首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mediterranean tree species have evolved to face seasonal water shortages, but may fail to cope with future increases in drought frequency and intensity. We investigated stem radial increment dynamics in two typical Mediterranean tree species, Aleppo pine (Pinus halepensis), a drought-avoiding species, and holm oak (Quercus ilex), a drought-tolerant species, in a mixed forest and on contrasting slope aspects (south- and north-facing). Intra- and inter-annual growth patterns were modelled using the VS-Lite2 model for each tree species and slope-aspect. Both species showed a bimodal growth pattern, with peaks coinciding with favourable conditions in spring and autumn. A bimodal growth pattern is always observed in P. halepensis, while in Q. ilex is facultative, which suggests different strategies adopted by these species to cope with summer drought. More specifically, trees on south-facing slope showed a more evident bimodal pattern and more intra-annual density fluctuations. In recent decades, the intensity of both growth peaks has diminished and drifted away due to the increased summer drought. The VS-Lite2 model reveals a niche partitioning between both species. Differences in growing season’s length and timings of growth peaks in both species are relevant for their coexistence and should be considered for estimating mixed-forest responses under climate change scenarios.  相似文献   

2.

Aims

The importance of soil properties as determinants of tree vitality and Phytophthora cinnamomi root infections was analysed.

Methods

The study comprised 96 declining stands in western Spain, where declining and non-declining holm oak (Quercus ilex L.) trees were sampled. Soil properties (soil depth, Ah horizon thickness, texture, pH, redox potential, soil bulk density and N-NH4 + and N-NO3 ? concentrations) and P. cinnamomi infections were assessed.

Results

Tree mortality rates increased with low soil bulk densities, which were also associated with more P. cinnamomi-infected trees. Occurrence of infected trees was higher in fine textured soils and in thick Ah horizons. Fine textured soils favoured trees, but with the presence of P. cinnamomi their health status deteriorated. Soil under declining trees had higher N-NO3 ?/N-NH4 + ratio values than under non-declining trees. Additional soil properties changes associated to grazing were not related to decline and P. cinnamomi infections.

Conclusions

The implications of P. cinnamomi in holm oak decline and the influence of soil properties as contributors to pathogen activity were demonstrated. Fine soil textures and thick Ah horizons, usually favourable for vigour and vitality of trees growing in the Mediterranean climate, were shown to be disadvantageous soil properties if P. cinnamomi was present. Fine soil textures and thick Ah horizons are frequently related with higher levels of soil moisture, which increase the inoculum of the pathogen and favours root infection. Grazing does not seem to be directly linked to Q. ilex health status or P. cinnamomi root rot.  相似文献   

3.

Key message

Integuments from holm oak developing ovules were suitable initial explants to obtain embryogenic lines from which plants could be regenerated.

Abstract

The implementation of multivarietal forestry as part of breeding strategies is expected to provide more productive forest plantations. To achieve this, a reliable and effective method for mass production of clonal plants is needed. Somatic embryogenesis is considered the enabling technology for implementing multivarietal forestry. The holm oak (Quercus ilex L.) is a Mediterranean evergreen tree of economic interests because of the acorn production for animal feed and edible fungi mycorrhization. The aim of this work was to obtain clonal plants by inducing somatic embryogenesis in tissues of female flowers from mature trees. The influence of the developmental stage of the explant, the genotype and medium composition, and the effect of arabinogalactan proteins on the induction frequency, were assessed. Somatic embryogenesis induction (frequency ranging from 1.2 to 3.2 %) was restricted to ovules excised at an advanced stage of development, when they were at least 3–4 mm wide and the rest of the ovules within the ovary had aborted. Somatic embryos arose from the integuments of those fertilized ovules. Embryogenic response was obtained on media with and without plant growth regulators. All the genotypes that were cultured on medium containing “as reported by Schenk and Hildebrandt (Can J Bot 50:199–204, 1972)” SH macronutrients could be captured. Treatments including Larix arabinogalactan proteins did not improve induction, while those from Acacia inhibited the embryogenic response. Several embryogenic lines were multiplied by repetitive embryogenesis on medium lacking plant growth regulators. Mature somatic embryos of three genotypes were germinated at frequencies ranging from 41 to 58 %, and converted into plants at frequencies from 11 to 30 %, depending on the genotype.  相似文献   

4.
5.

