首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During 24-h in vitro heart preservation and reperfusion, irreversible tissue damage occurs caused by reactive oxygen intermediates, such as superoxide radicals, singlet oxygen, hydrogen peroxide, hydroperoxyl, hydroxyl radicals, as well as the peroxynitrite radical. Reduction of the related oxidative damage of reperfused ischemic tissue by free radical scavengers and metal chelators is of primary importance in maintaining heart function. We assessed whether deferoxamine (DFR) added to a cardioplegia solution decreased free radical formation during 24-h cold (5 degrees C) heart preservation and normothermic reperfusion (37 degrees C) in the Langendorff isolated perfused rat heart. The deferoxamine treated hearts were significantly (p less than .001) better preserved than the control hearts after 24 h of preservation with regard to recovery of left ventricular diastolic pressure, contractility (+dP/dt), relaxation (-dP/dt), creatine kinase release, and lipid peroxidation. DFR preserved cell membrane integrity and maintained 93% of left ventricular contractility. The evidence suggests that DFR reduces lipid peroxidation damage by reducing free radical formation and thereby maintaining normal coronary perfusion flow and myocardial function.  相似文献   

2.
We have demonstrated that tumor necrosis factor-alpha (TNF-alpha) pretreatment protected the rat heart from ischemia-reperfusion injury. This effect was monitored by assaying for lactate dehydrogenase (LDH), an enzyme whose release correlates with loss of cell membrane integrity. Intact hearts removed from rats pretreated with TNF-released significantly lower amounts of LDH compared to control hearts after 20 min. of total global ischemia followed by reperfusion. Hearts from TNF-alpha-pretreated animals contained higher levels of manganous superoxide dismutase (MnSOD) mRNA than hearts from untreated rats. Because oxygen free radicals have been implicated as a major cause of reperfusion damage and the function of MnSOD is to detoxify superoxide anions in the mitochondria, a possible protective mechanism for TNF-alpha may be to induce expression of MnSOD in the heart and thus confer resistance to oxygen free radicals generated during reperfusion.  相似文献   

3.
In the mid-1960s, a small number of scientists postulated the role of oxidative stress and oxygen-derived free radicals in the pathophysiological mechanisms underlying ischemic heart disease. However, because of the technical difficulty of measuring free radicals and quantitating oxidative damage, it was very difficult to prove that free radicals could contribute to cell pathology. The role of oxidative stress in biological systems was not definitely recognized until the early 1980s when measurement of short-lived oxygen-derived reactive species was made possible by the advent of sophisticated techniques such as EPR spectroscopy or fluorescent probes. These enabled both the study of free radical biochemistry and the acquisition of useful information about the nature and consequences of free radical-induced protein and lipid oxidation. The hypothesis that reactive oxygen species mediate cellular damage produced upon reperfusion of ischemic myocardium has gained considerable support during the past 10-15 years. Several experimental studies indicated that the administration of antioxidant enzymes or non-enzymatic antioxidants offers a significant degree of protection against ischemic damage, improving functional recovery and reducing morphological alterations to cardiomyocytes. In this context, selenium, as an essential component of glutathione peroxidase, plays a critical role in protecting aerobic tissues from oxygen radical-initiated cell injury.  相似文献   

4.
Previous studies have shown that exogenous lactate impairs mechanical function of reperfused ischaemic hearts, while pyruvate improves post-ischaemic recovery. The aim of this study was to investigate whether the diverging influence of exogenous lactate and pyruvate on functional recovery can be explained by an effect of the exogenous substrates on endogenous protecting mechanisms against oxygen-derived free radicals. Isolated working rat hearts were perfused by a Krebs-Henseleit bicarbonate buffer containing glucose (5 mM) as basal substrate and either lactate (5 mM) or pyruvate (5 mM) as cosubstrate. In hearts perfused with glucose as sole substrate the activity of glutathione reductase was decreased by 32% during 30 min of ischaemia (p<0.10 versus control value), while the activity of superoxide dismutase and catalase was reduced by 27 and 35%, respectively, during 5 min of reperfusion (p<0.10 versus control value). The GSH level in the glucose group was reduced by 29% following 30 min of ischaemia and 35 min of reperfusion (p<0.10). In lactate- and pyruvateperfused hearts there were no significant decreases of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activity during 30 min of ischaemia, 5 min of reperfusion or 35 min of reperfusion. In pyruvate-perfused hearts the glutathione peroxidase activity was even increased by 43% during 30 min of ischaemia (p<0.05). Glutathione levels (reduced and oxidized) did not markedly change in the lactate and pyruvate groups. Thus, the endogenous defense mechanism against oxygen-derived free radicals is compromised at the onset of reperfusion when glucose as sole substrate is present, while addition of lactate or pyruvate prevents reduction of the endogenous capacity to scavenge oxygen-derived free radicals. The equivocal relationship between endogenous scavenging enzyme activity and haemodynamic recovery indicates that involvement of the endogenous antioxidants, if any, in functional recovery of the post-ischaemic heart is complex. Pyruvate may exert protective effects on mechanical function after mild ischaemia by functioning as exogenous scavenger in itself, as pyruvate is able to react with hydrogen peroxide.  相似文献   

