeza spp. might have different origins and there was no evidence for lateral gene transfer of symbiotic genes. The results obtained in the present study and in a previous report demonstrated that Lespedeza spp. are nodulated by rhizobia with diverse genomic backgrounds and these Lespedeza-nodulating rhizobia were not specific to the host species, but specific to their geographic origins. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. GenBank sequence accession numbers: The GenBank accession numbers were EF61095 through EF061114 and EF051240 for acquired 16S rDNA sequences; EF153395 through EF153402 for nifH sequences; and EF153403 through EF153410 for nodC sequences.  相似文献   

3.
Horsegram [Macrotyloma uniflorum (Lam.) Verdc.) is an important grain legume and fodder crop in India. Information on root nodule endosymbionts of this legume in India is limited. In the present study, 69 isolates from naturally occurring root nodules of horsegram collected from two agro-eco-climatic regions of South India was analyzed by generation rate, acid/alkali reaction on YMA medium, restriction fragment length polymorphism analysis of 16S-23S rDNA intergenic spacer region (IGS), and sequence analyses of IGS and housekeeping genes glnII and recA. Based on the rDNA IGS RFLP by means of three restriction enzymes rhizobia were grouped in five clusters (I–V). By sequence analysis of 16S-23S rDNA IGS identified genotypes of horsegram rhizobia were distributed into five divergent lineages of Bradyrhizobium genus which comprised (I) the IGS type IV rhizobia and valid species B. yuanmingense, (II) the strains of IGS type I and Bradyrhizobium sp. ORS 3257 isolated from Vigna sp., (III) the strains of the IGS type II and Bradyrhizobium sp. CIRADAc12 from Acacia sp., (IV) the IGS type V strains and Bradyrhizobium sp. genospecies IV, and (V) comprising genetically distinct IGS type III strains which probably represent an uncharacterized new genomic species. Nearly, 87% of indigenous horsegram isolates (IGS types I, II, III, and V) could not be related to any other species within the genus Bradyrhizobium. Phylogeny based on housekeeping glnII and recA genes confirmed those results found by the analysis of the IGS sequence. All the isolated rhizobia nodulated Macrotyloma sp. and Vigna spp., and only some of them formed nodules on Arachis hypogeae. The isolates within each IGS type varied in their ability to fix nitrogen. Selection for high symbiotic effective strains could reward horsegram production in poor soils of South India where this legume is largely cultivated.  相似文献   

4.
Eleven strains were isolated from root nodules of Lotus endemic to the Canary Islands and they belonged to the genus Ensifer, a genus never previously described as a symbiont of Lotus. According to their 16S rRNA and atpD gene sequences, two isolates represented minority genotypes that could belong to previously undescribed Ensifer species, but most of the isolates were classified within the species Ensifer meliloti. These isolates nodulated Lotus lancerottensis, Lotus corniculatus and Lotus japonicus, whereas Lotus tenuis and Lotus uliginosus were more restrictive hosts. However, effective nitrogen fixation only occurred with the endemic L. lancerottensis. The E. meliloti strains did not nodulate Medicago sativa, Medicago laciniata Glycine max or Glycine soja, but induced non-fixing nodules on Phaseolus vulgaris roots. nodC and nifH symbiotic gene phylogenies showed that the E. meliloti symbionts of Lotus markedly diverged from strains of Mesorhizobium loti, the usual symbionts of Lotus, as well as from the three biovars (bv. meliloti, bv. medicaginis, and bv. mediterranense) so far described within E. meliloti. Indeed, the nodC and nifH genes from the E. meliloti isolates from Lotus represented unique symbiotic genotypes. According to their symbiotic gene sequences and host range, the Lotus symbionts would represent a new biovar of E. meliloti for which bv. lancerottense is proposed.  相似文献   