Key message

The number of days on which a measureable increment occurred, and the average rate of stem growth, rather than the overall duration of the wet season, were the main determinants of ring width in young Callitris intratropica trees. These effects were amplified by competition.

Abstract

Dendroclimatology of tropical tree species is an important tool for understanding past climatic variability at low latitudes where long-term weather records are often absent. Despite the growing number of published tropical tree-ring chronologies, however, still little is known of the factors that control annual ring formation in tropical tree species. In this paper we used an endemic Australian conifer, Callitris intratropica, to study the intra-annual dynamics of seasonal growth and xylem formation, and the effects of environmental conditions and competition, on growth ring formation. We combined high-resolution growth and climate monitoring (every 15 min for 2 years) with less frequent cambial sampling. Trees exhibited marked reductions in growth during certain periods within the rainy season when rainfall was not as regular and VPD was high. Overall, we found that ring width was most influenced by the number of days when increment occurred; regardless of how early the growing season began or ended, and by the rates of tracheid production. The effect of competition was also important. Trees growing in dense groves had narrower annual rings (4.6 mm) than trees that were growing in the open (6.7 mm), due to less active cambia, slower rates of xylem production and expansion and more increment days, although the overall growing season duration was also shorter in grove trees.  相似文献   

6.

Background and aims

Invasion by N2-fixing species may alter biogeochemical processes. We hypothesized that the grade of invasion by the N2-fixer black locust (Robinia pseudoacacia L.) could be related to the distribution and pools of carbon (C) and nitrogen (N) along the profile of two Mediterranean mixed forests of stone pine (Pinus pinea L.) and holm oak (Quercus ilex L.).

Methods

A low-invaded (LIN) and a high-invaded (HIN) mixed forest were studied. We assessed: N concentration in green and in senescent leaves; C and N pools along the soil profile; seasonal changes of soluble C and N fractions, and microbial activity.

Results

Compared to coexisting holm oak and stone pine, black locust had higher N content in green and in senescent leaves. In the mineral soil: N stocks were similar in LIN and HIN; water soluble C and microbial activity, were lower in HIN compared to LIN; water soluble N showed seasonal changes consistent with tree growth activity in both HIN and LIN. In the organic layer of HIN, C and N stocks were about twofold larger than expected on the basis of stand density.

Conclusion

Black locust increased C and N stocks in the upper organic layers that are more vulnerable to disturbance. However, it did not increase N stocks in the mineral soil.  相似文献   

7.
The effects of ecosystem degradation are pervasive worldwide and increasingly concerning under the present context of global changes in climate and land use. Theoretical studies and empirical evidence increasingly suggest that drylands are particularly prone to develop nonlinear functional changes in response to climate variations and human disturbance. Precipitation-use efficiency (PUE) represents the ratio of vegetation production to precipitation and provides a tool for evaluating human and climate impacts on landscape functionality. Holm oak (Quercus ilex) woodlands are one of the most conspicuous dry forest ecosystems in the western Mediterranean basin and present a variety of degraded states, due to their long history of human use. We studied the response of Iberian holm oak woodlands to human disturbance along an aridity gradient (that is, semi-arid, dry-transition and sub-humid conditions) using PUE estimations from enhanced vegetation index (EVI) observations of the Moderate-Resolution Imaging Spectroradiometer (MODIS). Our results indicated that PUE decreased linearly with disturbance intensity in sub-humid holm oak woodlands, but showed accelerated, nonlinear reductions with increased disturbance intensity in semi-arid and dry-transition holm oak sites. The impact of disturbance on PUE was larger for dry years than for wet years, and these differences increased with aridity from sub-humid to dry-transition and semi-arid holm oak woodlands. Therefore, aridity may also interact with ecosystem degradation in holm oak woodlands by reducing the landscape ability to buffer large changes in vegetation production caused by climate variability.  相似文献   

8.

