首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 261 毫秒
1.
Association of fibrin with the platelet cytoskeleton   总被引:2,自引:0,他引:2  
We have previously postulated that surface membrane proteins become specifically associated with the internal platelet cytoskeleton upon platelet activation (Tuszynski, G.P., Walsh, P.N., Piperno, J., and Koshy, A. (1982) J. Biol. Chem. 257, 4557-4563). Four lines of evidence are in support of this general hypothesis since we now show that platelet surface receptors for fibrin become specifically associated with the platelet Triton-insoluble cytoskeleton. 1) Fibrin was detected immunologically in the washed Triton-insoluble cytoskeletons of thrombin-activated platelets under conditions where fibrin polymerization and resultant precipitation was blocked with Gly-Pro-Arg-Pro, a synthetic peptide that inhibits polymerization of fibrin monomer. 2) Radiolabeled fibrin bound to thrombin-activated platelets and became associated with the cytoskeleton. 3) The amount of radiolabeled fibrin bound to thrombin-activated thrombasthenic platelets and their cytoskeletons amounted to about 20% of the fibrin bound to thrombin-activated control platelets and their cytoskeletons. 4) The association of fibrin with cytoskeletons and with the platelet surface was nearly quantitatively blocked by an antibody prepared against cytoskeletons (anti-C), an antibody against isolated membranes of Pronase-treated platelets (anti-M1), and a monoclonal antibody to the platelet surface glycoprotein complex, GPIIb-GPIII (anti-GPIII). These antibodies blocked ADP and thrombin-induced platelet aggregation as well as thrombin-induced clot retraction. Analysis of the immunoprecipitates obtained with anti-C, anti-M1, and anti-GPIII from detergent extracts of 125I-surface labeled platelets revealed that these antibodies recognized GPIIb-GPIII. These data suggest that thrombin activation of platelets results in the specific association of fibrin with the platelet cytoskeleton, that this association may be mediated by the GPIIb-GPIII complex, and that these mechanisms may play an important role in platelet aggregation and clot retraction induced by thrombin.  相似文献   

2.
Integrin-mediated interactions between cytoskeletal proteins and extracellular fibrinogen are required for platelet adhesion. We have previously demonstrated that the major platelet integrin, alpha(IIb)beta(3), becomes incorporated into the actin cytoskeleton of platelets in an activation-dependent, aggregation-independent manner. To determine if regulatory molecules are also associated with these integrin-rich cytoskeletal complexes, we examined actin cytoskeletons for the presence of kinases and phosphoproteins. Western immunoblot analysis revealed that the tyrosine kinases Src, Fyn, and Lyn are specifically associated with actin cytoskeletons of activated, nonaggregated platelets. However, as noted by others, the cytoskeletal association of focal adhesion kinase depends on platelet aggregation. Actin cytoskeletons isolated from (32)P-labeled platelets also contain a number of phosphorylated proteins. Interestingly, an approximately 18-kDa phosphoprotein was uniquely present in activated platelet cytoskeletons. Collectively, our results demonstrate that actin cytoskeletons of activated, nonaggregated platelets contain not only integrins, but also kinases and phosphoproteins that could regulate platelet adhesion and transmembrane communication.  相似文献   

3.
Bruton's tyrosine kinase (Btk) plays a crucial role in the maturation and differentiation of B-lymphocytes and immunoglobulin synthesis. Recently Btk has been described to be present in significant amount in human platelets. To investigate the regulation of this kinase in the platelets we studied its subcellular redistribution in the resting and activated cells. In the resting platelets Btk was almost absent from the actin-based cytoskeleton. Upon challenge of the platelet thrombin receptor upto 30% of total Btk appeared in the cytoskeleton and the protein underwent phosphorylation on tyrosine. Translocation of Btk to the cytoskeleton but not aggregation was prevented by cytochalasin B, which inhibits actin polymerization. Wortmannin and genistein (inhibitors of phosphoinositide 3-kinase and protein tyrosine kinase, respectively) decreased while phenylarsine oxide (a tyrosine phosphatase inhibitor) increased the cytoskeletal content of Btk. The association of Btk with the cytoskeleton was regulated by integrin alpha(IIb)beta(3) and partly reversible. Taken together, these data suggest that Btk might be a component of a signaling complex containing specific cytoskeletal proteins in the activated platelets.  相似文献   

