首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Background and aims

The Bragança Peninsula, in northern Brazil is characterized by macrotides (4 m) and specific edaphic conditions, which determine the local mangrove forest’s development. This study, conducted during the dry season evaluated the spatial patterns of Rhizophora mangle and Avicennia germinans species across an inundation gradient.

Methods

Along a transect of 700 m, measurements of structure forest, soil moisture, porewater salinity, extractable phosphorus (extr.-P) in sediments, and phosphorus in the leaves (leaf-P) were conducted.

Result

The A. germinans (100 %) occurred in high intertidal (HI) zone. A. germinans (59 %) and R. mangle (41 %) co-occurred in mid intertidal (MI) zone, while R. mangle (58 %) predominated in low intertidal (LI) zone, followed by A. germinans (37 %) and Laguncularia racemosa (5 %). Covariance analysis (ANCOVA) indicated that salinity and soil moisture means are significantly different between the mangrove forests, but do not correlate with inundation frequency (IF). The means of extr.-P were significantly different in mangrove forests and correlated with IF and leaf-P.

Conclusion

The inundation frequency, the availability of P in the sediments, phosphorus in the leaves and interstitial salinity are all important factors contributing to the distribution of the mangrove tree species A. germinans and R. mangle on the Bragança Peninsula.  相似文献   

2.
The global effort to rehabilitate and restore destroyed mangrove forests is unable to keep up with the high mangrove deforestation rates, which exceed the average pace of global deforestation. Although facilitation theory presents new possibilities for the restoration of heavily degraded mangrove sites, knowledge of tree–tree interactions in stressed mangrove forest ecosystems is too limited to utilize facilitation appropriately. The aim was to determine the mode of local interaction among stressed mangrove trees by investigating the effect of clustering on tree size and crown morphology under contrasting stand densities. The study was conducted in a dwarf Avicennia germinans forest in Northern Brazil, in which tree growth is limited by infrequent inundation and high pore-water salinity. Autoregressive regression, Voronoi tessellation and spatial point pattern statistics were used to address the spatial processes underlying tree interaction. Under low stand density (1.2 trees m?2) dwarf trees which grew in clustered cohorts of A. germinans had a less stunted crown morphology revealing the dominance of a positive neighborhood influence among plants. In contrast, dwarf trees in the denser forest stand (2.7 trees m?2) were interacting competitively as indicated by the more negative effect of neighbors on crown morphology and size. The shift from facilitative to competitive interactions is an important feature of mangrove forest regeneration under harsh environmental conditions. If mangrove trees are unable to regenerate naturally on severely degraded sites, intraspecific facilitation could be used to assist regeneration by planting seedlings in clusters and not evenly spaced.  相似文献   

3.

Key message

Mangroves in rapidly expanding Southeast Asian river deltas form floristically simple zones dominated by a few highly regenerative species adaptable or tolerant to rapid sedimentation and extensive river flooding.

Abstract

The size class distribution, community composition and spatial structure of five representative mangrove forests in the rapidly expanding Cimanuk river delta on Java were determined. These deltaic forests are species-poor (eight true mangrove species) and spatially segregated into three distinct floristic zones: (1) a fringing, low intertidal zone co-dominated by Avicennia marina and A. officinalis, with less abundant Bruguiera parviflora, Rhizophora apiculata, and R. mucronata; (2) a zone transitional between the low and mid intertidal in which Avicennia and Rhizophora spp. co-dominate; and (3) a mid intertidal zone dominated by R. mucronata and R. apiculata. Numerically dominated by seedlings (52,500–73,500 seedlings ha?1) and saplings (5,268–5,660 saplings ha?1), all five forests are relatively young and actively regenerating. Positive correlations of tree stem diameter and tree height with soil organic matter and P concentrations, salinity, the soil C/N ratio, pH, and silt/clay composition highlight the importance of soil factors in sustaining forest growth. The low diversity and relative structural simplicity of these rapidly growing and regenerating forests may be attributed to adaptation or tolerance to flooding and the rapid sedimentation and seaward expansion of the delta.  相似文献   

4.

Background

Micro-tidal wetlands are subject to strong seasonal variations of soil salinity that are likely to increase in amplitude according to climate model predictions for the Caribbean. Whereas the effects of constant salinity levels on the physiology of mangrove species have been widely tested, little is known about acclimation to fluctuations in salinity.