Background and aims

The occurrence of drought-induced forest die-off events is projected to increase in the future, but we still lack complete understanding of its impact on plant-soil interactions, soil microbial diversity and function. We investigated the effects of holm oak (Quercus ilex) decline (HOD) on soil microbial community and functioning, and how these effects relate to changes in the herbaceous community.

Methods

We selected 30 holm oak trees with different defoliation degrees (healthy, affected and dead) and analyzed soil samples collected under the canopy (holm oak ecotype) and out of the influence (grassland ecotype) of each tree.

Results

HOD increased potential nitrogen (N) mineralization and decreased inorganic N concentrations. These results could be partially explained by changes in the herbaceous composition, an increased herbaceous abundance and changes in soil microbial functional diversity and structure, with HOD favoring bacteria against fungi. Moreover, herbaceous abundance and microbial functional diversity of holm oak and grassland ecotypes converged with HOD.

Conclusions

Our results show that HOD triggers a cascade effect on plant understory and soil microbial communities, as well as a plant succession (savannization) process, where understory species colonize the gaps left by dead holm oaks, with important implications for ecosystem C and N budgets.
  相似文献   

9.

Key message

We demonstrate that tropical trees growing in wet climates can have a marked seasonality in cambium activity and stem growth associated with high temperature and day length of summer.

Abstract

Monitoring the rhythm of tree growth associated with the growth rings can contribute substantially to understanding forest dynamics and the management of tropical forests. In this study, we monitored the girth increment rhythm and described the wood characteristics (anatomy of growth rings, wood specific gravity) in 10 tropical tree species (103 individuals) naturally occurring in a wet and weakly seasonal region of Atlantic Forest in southern Brazil. We aimed to verify whether tree growth dynamics are associated with climate and woody anatomy in tropical trees with contrasting ecological characteristics. We installed permanent dendrometer bands and monthly assessed the girth increment for 22 months. We collected wood samples (non-destructive method), measured wood specific gravity and prepared permanent slides to characterize the growth ring markers. We found growth rings in all species (distinct in six species); deciduous species produced more distinguishable tree rings compared with semi-deciduous and evergreen tree species. Species varied in their accumulated girth growth (in average, from 1.83 to 62.64 mm), growth rates (1–15 %), and annual radial increment (0.16–5.44 mm). Girth increment was positively related to temperature and day length in five out of ten tree species, indicating the possible effects of these climatic variables in triggering cambial activity in these species. The growth pattern varied among species and was marginally associated to the tree deciduousness. We concluded that even in wet and less seasonal climates, there can be an association in the cambium activity and stem growth with the hotter and longer days of summer months.
  相似文献   

10.

Background and Aims

Several widespread tree species of temperate forests, such as species of the genus Quercus, produce recalcitrant (desiccation-sensitive) seeds. However, the ecological significance of seed desiccation sensitivity in temperate regions is largely unknown. Do seeds of such species suffer from drying during the period when they remain on the soil, between shedding in autumn and the return of conditions required for germination in spring?

Methods

To test this hypothesis, the Mediterranean holm oak (Quercus ilex) forest was used as a model system. The relationships between the climate in winter, the characteristics of microhabitats, acorn morphological traits, and the water status and viability of seeds after winter were then investigated in 42 woodlands sampled over the entire French distribution of the species.

Key Results

The percentages of germination and normal seedling development were tightly linked to the water content of seeds after the winter period, revealing that in situ desiccation is a major cause of mortality. The homogeneity of seed response to drying suggests that neither intraspecific genetic variation nor environmental conditions had a significant impact on the level of desiccation sensitivity of seeds. In contrast, the water and viability status of seeds at the time of collection were dramatically influenced by cumulative rainfall and maximum temperatures during winter. A significant effect of shade and of the type of soil cover was also evidenced.

Conclusions

The findings establish that seed desiccation sensitivity is a key functional trait which may influence the success of recruitment in temperate recalcitrant seed species. Considering that most models of climate change predict changes in rainfall and temperature in the Mediterranean basin, the present work could help foresee changes in the distribution of Q. ilex and other oak species, and hence plant community alterations.  相似文献   

11.

Key message

Earlywood vessel features indicate different adaptations of Quercus petraea and Q. pyrenaica , which are probably related with their corresponding Atlantic and sub-Mediterranean ecological requirements.