4.
《The Journal of cell biology》1993,121(6):1329-1342
Activation of blood platelets triggers a series of responses leading to the formation and retraction of blood clots. Among these responses is the establishment of integrin-mediated transmembrane connections between extracellular matrix components and the actin cytoskeleton of the platelet. Here we report that a specific subpopulation of the major platelet integrin, glycoprotein IIb-IIIa (GPIIb-IIIa) (also referred to as alpha IIb beta 3 integrin), becomes incorporated into the detergent- insoluble actin cytoskeleton of platelets during the platelet activation response. The cytoskeletal association of GPIIb-IIIa is independent of platelet aggregation and fibrin sedimentation and is sensitive to cytochalasin D treatment. As determined by Western immunoblot analysis, approximately 22% of the total cellular GPIIb-IIIa becomes associated with the actin cytoskeleton upon thrombin activation in a manner that is independent of the detection of talin, alpha- actinin, or vinculin in the complex. We found that the cytoskeleton- associated GPIIb-IIIa is derived from an intracellular source since it is not available for lactoperoxidase-catalyzed radioiodination before platelet activation. Two intracellular sources of GPIIb-IIIa are present in resting platelets: GPIIb-IIIa associated with the alpha- granule secretory compartment as well as surface-inaccessible domains of the surface-connected canalicular system. Interestingly, alpha- granule secretion, which occurs in thrombin-activated platelets and results in the translocation of intracellular GPIIb-IIIa to the plasma membrane, appears to be required for the cytoskeleton incorporation of GPIIb-IIIa that we observe. Collectively, our data provide evidence that a subpopulation of GPIIb-IIIa derived from an intracellular source is selectively linked to the actin cytoskeleton of platelets upon thrombin activation in the absence of platelet aggregation.  相似文献   

5.
N Ishihara  M Iwama  B Kobayashi 《Life sciences》1989,44(18):1309-1316
The stimulative effects of phorbol myristate acetate (PMA) on rabbit platelet shape change and platelet adhesion were completely inhibited by staurosporine (STS)-pretreatment. When the platelets were observed by whole mount immuno transmission electron microscopy (TEM), STS was found to stabilize platelet microtubular cytoskeleton. Electrophoretic analysis of the isolated marginal bundles of cytoskeleton after STS-PMA treatment revealed a newly formed 200 K high molecular weight protein band accompanied with heavy losses of tubulin monomers. These bundles of STS-treated platelets as observed in immuno TEM responded poorly to the anti alpha- or beta-tubulin antibody as compared with those of the control platelets. The results suggest that sts favour the specific assembly of tubulin bundles with a possible involvement of the microtubular associated proteins (MAPs). The resultant tight marginal bundles (MB) of cytoskeleton will stabilize the platelets and resist the effects of exogeneously added stimulants such as PMA.  相似文献   

6.
The plasma membrane Ca(2+)-ATPase (PMCA) plays an essential role in maintaining low cytosolic Ca(2+) in resting platelets. During platelet activation PMCA is phosphorylated transiently on tyrosine residues resulting in inhibition of the pump that enhances elevation of Ca(2+). Tyrosine phosphorylation of many proteins during platelet activation results in their association with the cytoskeleton. Consequently, in the present study we asked if PMCA interacts with the platelet cytoskeleton. We observed that very little PMCA is associated with the cytoskeleton in resting platelets but that approximately 80% of total PMCA (PMCA1b + PMCA4b) is redistributed to the cytoskeleton upon activation with thrombin. Tyrosine phosphorylation of PMCA during activation was not associated with the redistribution because tyrosine-phosphorylated PMCA was not translocated specifically to the cytoskeleton. Because PMCA b-splice isoforms have C-terminal PSD-95/Dlg/ZO-1 homology domain (PDZ)-binding domains, a C-terminal peptide was used to disrupt potential PDZ domain interactions. Activation of saponin-permeabilized platelets in the presence of the peptide led to a significant decrease of PMCA in the cytoskeleton. PMCA associated with the cytoskeleton retained Ca(2+)-ATPase activity. These results suggest that during activation active PMCA is recruited to the cytoskeleton by interaction with PDZ domains and that this association provides a microenvironment with a reduced Ca(2+) concentration.  相似文献   