Aims and methods

The aim of this experiment was to characterize the consequences of the rate of increase in salinity (slow versus fast) and salinity fluctuations over time versus constant salt level. Seedling mortality, growth, and leaf gas exchange of three mangrove species, Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle were investigated in semicontrolled conditions at different salt levels (0, 685, 1025, and 1370 mM NaCl).

Results

Slow salinity increase up to 685 mM induced acclimation, improving the salt tolerance of A. germinans and L. racemosa, but had no effect on R. mangle. During fluctuations between 0 and 685 mM, A. germinans and R. mangle were not affected by a salinity drop to zero, whereas L. racemosa took advantage of the brief freshwater episode as shown by the durable improvement of photosynthesis and biomass production.

Conclusions

This study provides new insights into physiological resistance and acclimation to salt stress. We show that seasonal variations of salinity may affect mangrove seedlings’ morphology and physiology as much as annual mean salinity. Moreover, more severe dry seasons due to climate change may impact tree stature and species composition in mangroves through higher mortality rates and physiological disturbance at the seedling stage.  相似文献   

5.

Key message

Significant relationship between tree height and ALS-derived topography was shown. Taller trees were found on slopes <10° and southerly aspects. Potential value of ALS in forest management applications was defined.

Abstract

Accurate information on tree height distribution can provide a better understanding of forest productivity and biomass estimation. Airborne light detection and ranging remote sensing, also known as airborne laser scanning (ALS), has proven to be an effective tool for deriving tree height information in forests. While tree height has been reported to vary in response to many environmental factors, few researchers have demonstrated the effect of topography on tree height variation using ALS data. This study investigated the relationship between tree height variation and ALS-derived topographic aspect and slope factors within two even-aged radiata pine (Pinus radiata D. Don) plantation sites in Nundle, New South Wales, Australia. A total of 447 trees was sampled from 77 plots in two plantation age classes: 193 trees from a 34-year-old site and 254 trees from a 9-year-old site. ALS height estimates were highly correlated with field heights (R 2 = 0.90 and RMSE = 0.66 for 2002 and R 2 = 0.87 and RMSE = 1.49 for 1977 sites). ALS-derived slope and aspect metrics were shown to have a significant relationship with height variation across the stands. The slope (P < 0.01) and aspect (P < 0.001) were significant in the mixed linear models. Overall taller trees were found on slopes below 10° and on southerly aspects, while shorter trees dominated steeper slopes (>20°) and on northerly aspects. However, aspect gradient appeared to have more significant effect on tree heights than slope classes. These results were further verified using an additional 2,000 randomly located trees sampled across the plantations. The study demonstrates a significant relationship between tree height variation and ALS-derived ground aspect and slope categories which may have potential benefits for improving current wood resource inventories and future productivity models.  相似文献   

6.

Key message

We cloned a novel salt stress-induced glycine-rich protein gene ( MsGRP ) from alfalfa. Its overexpression retards seed germination and seedling growth of transgenic Arabidopsis after salt and ABA treatments.

Abstract

Since soil salinity is one of the most significant abiotic stresses, salt tolerance is required to overcome salinity-induced reductions in crop productivity. Many glycine-rich proteins (GRPs) have been implicated in plant responses to environmental stresses, but the function and importance of some GRPs in stress responses remain largely unknown. Here, we report on a novel salt stress-induced GRP gene (MsGRP) that we isolated from alfalfa. Compared with some glycine-rich RNA-binding proteins, MsGRP contains no RNA recognition motifs and localizes in the cell membrane or cell wall according to the subcellular localization result. MsGRP mRNA is induced by salt, abscisic acid (ABA), and drought stresses in alfalfa seedlings, and its overexpression driven by a constitutive cauliflower mosaic virus-35S promoter in Arabidopsis plants confers salinity and ABA sensitivity compared with WT plants. MsGRP retards seed germination and seedling growth of transgenic Arabidopsis plants after salt and ABA treatments, which implies that MsGRP may affect germination and growth through an ABA-dependent regulation pathway. These results provide indirect evidence that MsGRP plays important roles in seed germination and seedling growth of alfalfa under some abiotic stress conditions.  相似文献   

7.
8.

Key message

The relative shade tolerance of T. cordata , F. sylvatica , and C. betulus in mature stands is based on different species-specific carbon and nitrogen allocation patterns.