Abstract

We studied the climatic signal of the earlywood anatomy of a temperate [Quercus petraea (Mattuschka) Liebl.] and a sub-Mediterranean (Quercus pyrenaica Willd.) oak species growing under similar climatic conditions in a transitional area between the Atlantic and Mediterranean regions of the Iberian Peninsula. We hypothesized that both species react differently in their wood anatomy due to their contrasting ecological requirements, and we test the usefulness of earlywood anatomical features to study the behaviour of these ring-porous oaks upon climate. For this, we measured the earlywood vessels, and obtained annual series of several anatomical variables for the period 1937–2006 using dendrochronological techniques, considering whether the vessels belonged to the first row or not. After optimizing the data set by principal component analysis and progressive filtering of large vessels, we selected maximum vessel area and total number of vessels as they resulted to be the optimal variables to describe vessel size and number, respectively. Vessel size of Q. pyrenaica was dependent on precipitation along the previous growing season, whereas it did not show any clear climatic response for Q. petraea. On the contrary, vessel number was related to winter temperature for both species. These relationships observed between climate and anatomy appeared to be stable through time. The results obtained reinforce the utility of earlywood vessel features as potential climate proxies.  相似文献   

12.
Genetic variability of trees influences the chemical composition of tissues. This determines herbivore impact and, consequently, herbivore performance. We evaluated the independent effects of plant genotype and provenance on the tannin content of holm oak (Quercus ilex) and their consequences for herbivory and performance of gypsy moth (Lymantria dispar) larvae. Oak seedlings of 48 open-pollinated families from six populations were grown in a common garden in central Spain. Half the plants were subjected to defoliation by gypsy moth larvae and the other half were destructively sampled for chemical analysis. Tannin content of leaves did not differ significantly among populations but differed significantly among families. Estimates of heritability (h 2) and quantitative genetic differentiation among populations for tannin content (Q ST) were 0.83 and 0.12, respectively. Defoliation was not related to the tannin content of plants nor to spine and trichome densities of leaves, although positive family–mean associations were observed between defoliation and both seed weight and plant height (P < 0.003). Among the oak populations, differential increase in larval weight gain with defoliation was observed. Leaf tannin content in Q. ilex is genetically controlled but does not influence defoliation or predict performance of the larvae. Different efficiencies of food utilisation depending on the oak genotypes indicate that other plant traits are influencing the feeding patterns and fitness of L. dispar and consequent population dynamics.  相似文献   

13.
A holm oak forest was exposed to an experimental drought during 5 years to elucidate the growth responses of the dominant species Quercus ilex, Arbutus unedo and Phillyrea latifolia. Soil water availability was partially reduced, about 15% as predicted for this area for the next decades by GCM and ecophysiological models, by plastic strips intercepting rainfall and by ditch exclusion of water runoff. The stem diameter increment was highly correlated with annual rainfall in all species, and drought treatment strongly reduced the diameter increment of Q. ilex (41%) and specially of A. unedo (63%), the species showing higher growth rates. Stem mortality rates were highly correlated with previous stem density, but drought treatment increased mortality rates in all species. Q. ilex showed the highest mortality rates (9% and 18% in control and drought plots, respectively), and P. latifolia experienced the lowest mortality rates (1% and 3% in control and drought plots, respectively). Drought strongly reduced the increment of live aboveground biomass during these 5 years (83%). A. unedo and Q. ilex experienced a high reduction in biomass increment by drought, whereas P. latifolia biomass increment was insensitive to drought. The different sensitivity to drought of the dominant species of the holm oak forest may be very important determining their future development and distribution in a drier environment as expected in Mediterranean areas for the next decades. These drier conditions could thus have strong effects on structure (species composition) and functioning (carbon uptake and biomass accumulation) of these Mediterranean forests.  相似文献   

14.

Key message

Beech growth variability and climate sensitivity are much higher in the crown top than in the bole. The most notable bole–crown discrepancies occurred in response to extreme climate conditions.