7.
Exposure of cryptic actin filament fast growing ends (barbed ends) initiates actin polymerization in stimulated human and mouse platelets. Gelsolin amplifies platelet actin assembly by severing F-actin and increasing the number of barbed ends. Actin filaments in stimulated platelets from transgenic gelsolin-null mice elongate their actin without severing. F-actin barbed end capping activity persists in human platelet extracts, depleted of gelsolin, and the heterodimeric capping protein (CP) accounts for this residual activity. 35% of the approximately 5 microM CP is associated with the insoluble actin cytoskeleton of the resting platelet. Since resting platelets have an F- actin barbed end concentration of approximately 0.5 microM, sufficient CP is bound to cap these ends. CP is released from OG-permeabilized platelets by treatment with phosphatidylinositol 4,5-bisphosphate or through activation of the thrombin receptor. However, the fraction of CP bound to the actin cytoskeleton of thrombin-stimulated mouse and human platelets increases rapidly to approximately 60% within 30 s. In resting platelets from transgenic mice lacking gelsolin, which have 33% more F-actin than gelsolin-positive cells, there is a corresponding increase in the amount of CP associated with the resting cytoskeleton but no change with stimulation. These findings demonstrate an interaction between the two major F-actin barbed end capping proteins of the platelet: gelsolin-dependent severing produces barbed ends that are capped by CP. Phosphatidylinositol 4,5-bisphosphate release of gelsolin and CP from platelet cytoskeleton provides a mechanism for mediating barbed end exposure. After actin assembly, CP reassociates with the new actin cytoskeleton.  相似文献   

8.
The high amount of pp60c-src in platelets has led to speculation that this kinase is responsible for tyrosine-specific phosphorylation of cellular proteins during platelet activation by different agonists, and is, therefore, implicated in signal transduction of these cells. Unlike pp60v-src, the association of which with the cytoskeleton appears to be a prerequisite for transformation, pp60c-src is detergent-soluble in fibroblasts overexpressing the c-src gene, and its role in normal cellular function remains elusive. To gain a better understanding of the function of pp60c-src we have investigated the subcellular distribution of pp60c-src and its relationship to the cytoskeleton during platelet activation. Quantitative immunoblotting and immunoprecipitation have revealed that pp60c-src is detergent-soluble in resting platelets, while 40% of total platelet pp60c-src becomes associated with the cytoskeletal fraction upon platelet activation. We have also shown that a small pool of pp60c-src is associated with the membrane skeletal fraction which remains unchanged during the activation process. The interaction of pp60c-src with cytoskeletal proteins strongly correlates with aggregation and is mediated by GPIIb/IIIa receptor-fibrinogen binding. We suggest that the translocation of pp60c-src to the cytoskeleton and its association with cytoskeletal proteins may regulate tyrosine phosphorylation in platelets.  相似文献   