5.
Most studies of phenotypic plasticity investigate the effects of an individual environmental factor on organism phenotypes. However, organisms exist in an ecologically complex world where multiple environmental factors can interact to affect growth, development and life histories. Here, using a multifactorial experimental design, we examine the separate and interactive effects of two environmental factors, rearing host species (Vigna radiata, Vigna angularis and Vigna unguiculata) and temperature (20, 25, 30 and 35°C), on growth and life history traits in two populations [Burkina Faso (BF) and South India (SI)] of the seed beetle, Callosobruchus maculatus. The two study populations of beetles responded differently to both rearing host and temperature. We also found a significant interaction between rearing host and temperature for body size, growth rate and female lifetime fecundity but not larval development time or larval survivorship. The interaction was most apparent for growth rate; the variance in growth rate among hosts increased with increasing temperature. However, the details of host differences differed between our two study populations; the degree to which V. unguiculata was a better host than V. angularis or V. radiata increased at higher temperatures for BF beetles, whereas the degree to which V. unguiculata was the worst host increased at higher temperatures for SI beetles. We also found that the heritabilities of body mass, growth rate and fecundity were similar among rearing hosts and temperatures, and that the cross-temperature genetic correlation was not affected by rearing host, suggesting that genetic architecture is generally stable across rearing conditions. The most important finding of our study is that multiple environmental factors can interact to affect organism growth, but the degree of interaction, and thus the degree of complexity of phenotypic plasticity, varies among traits and between populations.  相似文献   

6.
Rhizobium strains nodulating summer legumes cow pea [Vigna unguiculata (L.)], green gram [V. radiata (L.) (Wilczek)], black gram [V. mungo (L.) (Hepper)] and cluster bean [Cyamopsis tetragonoloba (L.) (Taub)] and a winter legume chick pea [Cicer arietinum (L.)] were surveyed in the Northern Plains of India and screened for hydrogenase activity to determine distribution of Hup character in the native ecosystem. It was observed that 56% of the Rhizobium strains of summer legumes were Hup+ whereas that of the winter legume, chick pea, were all Hup-. Ex planta acetylene reduction activity was observed in most of the Hup+ but not in the Hup- strains of any of the host species. In summer legume, mixed inoculation of Hup+ and Hup- strains, under sterilized as well as unsterilized soil conditions, showed that the host species were predominantly nodulated with Hup+ strain.  相似文献   

7.
Nodulation of common bean was explored in six oases in the south of Tunisia. Nineteen isolates were characterized by PCR–RFLP of 16S rDNA. Three species of rhizobia were identified, Rhizobium etli, Rhizobium gallicum and Sinorhizobium meliloti. The diversity of the symbiotic genes was then assessed by PCR–RFLP of nodC and nifH genes. The majority of the symbiotic genotypes were conserved between oases and other soils of the north of the country. Sinorhizobia isolated from bean were then compared with isolates from Medicago truncatula plants grown in the oases soils. All the nodC types except for nodC type p that was specific to common bean isolates were shared by both hosts. The four isolates with nodC type p induced N2-fixing effective nodules on common bean but did not nodulate M. truncatula and Medicago sativa. The phylogenetic analysis of nifH and nodC genes showed that these isolates carry symbiotic genes different from those previously characterized among Medicago and bean symbionts, but closely related to those of S. fredii Spanish and Tunisian isolates effective in symbiosis with common bean but unable to nodulate soybean. The creation of a novel biovar shared by S. meliloti and S. fredii, bv. mediterranense, was proposed.  相似文献   