Abstract

To characterize growth partitioning within the tree and its responses to climate, we studied eight dominant beech trees (Fagus sylvatica L.) of a pure, even-aged 98-year-old stand in Belgium. We sampled ten disks along the stem from breast height to treetop and examined the inter-annual patterns of, and discrepancies between, ring-area and volume increments by performing detailed stem analysis and dendroecological investigations. Although the common inter-annual variation among all increment series was high, we observed increasing growth variability and climate sensitivity with height, leading to notable bole–crown discrepancies. Both the common inter-annual variation and bole–crown discrepancies were mainly driven by summer heat waves and related droughts of the previous year, and spring droughts of the current year. Despite these discrepancies, the radial growth at breast height can be considered a good estimate of the tree volume increment but not for the purpose of focusing on climatic effects of isolated years. Extreme climatic conditions increase the risk of inaccurate estimations. The results of the present study are discussed in relation to tree ecophysiology hypotheses.
  相似文献   

15.

Key message

Growth ring study of Pinus kesiya (khasi pine) growing in sub-tropical forest in Manipur, northeast India was performed to understand climate signatures in ring widths and intra-annual density fluctuations.

Abstract

The growth rings in khasi pine (Pinus kesiya Royle ex Gordon) growing in sub-tropical Reserve Forest in Imphal, Manipur, northeast India were analysed to understand environmental signals present in ring-width series and intra-annual density fluctuations (IADFs). For this the growth ring sequences in increment core samples collected from 28 trees were precisely dated and a ring-width chronology spanning AD 1958–2014 developed. The correlation analyses between ring-width chronology and weather data of Imphal revealed that a cool April–May–June favour tree growth. The wood anatomical features of growth rings revealed the occurrence of IADFs in early- and latewoods. The IADFs in earlywood were found to be associated with reduced precipitation in months from April to July. However, the wetter conditions in late growing season, especially August/September triggered the formation of IADFs in latewood. Our findings endorse that the IADF chronologies of khasi pine could emerge as an important proxy of summer monsoon rainfall in long-term perspective in data scarce region of northeast India.
  相似文献   

16.

Key message

Autumnal senescence of apple in a warm climate corresponds to accumulated degree-days beneath 22 °C. Summer drought delays senescence and enables replenishment of carbohydrate reserves. Recovery of the root system plays a key role.

Abstract

Autumnal senescence of apple (Malus domestica Borkh.), a deciduous, temperate climate species, is triggered by a rather abrupt temperature drop, down to the lower teens. Under the warmer, east Mediterranean climate of northern Israel, the temperature drop is gradual and much more moderate. Another characteristic of this climate is the complete lack of precipitation during summer. The aim of the present study was to elucidate the effects of summer drought on seasonal leaf senescence in a warm autumn. We hypothesized that summer drought delays senescence due to an increased demand for carbohydrates during autumn. The advent of autumnal senescence was followed for 3 years (2009–2011) on trees exposed to various levels of drought. Total canopy green area (effective leaf area, ELA) and hue angle were estimated periodically by means of image analysis, as a measure of leaf drop and autumnal color change. Photosynthesis, midday stem water potential, and roots’ non-structural carbohydrate contents were measured on several occasions. The time course of leaf drop followed the decline in air and soil temperatures. The rate of decline in ELA closely corresponded to accumulated degree-days beneath 22 °C in the soil, a much higher temperature threshold than previously reported for apple. Drought stress during the summer delayed leaf senescence even further, when compared with well-irrigated trees. Leaves maintained their photosynthetic functionality throughout autumn, until late December. The delayed senescence enabled replenishment of root carbohydrate reserves, which is critical for next year’s growth and fruiting. The eco-physiological significance of the findings is discussed.  相似文献   