9.
It is well known the effects of the vascular wall on platelet activity but little is known about the effects of platelets on the proteins expression in the vascular wall. We analyzed whether platelets may modify the protein expression in the vascular wall. We used an in vitro model coincubating human platelet rich plasma (PRP) with control and 10 ng/ml tumor necrosis factor‐α (TNF‐α)‐preincubated bovine aortic segments. 2DE, mass spectrometry and Western blot analysis were used to determine changes in the expression of proteins associated with the cytoskeleton and energetic metabolism in the aortic segments. In control healthy vascular wall, only the cytoskeleton‐related proteins expression was modified by PRP. However, when PRP was coincubated with TNF‐α pre‐stimulated aortic segments lesser number of cytoskeleton‐related proteins were modified. With respect to energetic metabolism, in control segments, PRP failed to modify any of the analyzed energetic‐related proteins. However, in TNF‐α‐preincubated segments the presence of PRP upexpressed glyceraldehyde‐3‐phosphate dehydrogenase. Moreover, by western blot experiments it was observed that in TNF‐α‐preincubated segments the expression of fructose 1,6‐bisphosphate aldolase was downregulated by platelets. However, no differences were found in the expression of triosephosphate isomerase and ATP synthase α‐chain. In addition, the activity of fructose 1,6‐bisphosphate aldolase and piruvate content was significantly reduced without modification on triosephosphate isomerase activity. In conclusion, the crosstalk between platelets and vascular wall is bidirectional and platelets regulated in the vascular wall the expression of proteins associated with the cytoskeleton and energetic metabolism, particularly in the healthy vascular wall. J. Cell. Biochem. 111: 889–898, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Concanavalin A is capable of activating platelets in a concentration-dependent manner as judged by [14C]serotonin secretion from prelabeled platelets. In contrast, succinyl concanavalin A does not induce platelet secretion. Concanavalin A treatment also results in a number of alterations in platelet macromolecules which are presumably associated with the process of platelet activation. These include the phosphorylation of 20 and 47 kDa platelet proteins, the increased polymerization and association of new proteins with the platelet cytoskeleton and the association of the platelet membrane glycoprotein IIb/III complex with the platelet cytoskeleton. Succinyl concanavalin A treatment results in none of these macromolecular events. This difference is observed despite the demonstration that both lectins bind to the platelet surface. Gel overlay experiments also indicate that concanavalin A and succinyl concanavalin A bind to the same receptors. These differences in the biological effects of concanavalin A and succinyl concanavalin A on platelets may be due to decreased receptor crosslinking by the succinylated derivative. The formation of multiple linked interactions between surface receptors may be an important event in the activation of platelets by concanavalin A.  相似文献   

11.
Acute coronary syndromes (ACS) are associated with platelet activation. The aim of the present study was to study the protein expression level associated with glycolysis, oxidative stress, cytoskeleton and cell survival in platelets obtained during an ACS. Platelets from 42 coronary ischemic patients, divided into patients admitted within 24 h after the onset of chest pain (ACS group; n=16) and patients with stable coronary ischemic disease (CAD, n=26), were analyzed using proteomics. The expression levels of proteins involved in cellular cytoskeleton (F‐actin capping, β‐tubulin, α‐tubulin isotypes 1 and 2, vinculin, vimentin and two Ras‐related protein Rab‐7b isotypes), glycolysis pathway (glyceraldehyde‐3‐phosphate dehydrogenase, lactate dehydrogenase and two pyruvate kinase isotypes) and cellular‐related antioxidant system (manganese superoxide dismutase) and even the expression and activity of glutathione‐S‐transferase were significantly reduced in platelets from ACS patients compared to CAD patients. Moreover, reduction in the expression of proteins associated with cell survival such as proteasome subunit β type 1 was also observed in ACS platelets compared with CAD platelets. Principal component and logistic regression analysis suggested the existence of factors (proteins) expressed in the platelets inversely associated with acute coronary ischemia. In summary, these results suggest the existence of circulating antioxidant, cytoskeleton and glycolytic‐“bewildered” platelets during the acute phase of a coronary event.  相似文献   

12.
Changes in shape, and aggregation that accompanies platelet activation, are dependent on the assembly and reorganization of the cytoskeleton. To assess the changes in cytoskeleton induced by thrombin and PMA, suspensions of aspirin-treated,32P-prelabeled, washed pig platelets in Hepes buffer containing ADP scavengers were activated with thrombin, and with PMA, an activator of protein kinase C. The cytoskeletal fraction was prepared by adding Triton extraction buffer. The Triton-insoluble (cytoskeletal) fraction isolated by centrifugation was analysed by SDS-PAGE and autoradiography. Incorporation of actin into the Triton-insoluble fraction was used to quantify the formation of F-actin. Thrombin-stimulated platelet cytoskeletal composition was different from PMA-stimulated cytoskeletal composition. Thrombin-stimulated platelets contained not only the three major proteins: actin (43 kDa), myosin (200 kDa) and an actin-binding protein (250 kDa), but three additional proteins of Mr56 kDa, 80 kDa and 85 kDa in the cytoskeleton, which were induced in by thrombin dose-response relationship. In contrast, PMA-stimulated platelets only induced actin assembly, and the 56 kDa, 80 kDa and 85 kDa proteins were not found in the cytoskeletal fraction. Exposure of platelets to thrombin or PMA induced phosphorylation of pleckstrin parallel to actin assembly. Staurosporine, an inhibitor of protein kinase C, inhibited actin assembly and platelet aggregation induced by thrombin or PMA, but did not inhibit the incorporation of 56 kDa, 80 kDa and 85 kDa into the cytoskeletal fraction induced by thrombin. These three extra proteins seem to be unrelated to the induction of protein kinase C. We conclude that actin polymerization and platelet aggregation were induced by a mechanism dependent on protein kinase C, and suggest that thrombin-activated platelets aggregation could involve additional cytoskeletal components (56 kDa, 80 kDa, 85 kDa) of the cytoskeleton, which made stronger actin polymerization and platelet aggregation more.  相似文献   