5.
Evidence of direct toxic effects of free radicals on the myocardium   总被引:2,自引:1,他引:1  
The hypothesis that oxygen-derived free radicals do indeed play a role in myocardial ischemic and reperfusion injury has received a lot of support. Experimental results have shown that free radical scavengers can protect against certain aspects of myocardial ischemic injury and that on reperfusion the heart approaches a level that is more normal than those hearts not receiving additional scavenging agents. Superoxide dismutase, catalase, glutathione peroxidase, hydroxyl radical scavengers and iron chelators such as desferrioxamine have proven successful in providing an increased level of recovery. These results indicate, as would be expected, that superoxide, hydrogen peroxide and hydroxyl radicals may all, at some point, either contribute to the injury or be important in generating a subsequent radical which causes damage. In addition, solutions capable of generating free radicals have been shown to cause damage to myocardial cells and the vascular endothelium that is similar to the damage observed during myocardial ischemic and reperfusion injury. Alterations in function, structure, flow, and membrane biochemistry have been documented and compared to ischemic injury. The continued investigation of the role of free radicals in ischemic injury is warranted in the hope of further elucidating the mechanisms involved in free radical injury, the sources of their generation, and in defining a treatment that will provide significant protection against this particular aspect of ischemic damage.  相似文献   

6.
There has been considerable controversy regarding the role of oxygen free radicals as important mediators of cell damage in reperfused myocardium. This controversy regards whether superoxide and hydroxyl free radicals are generated on reperfusion and if these radicals actually cause impaired contractile function. In this study, EPR studies using the spin trap 5,5-dimethyl-1-pyroline-n-oxide (DMPO) demonstrate the formation of .OH and R. free radicals in the reperfused heart. EPR signals of DMPO-OH, aN = aH = 14.9 G, and DMPO-R aN = 15.8 G aH = 22.8 G are observed, with peak concentrations during the first minute of reperfusion. It is demonstrated that these radicals are derived from .O2- since reperfusion in the presence of enzymatically active recombinant human superoxide dismutase markedly reduced the formation of these signals while inactive recombinant human superoxide dismutase had no effect. On reperfusion with perfusate pretreated to remove adventitial iron, the concentration of the DMPO-OH signal was increased 2-fold and a 4-fold decrease in the DMPO-R signal was observed demonstrating that iron-mediated Fenton chemistry occurs. Hearts reperfused with recombinant human superoxide dismutase exhibited improved contractile function in parallel with the marked reduction in measured free radicals. In order to determine if the reperfusion free radical burst results in impaired contractile function, simultaneous measurements of free radical generation and contractile function were performed. A direct relationship between free radical generation and subsequent impaired contractile function was observed. These studies suggest that superoxide derived .OH and R. free radicals are generated in the reperfused heart via Fenton chemistry. These radicals appear to be key mediators of myocardial reperfusion injury.  相似文献   