17.
Long-term data on radial increment dynamics in Mediterranean species may identify which climatic variables are the main constraints for radial growth and at which temporal scales they act. To this end, we examined stem radial fluctuations in Quercus ilex L., the dominant evergreen oak species in the Western Mediterranean Basin, over a period of 11 years (1994–2004) at a coastal site in north-eastern Spain. We used manual band dendrometers to record girth changes in trees on north- and south-facing slopes. Annual increments measured by dendrometers showed good agreement with annual tree-ring width. North-facing trees showed a lower long-term cumulative radial increment than south-facing trees. The seasonal radial increment pattern of Q. ilex was bimodal, being characterized by a greater increase in May and a lesser, more variable increase peak in September. Both phases corresponded to warm and moist climatic conditions, whereas radial increase of stems stopped in winter and occasionally in summer. Considering the whole year, mean maximum air temperature was the main factor positively affecting radial increment of Q. ilex from short- (5 days) to- long (30 days) time scales, whereas the accumulated precipitation exerted a similar effect at longer (30 days) scales, but only on south-facing trees. In summer, all trees were positively correlated with precipitation at long-time scales (30 days); however, only stem increment of south-facing trees showed a significant relation to the temperature at short-time scales (10 days). We confirmed the dominant role of temperature as the major constraint on radial increment at short time scales, despite most previous studies were mostly biased towards precipitation effects at monthly scales.  相似文献   

18.

Key message

Striking hydro-climatic differences of 2 years (wet; dry) dramatically control the increment pattern of L. huasango in varying extent, even causing a “growth collapse” during the La Niña drought 2010/2011.

Abstract

We present the first multi-year long time series of local climate data in the seasonally dry tropical forest in Southern Ecuador and related growth dynamics of Loxopterygium huasango, a deciduous tree species. Local climate was investigated by installing an automatically weather station in 2007 and the daily tree growth variability was measured with high-resolution point dendrometers. The climatic impact on growth behaviour was evaluated. Hydro-climatic variables, like precipitation and relative humidity, were the most important factors for controlling tree growth. Changes in rainwater input affected radial increment rates and daily amplitudes of stem diameter variations within the study period from 2009 to 2013. El Niño Southern Oscillation (ENSO) related variations of tropical Pacific Ocean sea surface temperatures influenced the trees’ increment rates. Average radial increments showed high inter-annual (up to 7.89 mm) and inter-individual (up to 3.88 mm) variations. Daily amplitudes of stem diameter variations differed strongly between the two extreme years 2009 (wet) and 2011 (dry). Contrary to 2009, the La Niña drought in 2011 caused a rapid reduction of the daily amplitudes, indicating a total cessation (‘growth collapse’) of stem increment under ENSO-related drought conditions and demonstrating the high impact of climatic extreme events on carbon sequestration of the dry tropical forest ecosystem.
  相似文献   

19.
Quercus ilex L. (holm oak) coppices, widespread around the Mediterranean basin, are probably the result of 5 000 years of prolonged human disturbance of the original Quercus pubescens Willd. (downy oak) forests. Since disturbance has almost ceased in recent years, a question arises as to the development of these coppices: will the Q. pubescens forests return, or will Q. ilex remain the dominant species? To investigate the phenomenon, we analyzed the first stages, i.e. germination of the two species in holm oak coppices. Our experiments show that both species germinated better in coppices than in clearings or clear-cuts. Moreover, Q. pubescens appears to be slightly favored above Q. ilex and it is suggested auto-allelopathy is involved, at least partially inhibiting the germination of Q. ilex.  相似文献   

20.
In Mediterranean climates, bimodal growth patterns, corresponding to two peaks in radial increment during favorable seasons, have been described in several tree species. However, we lack a better mechanistic understanding of bimodality and its potential responses to the predicted warming and aridification trends. Filling this research gap is important since growth duration affects the capacity of trees to form wood and uptake carbon. Here we used an 11-year (1994–2004) long record of dendrometer data of the Mediterranean Holm oak (Quercus ilex) and compared how climate related to radial increment in trees from the south- and the north-facing slopes. We also related climate variables to tree-ring width and the production of intra-annual density fluctuations (IADFs), which reflects bimodality. In this paper, we introduce a model called VS-Lite2 to simulate tree-growth dynamics, which is a modified version of the process-based Vaganov-Shashkin Lite model. The VS-Lite2 model adequately reproduced the bimodal intra‐annual pattern of radial growth, IADFs, and annual tree growth. Trees from the south-oriented slope grew more, produced more IADFs and showed a more marked bimodal pattern than trees from the north-facing slope. These differences agree with the observation that late-summer drought constrained growth. Therefore, radial-growth models should consider plastic bimodality and micro-environmental conditions in areas subjected to seasonal droughts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号