首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Proteorhodopsin is a light-driven proton pump with variable vectoriality   总被引:7,自引:0,他引:7  
Proteorhodopsin, a homologue of archaeal bacteriorhodopsin (BR), belongs to a newly identified family of retinal proteins from marine bacteria, which could play an important role in the energy balance of the biosphere. We cloned the cDNA sequence of proteorhodopsin by chemical gene synthesis, expressed the protein in Escherichia coli cells, purified and reconstituted the protein in its functional active state. The photocycle characteristics were determined by time-resolved absorption and Fourier transform infrared (FT-IR) spectroscopy. The pH-dependence of the absorption spectrum indicates that the pK(a) of the primary acceptor of the Schiff base proton (Asp97) is 7.68. Generally, the photocycle of proteorhodopsin is similar to that of BR, although an L-like photocycle intermediate was not detectable. Whereas at pH>7 an M-like intermediate is formed upon illumination, at pH 5 no M-like intermediate could be detected. As the photocycle kinetics do not change between the acidic and alkaline state of proteorhodopsin, the only difference between these two forms is the protonation status of Asp97. This is corroborated by time-resolved FT-IR spectroscopy, which demonstrates that proton transfer from the retinal Schiff base to Asp97 is observed at alkaline pH, but the other vibrational changes are essentially pH-independent.After reconstitution into proteoliposomes, light-induced proton currents of proteorhodopsin were measured in a compound membrane system where proteoliposomes were adsorbed to planar lipid bilayers. Our results show that proteorhodopsin is a light-driven proton pump with characteristics similar to those of BR at alkaline pH. However, at acidic pH, the direction of proton pumping is inverted. Complementary experiments were carried out on proteorhodopsin expressed heterologously in Xenopus laevis oocytes under voltage clamp conditions.The following results were obtained. (1) At alkaline pH, proteorhodopsin mediates outwardly directed proton pumping like BR. (2) The direction of proton pumping can be inverted, when Asp97 is protonated. (3) The current can be inverted by changes of the polarity of the applied voltage. (4) The light intensity-dependence of the photocurrents leads to the conclusion that the alkaline form of proteorhodopsin shows efficient proton pumping after sequential excitation by two photons.  相似文献   

2.
Proton transfers in the photochemical reaction cycle of proteorhodopsin   总被引:2,自引:0,他引:2  
The spectral and photochemical properties of proteorhodopsin (PR) were determined to compare its proton transport steps to those of bacteriorhodopsin (BR). Static and time-resolved measurements on wild-type PR and several mutants were done in the visible and infrared (FTIR and FT-Raman). Assignment of the observed C=O stretch bands indicated that Asp-97 and Glu-108 serve as the proton acceptor and donor, respectively, to the retinal Schiff base, as do the residues at corresponding positions in BR, but there are numerous spectral and kinetic differences between the two proteins. There is no detectable dark-adaptation in PR, and the chromophore contains nearly entirely all-trans retinal. Because the pK(a) of Asp-97 is relatively high (7.1), the proton-transporting photocycle is produced only at alkaline pH. It contains at least seven transient states with decay times in the range from 10 micros to 200 ms, but the analysis reveals only three distinct spectral forms. The first is a red-shifted K-like state. Proton release does not occur during the very slow (several milliseconds) rise of the second, M-like, intermediate, consistent with lack of the residues facilitating extracellular proton release in BR. Proton uptake from the bulk, presumably on the cytoplasmic side, takes place prior to release (tau approximately 2 ms), and coincident with reprotonation of the retinal Schiff base. The intermediate produced by this process contains 13-cis retinal as does the N state of BR, but its absorption maximum is red-shifted relative to PR (like the O state of BR). The decay of this N-like state is coupled to reisomerization of the retinal to all-trans, and produces a state that is O-like in its C-C stretch bands, but has an absorption maximum apparently close to that of unphotolyzed PR.  相似文献   