7.
L-Propionyl-carnitine is known to improve the recovery of myocardial function and metabolic parameters reduced in the course of ischemia-reperfusion of the heart. The mechanism of this protective effect of L-propionyl-carnitine is not fully understood. The purpose of this study was to elucidate the effects of L-propionyl-carnitine in Langendorff perfused rat hearts subjected to 40 min of ischemia followed by 20 min of reperfusion. We tested the hypothesis that L-propionyl-carnitine suppresses generation of oxygen radicals and subsequent oxidative modification of myocardial proteins during reperfusion. Our data show that the protective effect of L-propionyl-carnitine in the course of ischemia-reperfusion is highly significant in terms both of mechanical properties of the heart (developed pressure) and of high-energy phosphates (ATP, creatine phosphate). Myocardial creatine phosphokinase (CPK) activity decreased in the course of the reperfusion period. The loss of CPK activity was partially prevented by L-propionyl-carnitine. Two other effects were observed when L-propionyl-carnitine was present in the perfusion solution: (i) the reperfusion-induced sharp increase in oxidative protein modification was completely prevented as detected by the formation of protein carbonyls, and (ii) generation of hydroxyl radicals was significantly inhibited as detected by the formation of the adducts with the spin trap 5,5-dimethyl-1-pyrroline-1-oxide. We conclude that the protective effect of L-propionyl-carnitine against ischemia-reperfusion injury of the heart is at least due in part to its ability to suppress the development of oxidative stress and free radical damage.  相似文献   

8.
Oxygen-derived free radicals and hemolysis during open heart surgery   总被引:2,自引:0,他引:2  
Reperfusion injury occurs during open-heart surgery after prolonged cardioplegic arrest. Cardiopulmonary bypass also is known to cause hemolysis. Since reperfusion of ischemic myocardium is associated with the generation of oxygen free radicals, and since free radicals can attack a protein molecule, it seems reasonable to assume that hemolysis might be the consequence of free radical attack on hemoglobin protein. The results of this study demonstrated that reperfusion following ischemic arrest caused an increase in free hemoglobin and free heme concentrations, simultaneously releasing free iron and generating hydroxyl radicals. In vitro studies using pure hemoglobin indicated that superoxide anion generated by the action of xanthine oxidase on xanthine could release iron from the heme ring and cause deoxygenation of oxyhemoglobin into ferrihemoglobin. This study further demonstrated that before the release of iron from the heme nucleus, oxyhemoglobin underwent deoxygenation to ferrihemoglobin. The released iron can catalyze the Fenton reaction, leading to the formation of cytotoxic hydroxyl radical (OH·). In fact, the formation of OH. in conjunction with hemolysis occurs during cardiac surgery, and when viewed in the light of the in vitro results, it seems likely that oxygen-derived free radicals may cause hemolysis during cardiopulmonary bypass and simultaneously release iron from the heme ring, which can catalyze the formation of OH·.  相似文献   

9.
Glutathione (GSH) is an important intracellular defense against reactive oxygen metabolites. Reaction of GSH with peroxides generates oxidized glutathione (GSSG). We hypothesized that reperfusion would cause oxidation of GSH and release of GSSG as a potential marker of intracellular oxidative reactions. Ten dogs underwent 90 min left anterior descending (LAD) occlusion and 30 min reperfusion. Coronary sinus (CS) plasma was sampled from the great cardiac vein, which drains the LAD region, and from the aorta at pre-ischemia (I), 90 min ischemia, and during reperfusion (R). We found that both GSSG and GSH increased in coronary sinus plasma during early reperfusion. (Formula: see text) Measured GSSG did not arise from autoxidation of plasma GSH. GSH and GSSG release from myocardium not only may be evidence of intracellular oxidative injury, but loss of GSH also could impair metabolism of peroxides during early reperfusion and predispose to further injury.  相似文献   

10.
Effect of low flow ischemia-reperfusion injury on liver function   总被引:2,自引:0,他引:2  
Bailey SM  Reinke LA 《Life sciences》2000,66(11):1033-1044
The release of liver enzymes is typically used to assess tissue damage following ischemia-reperfusion. The present study was designed to determine the impact of ischemia-reperfusion on liver function and compare these findings with enzyme release. Isolated, perfused rat livers were subjected to low flow ischemia followed by reperfusion. Alterations in liver function were determined by comparing rates of oxygen consumption, gluconeogenesis, ureagenesis, and ketogenesis before and after ischemia. Lactate dehydrogenase (LDH) and purine nucleoside phosphorylase (PNP) activities in effluent perfusate were used as markers of parenchymal and endothelial cell injury, respectively. Trypan blue staining was used to localize necrosis. Total glutathione (GSH + GSSG) and oxidized glutathione (GSSG) were measured in the perfusate as indicators of intracellular oxidative stress. LDH activity was increased 2-fold during reperfusion compared to livers kept normoxic for the same time period whereas PNP activity was elevated 5-fold under comparable conditions. Rates of oxygen consumption, gluconeogenesis, and ureagenesis were unchanged after ischemia, but ketogenesis was decreased 40% following 90 min ischemia. During reperfusion, the efflux rates of total glutathione and GSSG were unchanged from pre-ischemic values. Significant midzonal staining of hepatocyte nuclei was observed following ischemia-reperfusion, whereas normoxic livers had only scattered staining of individual cells. Reperfusion of ischemic liver caused release of hepatic enzymes and midzonal cell death, however, several major liver functions were unaffected under these experimental conditions. These data indicate that there were negligible changes in liver function in this model of ischemia and reperfusion despite substantial enzyme release from the liver and midzonal cell death.  相似文献   