8.
The seeds of 9 members of the subgenusCeratotropis (Piper) Verdc., namelyVigna aconitifolia (Jacq.) Maréchal,V. angularis (Willd.) Ohwi et Ohashi,V. minima (Roxb.) Ohwi et Ohashi,V. nakashimae (Ohwi) Ohwi et Ohashi,V. reflexo-pilosa Hayata,V. umbellata (Thumb.) Ohwi et Ohashi,V. mungo (L.) Hepper,V. radiata (L.) Wilczek andV. sp., have been examined. On their low molecular weight carbohydrate compositions, this subgenus has been divided into 2 subgroups, mungo-radiata group and angularis group. Four other species referred to the subgeneraPlectotropis (Schumach.) Bak.,Lasiospron (Benth. emend Piper) Maréchal, Mascherpa et Stainier andVigna, V. vexillata (L.) A. Rich.,V. lasiocarpa (Benth.) Verdc.,V. marina (Burm.) Merr. andV. unguiculata (L.) Walp., were also analyzed and they had distinctive carbohydrate compositions. 1d-4-O-methyl-myo-inositol and 1d-5-O-(α-d-galactopyranosyl)-4-O-methyl-myo-inositol were detected in all species examined exceptV. vexillata, V. mungo andV. radiata.  相似文献   

9.
As an introduced plant, Lablab purpureus serves as a vegetable, herbal medicine, forage and green manure in China. In order to investigate the diversity of rhizobia associated with this plant, a total of 49 rhizobial strains isolated from ten provinces of Southern China were analyzed in the present study with restriction fragment length polymorphism and/or sequence analyses of housekeeping genes (16S rRNA, IGS, atpD, glnII and recA) and symbiotic genes (nifH and nodC). The results defined the L. purpureus rhizobia as 24 IGS-types within 15 rrs-IGS clusters or genomic species belonging to Bradyrhizobium, Rhizobium, Ensifer (synonym of Sinorhizobium) and Mesorhizobium. Bradyrhizobium spp. (81.6%) were the most abundant isolates, half of which were B. elkanii. Most of these rhizobia induced nodules on L. purpureus, but symbiotic genes were only amplified from the Bradyrhizobium and Rhizobium leguminosarum strains. The nodC and nifH phylogenetic trees defined five lineages corresponding to B. yuanmingense, B. japonicum, B. elkanii, B. jicamae and R. leguminosarum. The coherence of housekeeping and symbiotic gene phylogenies demonstrated that the symbiotic genes of the Lablab rhizobia were maintained mainly through vertical transfer. However, a putative lateral transfer of symbiotic genes was found in the B. liaoningense strain. The results in the present study clearly revealed that L. purpureus was a promiscuous host that formed nodules with diverse rhizobia, mainly Bradyrhizobium species, harboring different symbiotic genes.  相似文献   

10.
Great genetic diversity was revealed among 75 rhizobal isolates associated with Vicia faba grown in Chinese fields with AFLP, ARDRA, 16S rDNA sequencing, DNA–DNA hybridization, BOX-PCR and RFLP of PCR-amplified nodD and nodC. Most of the isolates were Rhizobium leguminosarum, and six isolates belonged to an unnamed Rhizobium species. In the homogeneity analysis, the isolates were grouped into three clusters corresponding to (1) autumn sowing (subtropical) region where the winter ecotype of V. faba was cultivated, (2) spring sowing (temperate) region where the spring ecotype was grown, and (3) Yunnan province where the intermediate ecotype was sown either in spring or in autumn. Nonrandom associations were found among the nod genotypes, genomic types and ecological regions, indicating an epidemic symbiotic gene transfer pattern among different genomic backgrounds within an ecological region and a relatively limited transfer pattern between different regions. Conclusively, the present results suggested an endemic population structure of V. faba rhizobia in Chinese fields and demonstrated a novel rhizobium associated with faba bean. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Summary Fifteen isolates of nodule bacteria were isolated from root and stem nodules ofAeschynomene aspera and they were characterized as Rhizobium by well known laboratory tests. All these isolates together with other efficient strains of known rhizobia belonging to different cross-inoculation groups were evaluated for their nodulation abilities onAeschynomene aspera, Cajanus cajan (pigeon pea),Cicer arietinum (chickpea),Pisum sativum (pea),Trifolium repens (clover),Medicago sativa (lucerne),Lens culinaris (lentil),Glycine max (soybean),Vigna sinensis (cowpea),Vigna radiata (mung bean),Vigna mungo (urd bean) andArachis hypogea (peanut). The results demonstrated that Rhizobium fromAeschynomene could form nodules only on its homologous host (Aeschynomene) but not on other legumes tested. Secondly, none of the rhizobia of other cross-inoculation groups could nodulateA. aspera.  相似文献   