3.
We studied the photocurrents of a cyanobacterial rhodopsin Gloeobacter violaceus (GR) in Xenopus laevis oocytes and HEK-293 cells. This protein is a light-driven proton pump with striking similarities to marine proteorhodopsins, including the D121-H87 cluster of the retinal Schiff base counterion and a glutamate at position 132 that acts as a proton donor for chromophore reprotonation during the photocycle. Interestingly, at low extracellular pHo and negative voltage, the proton flux inverted and directed inward. Using electrophysiological measurements of wild-type and mutant GR, we demonstrate that the electrochemical gradient limits outward-directed proton pumping and converts it into a purely passive proton influx. This conclusion contradicts the contemporary paradigm that at low pH, proteorhodopsins actively transport H+ into cells. We identified E132 and S77 as key residues that allow inward directed diffusion. Substitution of E132 with aspartate or S77 with either alanine or cysteine abolished the inward-directed current almost completely. The proton influx is likely caused by the pKa of E132 in GR, which is lower than that of other microbial ion pumping rhodopsins. The advantage of such a low pKa is an acceleration of the photocycle and high pump turnover at high light intensities.  相似文献   

4.
We studied the photocurrents of a cyanobacterial rhodopsin Gloeobacter violaceus (GR) in Xenopus laevis oocytes and HEK-293 cells. This protein is a light-driven proton pump with striking similarities to marine proteorhodopsins, including the D121-H87 cluster of the retinal Schiff base counterion and a glutamate at position 132 that acts as a proton donor for chromophore reprotonation during the photocycle. Interestingly, at low extracellular pHo and negative voltage, the proton flux inverted and directed inward. Using electrophysiological measurements of wild-type and mutant GR, we demonstrate that the electrochemical gradient limits outward-directed proton pumping and converts it into a purely passive proton influx. This conclusion contradicts the contemporary paradigm that at low pH, proteorhodopsins actively transport H+ into cells. We identified E132 and S77 as key residues that allow inward directed diffusion. Substitution of E132 with aspartate or S77 with either alanine or cysteine abolished the inward-directed current almost completely. The proton influx is likely caused by the pKa of E132 in GR, which is lower than that of other microbial ion pumping rhodopsins. The advantage of such a low pKa is an acceleration of the photocycle and high pump turnover at high light intensities.  相似文献   

5.
《Biophysical journal》2023,122(1):168-179
The functional properties of proteorhodopsin (PR) have been found to be strongly modulated by oligomeric distributions and lipid membrane mimetics. This study aims to distinguish and explain their effects by investigating how oligomer formation impacts PR’s function of proton transport in lipid-based membrane mimetic environments. We find that PR forms stable hexamers and pentamers in both E. coli membranes and synthetic liposomes. Compared with the monomers, the photocycle kinetics of PR oligomers is ~2 and ~4.5 times slower for transitions between the K and M and the M and N photointermediates, respectively, indicating that oligomerization significantly slows PR’s rate of proton transport in liposomes. In contrast, the apparent pKa of the key proton acceptor residue D97 (pKaD97) of liposome-embedded PR persists at 6.2–6.6, regardless of cross-protomer modulation of D97, suggesting that the liposome environment helps maintain PR’s functional activity at neutral pH. By comparison, when extracted directly from E. coli membranes into styrene-maleic acid lipid particles, the pKaD97 of monomer-enriched E50Q PR drastically increases to 8.9, implying that there is a very low active PR population at neutral pH to engage in PR’s photocycle. These findings demonstrate that oligomerization impacts PR’s photocycle kinetics, while lipid-based membrane mimetics strongly affect PR’s active population via different mechanisms.  相似文献   