11.
The aim of this work was to precisely determine the sites of the peroxidative action on unsatured lipids by oxygen-derived free radicals and the lytic cell damage on reoxygenated perfused hearts. The cellular load of lipid peroxidation products (malondialdehyde) during the reoxygenation was dependent on PO2. This unfavorable biochemical response was linked to creatine kinase leakage, alteration of coronary flow and mitochondrial injury. When an enzymatic (superoxide dismutase, 290 IU/minute) or tripeptide scavenger of oxygen radicals (reduced glutathione, 0.5 mmol/l) was administered at the end of hypoxia and during reoxygenation, the abnormal intolerance of hypoxic heart to molecular oxygen was significantly weakened; the load of lipid peroxides load, enzyme release, and vascular alteration were all reduced. Moreover, mitochondrial activity was enhanced and the oxygen-induced uncoupling of mitochondrial remained limited: both the respiratory control ratio (RCR) and the ADP/O ratio were higher than in control reoxygenated hearts. The inhibition by rotenone (100 mumol/l) of reoxidation of electron chain transfer during oxygen readmission also reduced the unfavorable cardiac accumulation of lipid peroxidation products and the release of creatine kinase. These data demonstrate that in the oxygen paradox, the peroxidative attack on lipids plays an important role in inducing alterations of sarcolemmal permeability and mitochondrial activity. An uncontrolled reactivation of oxidative function of mitochondria during reoxygenation enhances the synthesis of oxygen-derived free radicals and triggers the peroxidation of cardiac lipids resulting in irreversible injury to cellular and intracellular membranes.  相似文献   

12.
Effect of cold storage on tissue and cellular glutathione   总被引:2,自引:0,他引:2  
One of the mechanisms thought to cause injury in preserved organs is the formation of oxygen free radicals. The cell is protected from oxidative stress by many defense mechanisms. A major defense mechanism involves glutathione and glutathione-dependent enzymes. During organ preservation by simple cold storage the loss of glutathione may sensitize the organ to free radical damage after transplantation. In this study we show that glutathione is depleted from the rabbit liver, kidney, and heart cold-stored (5 degrees C) for up to 72 h in the UW solution without glutathione. In the first 24 h kidney glutathione decreased to 84 +/- 3% of control values, liver glutathione decreased to 49 +/- 3% of control values, and heart glutathione decreased to 73 +/- 3% of control values. After 48 h of storage the kidney and liver lost an additional 30 and 20%, respectively, whereas heart glutathione changed very little. By 72 h all three organs had lost more than 50% of the glutathione found in freshly obtained tissue. To determine if glutathione added to the UW solution can effectively prevent this loss of glutathione during preservation, hepatocytes were cold-stored for up to 72 h in a preservation solution with and without glutathione. We found that adding glutathione to the preservation solution slowed the rate of loss of glutathione from the cells. These data suggest that at hypothermia the cell may be permeable to GSH. Methods to suppress the loss of glutathione during preservation of organs may be an important factor in suppressing oxygen free radical injury.  相似文献   