12.
Uptake hydrogenase activity in nodules of green gram (Vigna radiata (L.) (Wilczek)), black gram (Vigna mungo (L.) (Hepper)), cowpea (Vigna unguiculata (L.) and cluster bean (Cyamopsis tetragonoloba (L.) (Taub.)), formed with two Hup+ (S24 and CT2014) and one Hup (M11)Rhizobium strains, was determined at different levels of external H2 in air atmosphere. Nodules of all the 4 host species formed by inoculation with strains S24 and CT2014, showed H2 uptake but not those formed with strain M11. H2 uptake rates were higher in 1 and 2% H2 in air atmosphere (v/v) than at 5 or 10% levels in all the host species. Variations in the relative rates of H2 uptake were observed both, due to host species as well as due toRhizobium strains. However, no host dependent complete repression of the expression of H2 uptake activity was observed in nodules of any of the host species formed with Hup+ strains.  相似文献   

13.
This study reports the multilocus sequence analysis (MLSA) of nine house-keeping gene fragments (atpD, dnaK, glnA, glnB, gltA, gyrB, recA, rpoB and thrC) on a collection of 38 Bradyrhizobium isolated from Aeschynomene species in Senegal, which had previously been characterised by several phenotypic and genotypic techniques, allowing a comparative analysis of MLSA resolution power for species delineation in this genus. The nifH locus was also studied to compare house-keeping and symbiotic gene phylogenies and obtain insights into the unusual symbiotic properties of these Aeschynomene symbionts. Phylogenetic analyses (maximum likelihood, Bayesian) of concatenated nine loci produced a well-resolved phylogeny of the strain collection separating photosynthetic bradyrhizobial strains (PB) from non-photosynthetic bradyrhizobial (NPB) ones. The PB clade was interpreted as the remains an expanding ancient species that presently shows high diversification, giving rise to potential new species. B. denitrificans LMG8443 and BTAi1 strains formed a sub-clade that was identified as recently emerging new species. Congruence analyses (by Shimodaira–Hasegawa (S–H) tests) identified three gene-fragments (dnaK, glnB and recA) that should be preferred for MLSA analyses in Bradyrhizobium genus. The nine loci or nifH phylogenies were not correlated with the unusual symbiotic properties of PB (nod-dependent/nod-independent). Advantages and drawbacks of MLSA for species delineation in Bradyrhizobium are discussed.  相似文献   