6.
A spectroscopic and functional analysis of two point-mutated bacteriorhodopsins (BRs) from phototrophic negative halobacterial strains is reported. Bacteriorhodopsin from strain 384 contains a glutamic acid instead of an aspartic acid at position 85 and BR from strain 326 contains asparagine instead of aspartic acid at position 96. Compared to wild-type BR, the M formation in BR Asp85---Glu is accwelerated approximately 10-fold, whereas the M decay in BR Asp96---Asn is slowed down approximately 50-fold at pH6. Purple membrane sheets containing the mutated BRs were oriented and immobilized in polyacrylamide gels or adsorbed to planar lipid films. The measured kinetics of the photocurrents under various conditions agree with the observed photocycle kinetics. The ineffectivity of BR Asp85---Glu resides in the dominance of an inactive species absorbing maximally at approximately 610 nm, while BR Asp96---Asn is ineffective due to its slow photocycle. These experimental results suggest that aspartic acid 96 plays a crucial role for the reprotonation of the Schiff base. Both residues are essential for an effective proton pump.  相似文献   

7.
At pH >7, proteorhodopsin functions as an outward-directed proton pump in cell membranes, and Asp-97 and Glu-108, the homologues of the Asp-85 and Asp-96 in bacteriorhodopsin, are the proton acceptor and donor to the retinal Schiff base, respectively. It was reported, however [Friedrich, T. et al. (2002) J. Mol. Biol., 321, 821-838], that proteorhodopsin transports protons also at pH <7 where Asp-97 is protonated and in the direction reverse from that at higher pH. To explore the roles of Asp-97 and Glu-108 in the proposed pumping with variable vectoriality, we compared the photocycles of D97N and E108Q mutants, and the effects of azide on the photocycle of the E108Q mutant, at low and high pH. Unlike at high pH, at a pH low enough to protonate Asp-97 neither the mutations nor the effects of azide revealed evidence for the participation of the acidic residues in proton transfer, and as in the photocycle of the wild-type protein, no intermediate with unprotonated Schiff base accumulated. In view of these findings, and the doubts raised by absence of charge transfer after flash excitation at low pH, we revisited the question whether transport occurs at all under these conditions. In both oriented membrane fragments and liposomes reconstituted with proteorhodopsin, we found transport at high pH but not at low pH. Instead, proton transport activity followed the titration curve for Asp-97, with an apparent pK(a) of 7.1, and became zero at the pH where Asp-97 is fully protonated.  相似文献   

8.
菌紫质(BR)是嗜盐菌紫膜中的唯一蛋白质,野生型的BR分子含有248个氨基酸残基,其中一个视黄醛通过希夫碱基连结在第216位赖氨酸上,它具有质子泵的功能.光照下,BR进行光循环,光循环又与质子泵过程相关联.菌紫质的结构和功能方面的研究已有很大进展,但其光循环途径和质子泵的机理还不太清楚.文章概述了近年来对菌紫质结构,光循环和质子泵机理研究的进展,尤其对争论较大的菌紫质光循环途径的四类模型作了较详细的介绍.  相似文献   

9.
Iwamoto M  Furutani Y  Kamo N  Kandori H 《Biochemistry》2003,42(10):2790-2796
pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II, psRII), a negative phototaxis receptor of Natronobacterium pharaonis, can use light to pump a proton in the absence of its transducer protein. However, the pump activity is much lower than that of the light-driven proton-pump bacteriorhodopsin (BR). ppR's pump activity is known to be increased in a mutant protein, in which Phe86 is replaced with Asp (F86D). Phe86 is the amino acid residue corresponding to Asp96 in BR, and we expect that Asp86 plays an important role in the proton transfer at the highly hydrophobic cytoplasmic domain of the F86D mutant ppR. In this article, we studied protein structural changes and proton transfer reactions during the photocycles of the F86D and F86E mutants in ppR by means of Fourier transform infrared (FTIR) spectroscopy and photoelectrochemical measurements using a tin oxide (SnO2) electrode. FTIR spectra of the unphotolyzed state and the K and M intermediates are very similar among F86D, F86E, and the wild type. Asp86 or Glu86 is protonated in F86D or F86E, respectively, and the pK(a) > 9. During the photocycle, the pK(a) is lowered and deprotonation of Asp86 or Glu86 is observed. Detection of both deprotonation of Asp86 or Glu86 and concomitant reprotonation of the 13-cis chromophore implies the presence of a proton channel between position 86 and the Schiff base. However, the photoelectrochemical measurements revealed proton release presumably from Asp86 or Glu86 to the cytoplasmic aqueous phase in the M state. This indicates that the ppR mutants do not have the BR-like mechanism that conducts a proton uniquely from Asp86 or Glu86 (Asp96 in BR) to the Schiff base, which is possible in BR by stepwise protein structural changes at the cytoplasmic side. In ppR, there is a single open structure at the cytoplasmic side (the M-like structure), which is shown by the lack of the N-like protein structure even in F86D and F86E at alkaline pH. Therefore, it is likely that a proton can be conducted in either direction, the Schiff base or the bulk, in the open M-like structure of F86D and F86E.  相似文献   