13.
Edward J. Lesnefsky  Charles L. Hoppel 《BBA》2008,1777(7-8):1020-1027
The aged heart sustains greater injury during ischemia (ISC) and reperfusion (REP) compared to the adult heart. In the Fischer 344 (F344) rat, aging decreases oxidative phosphorylation and complex III activity increasing the production of reactive oxygen species in interfibrillar mitochondria (IFM) located among the myofibrils. In the isolated, perfused 24 month old elderly F344 rat heart 25 min of stop–flow ISC causes additional damage to complex III, further decreasing the rate of oxidative phosphorylation. We did not observe further progressive mitochondrial damage during REP. We next asked if ISC or REP increased oxidative damage within mitochondria of the aged heart. Cardiolipin (CL) is a phospholipid unique to mitochondria consisting predominantly of four linoleic acid residues (C18:2). Following ISC and REP in the aged heart, there is a new CL species containing three oxygen atoms added to one linoleic residue. ISC alone was sufficient to generate this new oxidized molecular species of CL. Based upon oxidative damage to CL, complex III activity, and oxidative phosphorylation, mitochondrial damage thus occurs in the aged heart mainly during ISC, rather than during REP. Mitochondrial damage during ischemia sets the stage for mitochondrial-driven cardiomyocyte injury during reperfusion in the aged heart.  相似文献   

14.
Exercise,free radicals and oxidative stress   总被引:7,自引:0,他引:7  
This article reviews the role of free radicals in causing oxidative stress during exercise. High intensity exercise induces oxidative stress and although there is no evidence that this affects sporting performance in the short term, it may have longer term health consequences. The mechanisms of exercise-induced oxidative stress are not well understood. Mitochondria are sometimes considered to be the main source of free radicals, but in vitro studies suggest they may play a more minor role than was first thought. There is a growing acceptance of the importance of haem proteins in inducing oxidative stress. The release of metmyoglobin from damaged muscle is known to cause renal failure in exercise rhabdomyolysis. Furthermore, levels of methaemoglobin increase during high intensity exercise, while levels of antioxidants, such as reduced glutathione, decrease. We suggest that the free-radical-mediated damage caused by the interaction of metmyoglobin and methaemoglobin with peroxides may be an important source of oxidative stress during exercise.  相似文献   

15.
Summary Reperfusion of isolated rabbit heart after 60 min of ischaemia resulted in poor recovery of mechanical function, release of reduced (GSH) and oxidized glutathione (GSSG), reduction of tissue GSH/GSSG ratio and shift of cellular thiol redox state toward oxidation, suggesting the occurrence of oxidative stress. Pretreatment of the isolated heart with propionyl-L-carnitine (10–7M) improved the functional recovery of the myocardium, reduced GSH and GSSG release and attenuated the accumulation of tissue GSSG. This effect was specific for propionyl-L-carnitine as L-carnitine and propionyl acid did not modify myocardial damage.  相似文献   

16.
Lacidipine is a new developed dihydropyridine calcium-antagonist, showing a slow onset and long lasting-selective activity.To assess whether the administration of lacidipine protects the myocardium in a dose-dependent manner against ischaemia and reperfusion, isolated rabbit heart were infused with three different concentrations of lacidipine: 10–10; 10–9; 10–8 M. Diastolic and developed pressures were monitored; coronary effluent was collected and assayed for CPK activity and for noradrenaline concentration; mitochondria were harvested and assayed for respiratory activity, ATP production and calcium content and tissue concentration of ATP, creatine phosphate (CP) and calcium were determined. Occurrence of oxidative stress during ischaemia and reperfusion was also monitored in terms of tissue content and release of reduced (GSH) and oxidized (GSSG) glutatione. Treatment with lacidipine at 10–10 and 10–9 M had no effects on the hearts when perfused under aerobic condition, whilst the higher dose reduced developed pressure of 36%. The ischaemic-induced deterioration of mitochondrial function was attenuated. On reperfusion treated hearts recovered better than the untreated hearts with respect to left ventricular performance, replenishment of ATP and CP stores and mitochondrial function. The reperfusion-induced tissue and mitochondrial calcium overload, release of CPK and of noradrenaline and oxidative stress were also significantly reduced. The effects of lacidipine were dose-dependent. The lower concentration (10–10 M) failed to modify ischaemic and reperfusion damage. The dose of 10–9 M was cardioprotective, but the best effect was found at 10–8 M.It is concluded that lacidipine infusion provides a dose dependent protection of the heart against ischaemia and reperfusion. Because this protection occurred also at 10–9 M, in the absence of negative inotropic effect during normoxia and of a coronary dilatory effect during ischaemia, it cannot be attributed to an energy sparing effect or to improvement of oxygen delivery. From our data we can envisage two other major mechanism:-1) membrane protection-2) reduction of oxygen toxicity. The ATP sparing effect occurring at 10–8 M is likely to be responsable for the further protection.  相似文献   