Abstract

The leaf morphology and photosynthetic capacity of trees are remarkably plastic in response to intra-canopy light gradients. While most studies examined seedlings, it is not well understood how plasticity differs in mature trees among species with contrasting shade tolerance. We studied light-saturated net photosynthesis (A max), maximum carboxylation rate (V cmax), electron transport capacity (J max) and leaf dark respiration (R d) along natural light gradients in the canopies of 26 adult trees of five broad-leaved tree species in a mixed temperate old-growth forest (Fraxinus excelsior, Acer pseudoplatanus, Carpinus betulus, Tilia cordata and Fagus sylvatica), representing a sequence from moderately light-demanding to highly shade-tolerant species. We searched for species differences in the dependence of photosynthetic capacity on relative irradiance (RI), specific leaf area (SLA) and nitrogen per leaf area (N a ). The three shade-tolerant species (C. betulus, T. cordata, F. sylvatica) differed from the two more light-demanding species by the formation of shade leaves with particularly high SLA but relatively low N a and consequently lower area-based A max, and a generally higher leaf morphological and functional plasticity across the canopy. Sun leaf morphology and physiology were more similar among the two groups. The three shade-tolerant species differed in their shade acclimation strategies which are primarily determined by the species’ plasticity in SLA. Under low light, T. cordata and F. sylvatica increased SLA, mass-based foliar N and leaf size, while C. betulus increased solely SLA exhibiting only low intra-crown plasticity in leaf morphology and N allocation patterns. This study with mature trees adds to our understanding of tree species differences in shade acclimation strategies under the natural conditions of a mixed old-growth forest.  相似文献   

9.

Key message

Transgenic Arabidopsis and lettuce plants overexpressing AtHSP17.8 showed ABA-hypersensitive but abiotic stress-resistant phenotypes. ABA treatment caused a dramatic induction of early ABA-responsive genes in AtHSP17.8 -overexpressing transgenic lettuce.

Abstract

Plant small heat shock proteins function as chaperones in protein folding. In addition, they are involved in responses to various abiotic stresses, such as dehydration, heat and high salinity in Arabidopsis. However, it remains elusive how they play a role in the abiotic stress responses at the molecular level. In this study, we provide evidence that Arabidopsis HSP17.8 (AtHSP17.8) positively regulates the abiotic stress responses by modulating abscisic acid (ABA) signaling in Arabidopsis, and also in lettuce, a heterologous plant when ectopically expressed. Overexpression of AtHSP17.8 in both Arabidopsis and lettuce leads to hypersensitivity to ABA and enhanced resistance to dehydration and high salinity stresses. Moreover, early ABA-responsive genes, ABI1, ABI5, NCED3, SNF4 and AREB2, were rapidly induced in AtHSP17.8-overexpressing transgenic Arabidopsis and lettuce. Based on these data, we propose that AtHSP17.8 plays a crucial role in abiotic stress responses by positively modulating ABA-mediated signaling in both Arabidopsis and lettuce. Moreover, our results suggest that stress-tolerant lettuce can be engineered using the genetic and molecular resources of Arabidopsis.  相似文献   

10.

Key message

We could show long-term effects of logging operation in a Malaysian forest. A forest selectively logged about 50 years ago had a longer sunfleck time and a less heterogeneous light spatially than primary forests.

Abstract

We compared forest light environments between a primary lowland tropical rainforest and a rainforest selectively logged 50 years ago in the Pasoh Forest Reserve, Peninsular Malaysia using two different approaches to assess forest light environments, hemispherical canopy photographs and continuous measurements of forest photosynthetic photon flux density (PPFD) and showed clear evidence of the long-term impact of selective logging on forest light environments. The selectively logged forest canopy consisted of shorter and smaller crowns with less variations of height and crown area than the primary forest. From the canopy structural characteristics of the selectively logged forest, we predicted that the selectively logged forest has brighter and more homogeneous forest light than the primary forest. Both hemispherical canopy photographs and measurements of PPFD showed that the selectively logged forest had more open canopies and longer sunfleck time than the primary forest. A significantly smaller variance of canopy openness and a shorter autocorrelation range in the selectively logged forest than in the primary forest were found, indicating that the selectively logged forest had a less heterogeneous light environment spatially than the primary forest. Therefore our predictions were confirmed. The results suggest that different light environments for the primary forest and forest after logging might promote different forest dynamics between them.  相似文献   

11.