10.
The proton acceptor group in the recently described retinal protein, proteorhodopsin has an unusually high pK(a) of 7.1. It was shown that at pH above this pK(a), illumination initiates a photocycle similar to that of bacteriorhodopsin, and the protein transports proton across the cell membrane. Recently it was reported that proteorhodopsin, unlike bacteriorhodopsin, transports protons at pH below the pK(a) of the proton acceptor, and this transport is in the reverse direction. We have investigated the photocycle of proteorhodopsin at such low pH. At pH 5, three spectrally distinct intermediates K, L, and N, and another spectrally silent one, PR', could be identified, but a deprotonated Schiff base containing M-like intermediate, characteristic for proton pumping activity, does not accumulate. All the reactions between the intermediates are close to equilibrium, except the last transition from PR' to PR, when the protein returns to its initial unexcited state in a quasiunidirectional reaction. The electric signal measurements indicate that although charge motions are detected inside the protein, their net dislocation is zero, indicating that contrary to the earlier reported, at low pH no charged particle is transported across the membrane.  相似文献   

11.
Bacteriorhodopsin (BR) was reconstituted into artificial lipid membrane containing various charged lipid compositions. The proton pumping activity of BR under flash and continuous illumination, proton permeability across membrane, as well as the decay kinetics of the photocycle intermediate M412 were studied. The results showed that lipid charges would significantly affect the orientation of BR inserted into lipid membranes. In liposomes containing anionic lipids, BRs were more likely to take natural orientation as in living cells. In neutral or positively charged liposomes, most BRs were reversely assembled, assuming an inside out orientation. Moreover, the lipids charges also affect BR’s M intermediate kinetics, especially the slow component in M intermediate decay. The half-life M412s increased significantly in BRs in liposomes containing cationic lipids, while decreased in those in anionic liposomes.  相似文献   