13.
Triton-insoluble cytoskeletons prepared from either normal or thrombasthenic platelets were found to contain approximately 1.3 micrograms of fibronectin/10(9) platelets as measured by a radioimmunoassay. Total endogenous platelet fibronectin was quantitatively retained on the platelet cytoskeleton, whereas 70% of exogenously added fibronectin that bound the surface of thrombin-activated platelets was recovered with the Triton-insoluble cytoskeleton. The exogenously added fibronectin specifically bound platelets and cytoskeletons with the same affinity giving an apparent binding constant of 1.47 X 10(-7) M. The possibility that fibrin associated with the platelet cytoskeleton could serve as the fibronectin receptor was investigated by measuring the binding constant of fibronectin for polymerizing fibrin and by measuring the amount of fibronectin associated with cytoskeletons of thrombasthenic platelets which contain 4-fold less fibrin than controls. The binding constant of fibronectin for polymerizing fibrin was 14-fold lower than that for cytoskeletons and cytoskeletons prepared from thrombasthenic platelets contained approximately the same amount of fibronectin as controls. Therefore, it is unlikely that fibrin is the platelet fibronectin receptor. These results support the hypothesis that platelet fibronectin is released from platelet alpha granules upon thrombin stimulation and becomes bound to the platelet surface and cytoskeleton either directly or through some intermediate protein that spans the membrane and interacts both with fibronectin and the internal cell cytoskeleton.  相似文献   

14.
Platelets are important in hemostasis, but also detect particles and pathogens in the circulation. Phagocytic and endocytic activities of platelets are widely recognized; however, receptors and mechanisms involved remain poorly understood. We previously demonstrated that platelets internalize and store phospholipid microvesicles enriched in human tissue factor (TF+MVs) and that platelet‐associated TF enhances thrombus formation at sites of vascular damage. Here, we investigate the mechanisms implied in the interactions of TF+MVs with platelets and the effects of specific inhibitory strategies. Aggregometry and electron microscopy were used to assess platelet activation and TF+MVs uptake. Cytoskeletal assembly and activation of phosphoinositide 3‐kinase (PI3K) and RhoA were analyzed by western blot and ELISA. Exposure of platelets to TF+MVs caused reversible platelet aggregation, actin polymerization and association of contractile proteins to the cytoskeleton being maximal at 1 min. The same kinetics were observed for activation of PI3K and translocation of RhoA to the cytoskeleton. Inhibitory strategies to block glycoprotein IIb‐IIIa (GPIIb‐IIIa), scavenger receptor CD36, serotonin transporter (SERT) and PI3K, fully prevented platelet aggregation by TF+MVs. Ultrastructural techniques revealed that uptake of TF+MVs was efficiently prevented by anti‐CD36 and SERT inhibitor, but only moderately interfered by GPIIb‐IIIa blockade. We conclude that internalization of TF+MVs by platelets occurs independently of receptors related to their main hemostatic function (GPIIb‐IIIa), involves the scavenger receptor CD36, SERT and engages PI3‐Kinase activation and cytoskeletal assembly. CD36 and SERT appear as potential therapeutic targets to interfere with the association of TF+MVs with platelets and possibly downregulate their prothrombotic phenotype. J. Cell. Biochem. 117: 448–457, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
Utrophin is a component of the platelet membrane cytoskeleton and participates in cytoskeletal reorganization (Earnest, J. P., Santos, G. F., Zuerbig, S., and Fox, J. E. B. (1995) J. Biol. Chem. 270, 27259-27265). Although platelets do not contain dystrophin, the identification of smaller C-terminal isoforms of dystrophin, including Dp71, which are expressed in a wide range of nonmuscle tissues and cell lines, has not been investigated. In this report, we have identified Dp71 protein variants of 55-60 kDa (designated Dp71Delta(110)) in the membrane cytoskeleton of human platelets. Both Dp71Delta(110) and utrophin sediment from lysed platelets along with the high speed detergent-insoluble pellet, which contains components of the membrane cytoskeleton. Like the membrane cytoskeletal proteins vinculin and spectrin, Dp71Delta(110) and utrophin redistributed from the high speed detergent-insoluble pellet to the integrin-rich low speed pellet of thrombin-stimulated platelets. Immunoelectron microscopy provided further evidence that Dp71Delta(110) was localized to the submembranous cytoskeleton. In addition to Dp71Delta(110), platelets contained several components of the dystrophin-associated protein complex, including beta-dystroglycan and syntrophin. To better understand the potential function of Dp71Delta(110), collagen adhesion assays were performed on platelets isolated from wild-type or Dp71-deficient (mdx(3cv)) mice. Adhesion to collagen in response to thrombin was significantly decreased in platelets isolated from mdx(3cv) mice, compared with wild-type platelets. Collectively, our results provide evidence that Dp71Delta(110) is a component of the platelet membrane cytoskeleton, is involved in cytoskeletal reorganization and/or signaling, and plays a role in thrombin-mediated platelet adhesion.  相似文献   