Key message

An experimental drought treatment, exacerbated by a natural drought event, compromised growth in Norway spruce, but more cavitation-resistant xylem was produced and no long-term growth reductions were observed.

Abstract

An experimental drought treatment in a mature Norway spruce forest that coincided with a rare drought event in southern Sweden in 1992, allowed us to study how such forests may respond to similar extreme events in the future. Immediately after the onset of the drought treatment, height and diameter growth decreased compared to control treatments. New xylem cells had smaller lumen und thicker walls, resulting in a more safety-orientated water transport system. The maximum growth and hydraulic system response of the 1990–1996 drought treatment coincided with the 1992 summer drought event. After the drought treatment ended, all measured traits recovered to control and irrigation treatment values after 3 years. While height and diameter growth recovered with delay, wood structure and hydraulic properties showed fast recovery. We conclude that a highly plastic response of the hydraulic system indicates a notable degree of resilience to droughts that are expected to become more common under climate change. Our results do not imply, however, that survival and productivity of Norway spruce plantations would not be compromised under drier conditions in the future, and they apply to site conditions equivalent to the studied system.  相似文献   

12.

Key message

Across sites in Brazil and Hawaii, LMA and N mass were strongly correlated with height and shade index, respectively, which may help simplify canopy function modeling of Eucalyptus plantations.

Abstract

Within tree canopies, leaf mass per area (LMA) and leaf nitrogen per unit area (N area) commonly increase with height. Previous research has suggested that these patterns occur as a strategy to optimize carbon gain by allocating available resources to upper canopy leaves that are exposed to greater light availability. We tested three hypotheses about the influences of height, shade index (a proxy for light), and stand age on LMA and leaf nitrogen for even-aged Eucalyptus saligna and Eucalyptus grandis × urophylla plantations in Brazil and Hawaii, USA, spanning most of the environmental conditions found across 19.6 million ha of Eucalyptus spp. plantations around the world. Shade index was developed by incorporating canopy depth (inner-crown shading) and a tree height ratio relative to neighbor trees (shading from other trees). Across all sites and ages, leaf height accounted for 45 % of the variation in LMA, whereas shade index accounted for only 6 %. A combination of both factors was slightly better in accounting for LMA variation than height alone. LMA–height relationships among sites were strongest under greater light availability and in older stands. Leaf nitrogen per unit mass (N mass) consistently decreased with shade index, whereas N area showed no consistent pattern with height or shade index. These relationships indicate that N mass is primarily driven by light, while height is the primary driver for LMA. The general relationships between LMA and leaf N mass across all sites may simplify canopy function modeling of E. saligna and E. grandis × urophylla plantations.  相似文献   

13.

Key message

Outplanted Polylepis australis seedling growth, survival and mycorrhizal response were not influenced by inoculation with soil from different vegetation types. Seedling inoculation would not be essential for reforestation practices.

Abstract

Polylepis forests are one of the most endangered high mountain ecosystems of South America and reforestation with native Polylepis species has been recommended. To determine whether native soil inoculation could help in reforestation success, a field trial was set up to evaluate the response of outplanted P. australis seedlings to the inoculation with soils from three vegetation types (a grassland, a mature forest and a degraded forest) and a sterile soil, used as control. We evaluated seedlings performance: growth and survival for 18 months, root/shoot ratio, phosphorous content and arbuscular mycorrhizal fungal (AMF) colonization. To interpret performance patterns we evaluated the colonization potential of the three inoculum soils and the changes of the AMF community composition of the seedlings rhizosphere in relation to inoculation treatment and season. Our main results showed no significant differences in seedlings survival and growth between treatments. The colonization potential of grassland and degraded forest soils was ~25 times greater than mature forest soil and specific spore density of some morphospecies varied with season. However, AMF spore community of seedlings rhizosphere became homogenized after outplanting and was similar between treatments after 12 months. Therefore, we conclude that soil inoculation is not essential for outplanted P. australis survival and increase in height, and thus all the tested soils could be used as inocula, including grassland soils which in practice are the easiest to collect.  相似文献   

14.

Key message

Growth response to climate differs between species and elevation. Fir is the most drought-tolerant species. The mountain forests are robust to the climatic changes until now.