12.
Proteorhodopsins (PRs), photoactive retinylidene membrane proteins ubiquitous in marine eubacteria, exhibit light-driven proton transport activity similar to that of the well studied bacteriorhodopsin from halophilic archaea. However, unlike bacteriorhodopsin, PRs have a single highly conserved histidine located near the photoactive site of the protein. Time-resolved Fourier transform IR difference spectroscopy combined with visible absorption spectroscopy, isotope labeling, and electrical measurements of light-induced charge movements reveal participation of His-75 in the proton translocation mechanism of PR. Substitution of His-75 with Ala or Glu perturbed the structure of the photoactive site and resulted in significantly shifted visible absorption spectra. In contrast, His-75 substitution with a positively charged Arg did not shift the visible absorption spectrum of PR. The mutation to Arg also blocks the light-induced proton transfer from the Schiff base to its counterion Asp-97 during the photocycle and the acid-induced protonation of Asp-97 in the dark state of the protein. Isotope labeling of histidine revealed that His-75 undergoes deprotonation during the photocycle in the proton-pumping (high pH) form of PR, a reaction further supported by results from H75E. Finally, all His-75 mutations greatly affect charge movements within the PR and shift its pH dependence to acidic values. A model of the proteorhodopsin proton transport process is proposed as follows: (i) in the dark state His-75 is positively charged (protonated) over a wide pH range and interacts directly with the Schiff base counterion Asp-97; and (ii) photoisomerization-induced transfer of the Schiff base proton to the Asp-97 counterion disrupts its interaction with His-75 and triggers a histidine deprotonation.A variety of unicellular microorganisms contain primary proton pumps that convert solar energy into a transmembrane electrochemical proton gradient, which is subsequently used by membrane ATP synthases to generate chemical energy. Well known examples of such pumps are the haloarchaeal rhodopsins, photoactive, seven-helix membrane proteins, which include the well studied proton pump bacteriorhodopsin (BR)4 from Halobacterium salinarum and BR homologs in other haloarchaea. Recently, a much larger new family of light-driven proton pumps, the proteorhodopsins (PRs), was identified in marine proteobacteria throughout the oceans (13). Despite the diverse properties of PRs, including different visible absorption maxima and photocycle rates (46), they all share with BR several key conserved residues as well as an all-trans-retinylidene chromophore in their unphotolyzed state, which is covalently bound to transmembrane helix G via a protonated Schiff base linkage.Many of the molecular events that occur in PRs following light activation are similar to those of BR, including an initial ultrafast all-trans→13-cis-retinal isomerization, which triggers a sequence of protein conformational changes, including several intramolecular proton transfer reactions. The two key carboxylate groups involved in proton pumping in helix C of BR are conserved in PRs, and in the first found and most commonly studied PR, the Monterey Bay variant eBAC31A08, also known as green-absorbing proteorhodopsin (GPR), the helix C residues Asp-97 and Glu-108 undergo protonation changes during the photocycle similar to those of the homologous carboxylate residues in BR. Initial FTIR studies on GPR identified the role of Asp-97 as the Schiff base counterion and proton acceptor during Schiff base deprotonation and concomitant M formation and Glu-108 as the proton donor that reprotonates the Schiff base during N formation (7, 8). Studies of other variants indicate these roles of the two carboxylic acid residues are general in the proteorhodopsin family.5One major difference between BR and the PRs is the presence of a highly conserved histidine residue at position 75, near the middle of transmembrane helix B in the latter pigments. The His-75 homolog is not present in BR nor thus far found in other microbial rhodopsins (9). The proximity of His-75 to the protein active site and specifically to the Schiff base counterion Asp-97 inferred from the x-ray crystal structure of BR suggests its involvement in spectral tuning of the visible absorption (10) and potentially PR photochemical reactions. Because the pKa of histidine in solution is close to neutral pH (11), its imidazole group often plays a major role in intramolecular proton transfers in enzymes, including NADPH oxidase (12), alcohol dehydrogenase (13), carbonic anhydrase II (14), and serine proteases (15).In this study we have used a combination of time-resolved FTIR difference spectroscopy, visible absorption spectroscopy, isotope labeling, kinetic charge displacement measurements, and site-directed mutagenesis to study the role of His-75 in GPR. We report evidence that protonated His-75 interacts directly with Asp-97 in the unphotolyzed protein and during the photocycle undergoes a deprotonation in response to the protonation of Asp-97.  相似文献   

13.
Archaerhodopsin 4 (AR4), a retinal-containing membrane protein, exhibits a reversed order of proton release and uptake at neutral pH, as compared to the well-known bacteriorhodopsin (BR). In a preceding report, we stated that Triton X-100 solubilized the claret membrane containing AR4 (CM) into monomeric proteins and altered the time order in AR4 at neutral pH. The present study examined the mechanism underlying this phenomenon. We employed a photoelectrochemical cell suitable for observation of the proton pumping behaviors of both the membrane patch and detergent-solubilized proteins over a wide pH range. The pK(a) values of the proton release complex (PRC) in the initial state and the M state were determined with this device. The pK(a) of PRC of monomeric AR4 decreased to a value lower than 7.0 in the photocycle, allowing early proton release at neutral pH. The pK(a) of PRC in the initial state was also strongly affected by solubilization.  相似文献   