17.
Studies using animal models of stroke have demonstrated that free radicals are highly reactive molecules generated predominantly during cellular respiration and normal metabolism. Imbalance between cellular production of free radicals and the ability of cells to defend against them is referred to as oxidative stress. After ischemic brain damage introduced by ischemic stroke or reperfusion, production of reactive oxygen species may increase, sometimes drastically, leading to tissue damage via several different cellular molecular pathways. The damage can become more widespread due to weakened cellular antioxidant defense systems after ischemic stroke. These experimental findings have important implications for the treatment of human cerebral ischemia. Agents directed at eliminating oxygen radicals must be administered before, or in the early stages of, reperfusion after ischemia. The therapeutic window seems to be narrow and limited to, at most, a few hours. Future research may clarify the current hypothesis that the accuracy of gene expression could account for the recovery of cellular function after ischemic stroke. This may open the window to the future use of drug combinations that may be rationally administered sequentially. If the phenomenon of ischemic tolerance plays a role in this concept is still a matter of debate.  相似文献   

18.
Recent data suggest that oxygen free radicals are implicated in the pathogenesis of ischemic injury. This study evaluates the effects of allopurinol, a xanthine oxidase (XO) inhibitor, on malonaldehyde generation, free sulfhydryl levels, oxygen consumption, and water contents of rat gastrocnemius muscles of female Sprague-Dawley rats subjected to tourniquet shock and after hind-limb reperfusion. Serum lactic dehydrogenase isozyme patterns after ligature release were also examined. Our results show that the four muscle parameters were not altered during 5 hr of ischemia, but that on hind-limb reperfusion, malonaldehyde production, SH levels, O2 consumption, and water contents were significantly altered in the control animals, but not in those pretreated with allopurinol. LDH serum patterns of the untreated animals showed the presence of all five isoforms; these were much less evident in the drug-protected rats. Our data suggest that following ischemia, the affected muscles are unable to recover their normal function when reperfusion is resumed. The subsequent damage is probably due to the generation of cytotoxic superoxide radicals formed during the XO-catalyzed transformation of hypoxanthine to uric acid on tissue reoxygenation. The severity of tissue damage is related to the duration of the ischemic episode possibly due to hypoxanthine accumulation during ischemia.  相似文献   

19.
Hepatic ischemia/reperfusion injury has immediate and deleterious effects on the outcome of patients after liver surgery. The precise mechanisms leading to the damage have not been completely elucidated. However, there is substantial evidence that the generation of oxygen free radicals and disturbances of the hepatic microcirculation are involved in this clinical syndrome. Microcirculatory dysfunction of the liver seems to be mediated by sinusoidal endothelial cell damage and by the imbalance of vasoconstrictor and vasodilator molecules, such as endothelin (ET), reactive oxygen species (ROS), and nitric oxide (NO). This may lead to no-reflow phenomenon with release of proinflammatory cytokines, sinusoidal plugging of neutrophils, oxidative stress, and as an ultimate consequence, hypoxic cell injury and parenchymal failure. An inducible potent endogenous mechanism against ischemia/reperfusion injury has been termed ischemic preconditioning. It has been suggested that preconditioning could inhibit the effects of different mediators involved in the microcirculatory dysfunction, including endothelin, tumor necrosis factor-alpha, and oxygen free radicals. In this review, we address the mechanisms of liver microcirculatory dysfunction and how ischemic preconditioning could help to provide new surgical and/or pharmacological strategies to protect the liver against reperfusion damage.  相似文献   

20.
The role of oxygen free radicals in ischemia and reperfusion injury of skeletal muscle has not been well defined, partly because of the relative resistance of this tissue to normothermic ischemia. Under normal conditions small quantities of oxygen free radicals are produced but they are quenched by intracellular free radical scavenging enzymes (superoxide dismutase, catalase and glutathione peroxidase) or alpha-tocopherol. The increase in malondialdehyde suggests increased lipid peroxidation initiated by free radical reactions. Lipid peroxidation is potentially a very damaging process to the organized structure and function of membranes. The results of recent studies indicate that: a) oxygen free-radicals mediates, at least in part, the increased microvascular permeability produced by reoxygenation, b) free radical scavengers can reduce skeletal muscle necrosis occurring after prolonged ischemia. Additional evidence support the hypothesis of the interrelationship between ischemic tissue and inflammatory cells. So capillary plugging by granulocytes and oxygen free radical formation may contribute to the ischemic injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号