16.
Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) catalyzes the rate-limiting step in the production of phosphatidylinositol 4,5-bisphosphate (PIP(2)), a signaling phospholipid that contributes to actin dynamics. We have shown in transfected tissue culture cells that PIP5K translocates from the cytosol to the plasma membrane following agonist-induced stimulation of Rho family GTPases. Nonetheless, it is unclear whether Rho GTPases induce PIP5K relocalization in platelets. We used PIP5K isoform-specific immunoblotting and lipid kinase assays to examine the intracellular localization of PIP5K in resting and activated platelets. Using differential centrifugation to separate the membrane skeleton, actin filaments and associated proteins, and cytoplasmic fractions, we found that PIP5K isoforms were translocated from cytosol to actin-rich fractions following stimulation of the thrombin receptor. PIP5K translocation was detectable within 30 s of stimulation and was complete by 2-5 min. This agonist-induced relocalization and activation of PIP5K was inhibited by 8-(4-parachlorophenylthio)-cAMP, a cAMP analogue that inhibits Rho and Rac. In contrast, 8-(4-parachlorophenylthio)-cGMP, a cGMP analogue that inhibits Rac but not Rho, did not affect PIP5K translocation and activation. This suggests that Rho GTPase may be an essential regulator of PIP5K in platelets. Consistent with this hypothesis, we found that C3 exotoxin (a Rho-specific inhibitor) and HA1077 (an inhibitor of the Rho effector, Rho-kinase) also eliminated PIP5K activation and trafficking into the membrane cytoskeleton. Thus, these data indicate that Rho GTPase and its effector Rho-kinase have an intimate relationship with the trafficking and activation of platelet PIP5K. Moreover, these data suggest that relocalization of platelet PIP5K following agonist stimulation may play an important role in regulating the assembly of the platelet cytoskeleton.  相似文献   

17.
Sustained stimulation of platelets with protease-activated receptor agonists in presence of extracellular calcium was associated with tyrosine dephosphorylation of specific proteins of relative mobilities 35, 67, and 75 kDa. From phosphatase assays and inhibitor studies SHP1, a Src homology 2 (SH2) domain-containing tyrosine phosphatase expressed abundantly in hemopoietic cells, was found to be upregulated in platelets between 25 and 30 min following thrombin stimulation. Concomitantly, SHP1 was tyrosine phosphorylated by, and coprecipitated with, Src tyrosine kinase. SHP1 activation, association with Src and dephosphorylation of specific proteins were dependent on extracellular calcium and maintenance of a higher cytosolic calcium plateau. There was progressive impairment of platelet functions like aggregability and clot retraction, associated with downregulation of fibrinogen-binding affinity of integrin alpha(IIb)beta(3), in the platelets exposed to thrombin for 45 min. This could reflect the late physiological changes in platelets when the cells are consistently exposed to stimulatory signals under thrombogenic environment in vivo.  相似文献   