14.
The actinic light effect on the bacteriorhodopsin (BR) photocycle kinetics led to the assumption of a cooperative interaction between the photocycling BR molecules. In this paper we report the results of the actinic light effect and pH on the proton release and uptake kinetics. An electrical method is applied to detect proton release and uptake during the photocycle [E. Papp, G. Fricsovszky, J. Photochem. Photobiol. B: Biol. 5 (1990) 321]. The BR photocycle kinetics was also studied by absorption kinetics measurements at 410 nm and the data were analyzed by the local analysis of the M state kinetics [E. Papp, V.H. Ha, Biophys. Chem. 57 (1996) 155]. While at high pH and ionic strength, we found a similar behavior as reported earlier, at low ionic strength the light effect proved to be more complex. The main conclusions are the following: Though the number of BR excited to the photocycle (fraction cycling, fc) goes to saturation with increasing laser pulse energy, the absorbed energy by BR increases linearly with pulse energy. From the local analysis we conclude that the light effect changes the kinetics much earlier, already at the L intermediate state decay. The transient electric signal, caused by proton release and uptake, can be decomposed into two components similarly to the absorption kinetic data of the M intermediate state. The actinic light energy affects mainly the ratio of the two components and the proton movements inside BR while pH has an effect on the kinetics of the proton release and uptake groups at the membrane surface.  相似文献   

15.
The early steps in the photocycle of the bacterial proton pump proteorhodopsin (PR) were analyzed by ultrafast pump/probe spectroscopy to compare the rate of retinal isomerization at alkaline and acidic pH values. At pH 9, the functionally important primary proton acceptor (Asp97, pK(a) = 7.7) is negatively charged; consequently, a reaction cycle analogous to the archaeal bacteriorhodopsin (BR) is observed. The excited electronic state of PR displays a pronounced biphasic decay with time constants of 400 fs and 8 ps. At pH 6 where Asp97 is protonated a similar biphasic decay is observed, although it is significantly slower (700 fs and 15 ps). The results indicate, in agreement to similar findings in other retinal proteins, that also in PR the charge distribution within the chromophore binding pocket is a major determinant for the rate and the efficiency of the primary reaction.  相似文献   

16.
In the photocycle of bacteriorhodopsin (bR), light-induced transfer of a proton from the Schiff base to an acceptor group located in the extracellular half of the protein, followed by reprotonation from the cytoplasmic side, are key steps in vectorial proton pumping. Between the deprotonation and reprotonation events, bR is in the M state. Diverse experiments undertaken to characterize the M state support a model in which the M state is not a static entity, but rather a progression of two or more functional substates. Structural changes occurring in the M state and in the entire photocycle of wild-type bR can be understood in the context of a model which reconciles the chloride ion-pumping phenotype of mutants D85S and D85T with the fact that bR creates a transmembrane proton-motive force.  相似文献   

17.
Ming M  Lu M  Balashov SP  Ebrey TG  Li Q  Ding J 《Biophysical journal》2006,90(9):3322-3332
The pH-dependence of photocycle of archaerhodopsin 4 (AR4) was examined, and the underlying proton pumping mechanism investigated. AR4 is a retinal-containing membrane protein isolated from a strain of halobacteria from a Tibetan salt lake. It acts as a light-driven proton pump like bacteriorhodopsin (BR). However, AR4 exhibits an "abnormal" feature--the time sequence of proton release and uptake is reversed at neutral pH. We show here that the temporal sequence of AR4 reversed to "normal"--proton release preceding proton uptake--when the pH is increased above 8.6. We estimated the pK(a) of the proton release complex (PRC) in the M-intermediate to be approximately 8.4, much higher than 5.7 of wide-type BR. The pH-dependence of the rate constant of M-formation shows that the pK(a) of PRC in the initial state of AR4 is approximately 10.4, whereas it is 9.7 in BR. Thus in AR4, the chromophore photoisomerization and subsequent proton transport from the Schiff base to Asp-85 is coupled to a decrease in the pK(a) of PRC from 10.4 to 8.4, which is 2 pK units less than in BR (4 units). This weakened coupling accounts for the lack of early proton release at neutral pH and the reversed time sequence of proton release and uptake in AR4. Nevertheless the PRC in AR4 effectively facilitates deprotonation of primary proton acceptor and recovery of initial state at neutral pH. We found also that all pK(a)s of the key amino acid residues in AR4 were elevated compared to those of BR.  相似文献   