Abstract

Alpine mountain forests provide a wide range of ecological and socio-economic services. Climate change is predicted to challenge these forests, but there are still considerable uncertainties how these ecosystems will be affected. Here, we present a multispecies tree-ring network of 500 trees from the Berchtesgaden Alps (Northern Limestone Alps, Southeast Germany) in order to assess the performance of native mountain forest species under climate change conditions. The dataset comprises 180 spruce, 90 fir, 110 larch and 120 beech trees from different elevations and slope exposures. We analyse the species with respect to: (1) the general growth/climate response; (2) the growth reaction (GR) during the hot summer in 2003 and (3) the growth change (GC) resulting from increasing temperatures since the 1990s. Spruce is identified as the most drought-sensitive species at the lower elevations. Fir shows a high drought tolerance and is well suited with regard to climate change. Larch shows no clear pattern, and beech remains unaffected at lower elevations. The unprecedented temperature increase of the last decades did not induce any distinct GC. The mountain forests of the Berchtesgaden Alps appear to be robust within the climatic changes until now.  相似文献   

15.

Key message

Total leaf hydraulic dysfunction during severe drought could lead to die-back in N. dombeyi , while hydraulic traits of A. chilensis allow it to operate far from the threshold of total hydraulic failure.

Abstract

Die-back was observed in South America temperate forests during one of the most severe droughts of the 20th century (1998–1999). During this drought Austrocedrus chilensis trees survived, whereas trees of the co-occurring species (Nothofagus dombeyi) experienced symptoms of water stress, such as leaf wilting and abscission, before tree die-back occurred. We compared hydraulic traits of these two species (a conifer and an angiosperm species, respectively) in a forest stand located close to the region with records of N. dombeyi mass mortality. We asked whether different hydraulic traits exhibited by the two species could help explain their contrasting survivorship rates. Austrocedrus chilensis had wide leaf safety margins, which appear to be the consequence of relatively high leaf-and-stem capacitance, large stored water use, strong stomatal control and ability to recover from embolism-induced loss of leaf hydraulic capacity. On the other hand, N. dombeyi even though had a stem hydraulic threshold of ?6.7 MPa before reaching substantial hydraulic failure (P88), leaf P88 occurred at leaf water potentials of only ?2 MPa, which probably are reached during anomalous droughts. Massive mortality in N. dombeyi appears to be the result of the total loss of leaf hydraulic conductance leading to leaf dehydration and leaf drop. Drought occurs during the summer and it is highly likely that N. dombeyi cannot recover its photosynthetic surface to produce carbohydrates required to avoid tissue injury in the winter season with subfreezing temperatures. Strong hydraulic segmentation in N. dombeyi does not seem to have an adaptive value to survive severe droughts.  相似文献   

16.

Key message

The role of transporters in imparting salt tolerance to mangroves is not yet understood. Identification of the role of transporters in halophytes is promising, as far as the development of genetically engineered salt tolerant crops is concerned.

Abstract

Mangroves are models for stress tolerance and they provide a reservoir for some of the novel genes and proteins, involved in salt tolerance. Biochemical or physiological mechanisms contribute to salt tolerance depending on variations in the environment. A great deal of research on salinity tolerance of plants, probes into water relations, photosynthesis, and accumulation of various in-organic ions and organic metabolites. The ability of the plant to react to high salinity depends on the genes that are expressed during stress. The mechanism of salinity tolerance becomes complicated when the responses of plants varies with salinity and environmental conditions. During the onset and development of salt stress within a plant, major processes such as photosynthesis, protein synthesis and lipid metabolisms are affected. The present review attempts to dissect out the role of transporters in salt tolerance of mangroves.  相似文献   

17.
Alexandre Salino 《Brittonia》2002,54(4):331-339
Three new species ofThelypteris are described and illustrated:T. littoralis andT. paranaensis, endemic to the rainforest of the southern Brazilian Atlantic coast, andT. multigemmifera, endemic to inland gallery forests of the São Paulo state. In addition, four new combinations are made:T. cutiataensis (Brade) Salino,T. iguapensis (C. Chr.) Salino. A new name is proposed forDryopteris lugubris var.quadrangularis:T. montana Salino. The species treated here belong toThelypteris subg.Goniopteris due to the indument of furcate and stellate trichomes.  相似文献   

18.

Key message

The intra-annual stem girth increment of Quercus ilex is mainly driven by water availability and secondly by temperature. Tree size and competition modulate the growth response to climate.