18.
The effects of the lipopolysaccharides (LPS) of Proteus mirabilis (smooth and rough types), differing significantly in their composition on the release of compounds stored in specific platelet granules, were studied. There are two main types of secretory granules in blood platelets. Dense granules contain adenine nucleotides, and in alpha-granules different proteins are stored. The LPS were found to cause a dose-dependent release of proteins and adenine nucleotides. In the extracellular medium LDH activity was not present. The results presented in this study indicate that LPS from P. mirabilis act directly on blood platelets and induce the platelet secretory process. In comparison with thrombin, a strong platelet agonist, the action of the endotoxins tested was weak.  相似文献   

19.
Binding experiments were performed to demonstrate a direct interaction between cytoskeletons from human blood platelets and phosphatidylserine. A centrifugation technique using radiolabeled phosphatidylserine-vesicles and Triton X-100 insoluble residues from unstimulated human platelets was used to assess the binding. Interaction between cytoskeleton and phospholipid is demonstrated to be specific for phosphatidylserine. No binding was observed for phosphatidylcholine. The binding of phosphatidylserine was saturable and dependent on the concentration of cytoskeleton used. The interaction between phosphatidylserine and the cytoskeleton appeared to be completely reversible. The existence of a reversible and specific interaction between phosphatidylserine and the cytoskeleton of unstimulated platelets would suggest a role for the cytoskeleton in the maintenance of the asymmetric distribution of this lipid in the plasma membrane. We have previously shown (Comfurius et al. (1985) Biochim. Biophys. Acta 815, 143-148) that in activated platelets a strong correlation exists between degradation of platelet cytoskeletal proteins by the endogenous calcium-dependent proteinase (calpain) and exposure of phosphatidylserine at their outer surface. Nevertheless, hydrolysis of the isolated cytoskeleton by calpain did not result in a change in the parameters of the binding between phosphatidylserine and cytoskeleton. Also, sulfhydryl oxidation of the cytoskeleton by diamide did not affect its binding properties for phosphatidylserine, in spite of the fact that diamide treatment of platelets results in exposure of phosphatidylserine at the outer surface. Exposition of phosphatidylserine upon activation of platelets cannot be directly ascribed to a change in affinity or number of binding sites of the modified cytoskeleton as measured in model systems. However, it cannot be excluded that topological rearrangements of the cytoskeleton as occur within the cell during platelet activation lead to a decreased contact between cytoskeleton and lipid, irrespective of the binding parameters.  相似文献   

20.
The focal adhesion protein vinculin contributes to cell attachment and spreading through strengthening of mechanical interactions between cell cytoskeletal proteins and surface membrane glycoproteins. To investigate whether vinculin proteolysis plays a role in the influence vinculin exerts on the cytoskeleton, we studied the fate of vinculin in activated and aggregating platelets by Western blot analysis of the platelet lysate and the cytoskeletal fractions of differentially activated platelets. Vinculin was proteolyzed into at least three fragments (the major one being approximately 95 kDa) within 5 min of platelet activation with thrombin or calcium ionophore. The 95 kDa vinculin fragment shifted cellular compartments from the membrane skeletal fraction to the cortical cytoskeletal fraction of lysed platelets in a platelet aggregation-dependent manner. Vinculin cleavage was inhibited by calpeptin and E64d, indicating that the enzyme responsible for vinculin proteolysis is calpain. These calpain inhibitors also inhibited the translocation of full-length vinculin to the cytoskeleton. We conclude that cleavage of vinculin and association of vinculin cleavage fragment(s) with the platelet cytoskeleton is an activation response that may be important in the cytoskeletal remodeling of aggregating platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号