18.
It was shown that the substitution of the CF3 group in the structure of retinal for the methyl group at C13 causes not only a decrease in the affinity of the proton for the nitrogen in the Schiff base (pK ~ 8.4) but also considerably changes the photochemical properties of the bacteriorhodopsin analog. At pH > 6.5, the rate of the Schiff base reprotonation during M decay depends on the proton concentration in the medium. In the photocycle of the yellow M-like form with the deprotonated Schiff base, a long-wavelength product absorbing at 625 nm is formed, which has a similar pH dependence of decay kinetics. The two processes also have similar activation energies (about 15 ± 1 kcal/mol). It is concluded that both cases involve proton transfer from an aqueous medium through the donor part of the channel to the Schiff base and Asp96, respectively. In the analog, however, the structure of water molecules necessary for the stabilization of the proton on the Schiff base is broken. As a result, dehydration of the preparation gives rise to a fraction of M-like form of bacteriorhodopsin with the deprotonated Schiff base.  相似文献   

19.
Ikeda D  Furutani Y  Kandori H 《Biochemistry》2007,46(18):5365-5373
Proteorhodopsin (PR), an archaeal-type rhodopsin found in marine bacteria, is a light-driven proton pump similar to bacteriorhodopsin (BR). It is known that Asp97, a counterion of the protonated Schiff base, possesses a higher pKa ( approximately 7) compared to that of homologous Asp85 in BR (<3). This suggests that PR has a hydrogen-bonding network different from that of BR. We previously reported that a strongly hydrogen-bonded water molecule is observed only in the alkaline form of PR, where Asp97 is deprotonated (Furutani, Y., Ikeda, D., Shibata, M., and Kandori, H. (2006) Chem. Phys. 324, 705-708). This is probably correlated with the pH-dependent proton pumping activity of PR. In this work, we studied the water-containing hydrogen-bonding network in the Schiff base region of PR by means of Fourier-transform infrared (FTIR) spectroscopy at 77 K. [zeta-15N]Lys-labeling and 18O water were used for assigning the Schiff base N-D and water O-D stretching vibrations in D2O, respectively. The frequency upshift of the N-D stretch in the primary K intermediate is much smaller for PR than for BR, indicating that the Schiff base forms a hydrogen bond after retinal photoisomerization. We then measured FTIR spectra of the mutants of Asp97 (D97N and D97E) and Asp227 (D227N and D227E) to identify the amino acid interacting with the Schiff base in the K state. The PRK minus PR spectra of D97N and D97E were similar to those of the acidic and alkaline forms, respectively, of the wild type implying that the structural changes upon retinal photoisomerization are not influenced by the mutation at Asp97. In contrast, clear spectral differences were observed in D227N and D227E, including vibrational bands of the Schiff base and water molecules. It is concluded that Asp227 plays a crucial role during the photoisomerization process, though Asp97 acts as the primary counterion in the unphotolyzed state of PR.  相似文献   

20.
Halobacterium sp. GRB (Ebert, K., Goebel, W., and Pfeifer, F. (1984) Mol. & Gen. Genet. 194, 91-97) was used to isolate bacteriorhodopsin (BR) mutants. A procedure is described which allows the enrichment of any type of mutant unable to grow under the selection conditions applied. Its use for the isolation of phototrophically negative, retinal-positive mutants of Halobacterium sp. GRB is demonstrated. Single-cell clones of this phenotype were further characterized. The expression of bacterioopsin was tested with a monoclonal antibody directed against the C terminus of the protein. The expressed bacteriorhodopsins were characterized by their specific activity for proton pumping, their spectral properties, and photocycle kinetics. About 15 independent mutants carrying bacteriorhodopsins of three distinct phenotypic classes could be isolated, including BR with a different absorption maximum, BR of lower specific activity, and BR characterized by a slower photocycle and a lack of proton pumping activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号