Abstract

Holm oak (Quercus ilex ssp. ballota [Desf.] Samp.) is the most widespread species in the Iberian peninsula, being one of the most representative trees in forests and open woodlands. The analysis of stem girth increment of holm oak may provide valuable information about how Mediterranean ecosystems will respond to the forecasted climate changes. However, due to the variability of the Mediterranean climate, the knowledge of intra-annual patterns of growth is needed for a better understanding of the influence of the climatic variables at this scale. To this end, we used band dendrometers to measure monthly stem girth increments of 96 holm oak trees from 2003 to 2010, located in open woodlands and dense Mediterranean forests in southwestern Spain. We assessed the effects of climate, competition, topography, and initial stem diameter on stem girth increment. The major stem increment periods were in spring and autumn whereas increment rates were very low or even negative in winter and summer. Spring was not every year the season with the higher stem increments, but autumn when spring was very dry. Higher precipitation, soil moisture, and relative humidity had significant positive effects on stem increment, whereas higher temperature, reference evapotranspiration, and solar radiation had significant negative effects. Initial tree diameter and competition from nearby trees partly explained significant differences in stem increment of individual trees. Therefore, the forecasted climatic changes, in which decreased rainfall in spring and increased summer drought are expected in the Mediterranean region, may be a significant threat to the Q. ilex ecosystems.  相似文献   

19.

Key message

Anatomical characteristics and hydrologic signals in tree-rings of oaks from areas with regular flooding may vary, even within the same forest stand, and largely depend on the micro-environmental conditions.

Abstract

Q. robur decline in European floodplain forests in recent years seems to be strongly associated with the deteriorating hydrological regime. We investigated the influence of the Krka River flow on tree-ring patterns of Q. robur from the Krakovo floodplain forests (Slovenia) to assess the effect of micro-location conditions on hydrological signals in wood-anatomical characteristics. We selected two groups of Q. robur trees growing at nearby locations with different hydrological conditions, resulting in frequent autumn and spring flooding at the wetter site (=W oaks) but no flooding at the other, drier site (=D oaks). We found differences between the two groups in the anatomical structure of tree-rings; however, ring width proved to be the main variable determining the anatomical structure of oak wood. D and W oaks responded differently to the Krka River flow in the studied period. Radial growth of D oaks was negatively influenced by spring flow, but positively influenced by minimum summer flow. In W oaks, ring width was positively correlated with mean summer flow. Thus, environmental information stored in wood-anatomical features may vary, even within the same forest stand, and largely depends on the micro-environment. Reduced wood increments of D oaks suggest that growth conditions are less favourable, implying a link between the health state of oaks from lowland forest and hydrological conditions. Trees intended for hydrological reconstruction must therefore be carefully selected to avoid the possibility of error and potential loss of information. Anatomical characteristics and hydrological signals in tree-rings of oaks from areas with regular flooding may vary, even within the same forest stand, and largely depends on the micro-environmental conditions.  相似文献   

20.

Key message

Density was more important in shaping crown structure than neighbor species identity. Both species showed high crown plasticity at alternative levels, which may explain species coexistence in mixed broadleaved forests with functionally similar species.

Abstract

Understanding crown response to local competition is essential to predicting stand development in mixed stands. We analyzed data from an 8-year-old field experimental plantation mixing two species according to a crossed gradient of density and species proportion to quantify the effect of a broad range of local neighborhood conditions on the development of young trees at multiple crown levels. We used Fagus sylvatica and Acer pseudoplatanus, as two model deciduous species. They are considered functionally equivalent at the young stages, but with contrasting architectural patterns. For both species: (1) changes in density explained more of the variation on crown development than species proportion (2) much of the effect of competition was accounted for by variables at the stem level, while branch and leaf development within crowns were not directly altered by competition. Both species were able to modify their crowns at the stem level to compete with intra- and inter-specific neighbors: Acer and Fagus were taller with a highest proportion of Fagus as neighbors; Fagus displayed a lower crown base when the proportion of Fagus decreased, while Acer had a lower crown base when the proportion of Fagus around it increased. Both species showed common shapes in allometric relationships but contrasting responses at alternative crown levels. Acer exhibited broader intra-specific variation in its height–diameter relationship and in its crown length, while Fagus displayed higher individual variation of branch development and leaf area than Acer. This study demonstrates that differences in crown development strategy of each species in response to changes in local neighborhood conditions are an important factor in maintaining species coexistence in broadleaved forests and designing mixtures that persist over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号