14.
The efficiency of any plant regeneration system lies in part in its wide applicability to diverse genotypes. In Asiatic Vigna, cotyledon and cotyledonary node explants from 4-day-old seedlings of 27 genotypes were cultured in a medium consisting of MS salts, B5 vitamins, 3.0% sucrose and 1.0 mg l-1 BA. Direct and efficient multiple shoot regeneration (80–100%) from the cotyledonary nodes was obtained in all epigeal species namely radiata, mungo, aconitifolia, subspecies radiata var. sublobata, mungo var. silvestris and in the hypogeal but allotetraploid glabrescens. In contrast, two other hypogeal species V. angularis and V. umbellata failed to initiate shoots from the nodes. However, adventititious shoots developed at the basipetal cut (hypocotyl) in 35–67% of V. angularis explants. These results provide evidence in support of the existing genomic grouping within subgenus Ceratotropis, which designates AA, A1A1 and A1A1/- to epigeal, hypogeal and the allotetraploid species, respectively. Mean shoot production ranged from 3.3 to 10.4 shoots per explant during the first subculture and varied significantly among the responsive genotypes within 4 species. Additional shoots were obtained in all genotypes after subsequent subculture. However, cotyledons were not as regenerable as cotyledonary node explants. Although significant differences in rooting were observed among the shoots of the 15 genotypes, the response was generally higher in MS basal medium (MSO) than in MS with 1.0 mg l-1 IAA. Regenerated plants were successfully transferred to soil (50–100% survival rate) and all surviving plants were reproductively fertile. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Apart from the ability to nodulate legumes, fast-and slow-growing rhizobia have few bacteriological traits in common. Given that there is only one pathway to nodulation, DNA sequences conserved in fast- and slow-growing organisms that nodulate the same host should be strongly enriched in infectivity genes. We tested this hypothesis with seven fast-growing and five slow-growing strains that produced responses varying from fully effective nodulation through various ineffective associations to non-nodulation on four different hosts (Lotus pedunculatus, Lupinus nanus, Macroptilium atropurpureum, and Vigna unguiculata). When restriction enzyme digested total DNA from 10 of the strains was separately hybridized with nick-translated plasmid DNA isolated from 4 fast-growing strains, variable but significant homologies were found with all 10 strains. Part of this homology was shown to be associated with the nifKDH genes for nitrogenase and part with putative nodulation genes carried on pC2, a cosmid clone containing a 37 kbp region of the large sym plasmid present in the fast-growing broad-host range Rhizobium sp. strain NGR234. Analysis of the extent of homology between the plasmids of 3 fastgrowing strains (NGR234, TAL 996 and UMKL 19) able to effectively nodulate Vigna unguiculata showed them to have homologous DNA fragments totalling 47 kbp. This core homology represents less than 12% of the total coding capacity of the sym plasmid present in each of these strains.Abbreviations Sym symbiotic sequences/plasmids - nod genes required for nodulation - nod putative nod genes - nif genes required for the synthesis of the enzyme nitrogenase  相似文献   

16.
Seven bean rhizobial strains EBRI 2, 3, 21, 24, 26, 27 and 29 identified as Rhizobium etli, and EBRI 32 identified as Rhizobium gallicum, isolated from Egyptian soils and which nodulated Phaseolus vulgaris efficiently, were subjected to hybridization with a nifH probe in order to estimate the copy number of this gene. Seven strains (EBRI 2, 3, 21, 24, 26, 27 and 29) which were only able to nodulate Phaseolus vulgaris, contained three copies of the nifH gene, consistent with their identification as Rhizobium etli bv. phaseoli. Only one strain (EBRI 32) which nodulated both Phaseolus vulgaris and Leucaena leucocephala, had one copy of nifH gene. This confirmed the classification of this strain as Rhizobium gallicum bv. gallicum.  相似文献   

17.
Sixty-seven isolates were isolated from nodules collected on roots of Mediterranean shrubby legumes Retama raetam and Retama sphaerocarpa growing in seven ecological–climatic areas of northeastern Algeria. Genetic diversity of the Retama isolates was analyzed based on genotyping by restriction fragment length polymorphism of PCR-amplified fragments of the 16S rRNA gene, the intergenic spacer (IGS) region between the 16S and 23S rRNA genes (IGS), and the symbiotic genes nifH and nodC. Eleven haplotypes assigned to the Bradyrhizobium genus were identified. Significant biogeographical differentiation of the rhizobial populations was found, but one haplotype was predominant and conserved across the sites. All isolates were able to cross-nodulate the two Retama species. Accordingly, no significant genetic differentiation of the rhizobial populations was found in relation to the host species of origin. Sequence analysis of the 16S rRNA gene grouped the isolates with Bradyrhizobium elkanii, but sequence analyses of IGS, the housekeeping genes (dnaK, glnII, recA), nifH, and nodC yielded convergent results showing that the Retama nodule isolates from the northeast of Algeria formed a single evolutionary lineage, which was well differentiated from the currently named species or well-delineated unnamed genospecies of bradyrhizobia. Therefore, this study showed that the Retama species native to northeastern Algeria were associated with a specific clade of bradyrhizobia. The Retama isolates formed three sub-groups based on IGS and housekeeping gene phylogenies, which might form three sister species within a novel bradyrhizobial clade.  相似文献   

18.
The genomic organisation of the seven cultivated Vigna species, V. unguiculata, V. subterranea, V. angularis, V. umbellata, V. radiata, V. mungo and V. aconitifolia, was determined using sequential combined PI and DAPI (CPD) staining and dual‐colour fluorescence in situ hybridisation (FISH) with 5S and 45S rDNA probes. For phylogenetic analyses, comparative genomic in situ hybridisation (cGISH) onto somatic chromosomes and sequence analysis of the internal transcribed spacer (ITS) of 45S rDNA were used. Quantitative karyotypes were established using chromosome measurements, fluorochrome bands and rDNA FISH signals. All species had symmetrical karyotypes composed of only metacentric or metacentric and submetacentric chromosomes. Distinct heterochromatin differentiation was revealed by CPD staining and DAPI counterstaining after FISH. The rDNA sites among all species differed in their number, location and size. cGISH of V. umbellata genomic DNA to the chromosomes of all species produced strong signals in all centromeric regions of V. umbellata and V. angularis, weak signals in all pericentromeric regions of V. aconitifolia, and CPD‐banded proximal regions of V. mungo var. mungo. Molecular phylogenetic trees showed that V. angularis and V. umbellata were the closest relatives, and V. mungo and V. aconitifolia were relatively closely related; these species formed a group that was separated from another group comprising V. radiata, V. unguiculata ssp. sesquipedalis and V. subterranea. This result was consistent with the phylogenetic relationships inferred from the heterochromatin and cGISH patterns; thus, fluorochrome banding and cGISH are efficient tools for the phylogenetic analysis of Vigna species.  相似文献   

19.
Vigna unguiculata was introduced into Europe from its distribution centre in Africa, and it is currently being cultivated in Mediterranean regions with adequate edapho-climatic conditions where the slow growing rhizobia nodulating this legume have not yet been studied. Previous studies based on rrs gene and ITS region analyses have shown that Bradyrhizobium yuanmingense and B. elkanii nodulated V. unguiculata in Africa, but these two species were not found in this study. Using the same phylogenetic markers it was shown that V. unguiculata, a legume from the tribe Phaseolae, was nodulated in Spain by two species of group I, B. cytisi and B. canariense, which are common endosymbionts of Genisteae in both Europe and Africa. These species have not been found to date in V. unguiculata nodules in its African distribution centres. All strains from Bradyrhizobium group I isolated in Spain belonged to the symbiovar genistearum, which is found at present only in Genisteae legumes in both Africa and Europe. V. unguiculata was also nodulated in Spain by a strain from Bradyrhizobium group II that belonged to a novel symbiovar (vignae). Some African V. unguiculata-nodulating strains also belonged to this proposed new symbiovar.  相似文献   

20.
Summary Cotyledonary nodes, excised cotyledons, and hypocotyl segments of six varieties ofVigna mungo andV. radiata have been tested for their morphogenic potential on media containing a range of hormonal combinations including benzyladenine, kinetin, thidiazuron (TDZ), and zeatin. Multiple shoots developed on cotyledonary node explants in all varieties tested on basal medium containing cytokinin. Presence of both the cotyledons, either full or half, resulted in a maximum number of shoots produced. Shoot bud regeneration was achieved via meristem formation on excised cotyledons on Murashige-skoog basal medium with B5 vitamins supplemented with TDZ. Mature plants had normal phenotypes.V. mungo var. PS1 andV. radiata var. Pusa 105 were found to be the most responsive varieties for shoot regneration. The histology ofin vitro organogenesis was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号