首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Aims

This study aimed to determine the effect of arbuscular mycorrhizal (AM) fungi and phosphorus (P) supply levels on β-carotene concentrations in sweet potato (Ipomoea batatas L.) tubers.

Methods

Two commercial AM fungal isolates of Glomus intraradices (IFP Glintra) and Glomus mosseae (IFP Glm) which differ in their life cycles were used. Sweet potato plants were grown in a horizontal split-root system that consisted of two root compartments. A root-free fungal compartment that allowed the quantification of mycelial development was inserted into each root compartment. The two root compartments were inoculated either with the same or with different AM isolates, or remained free of mycorrhizal propagules. Each fungal treatment was carried out in two P supply levels.

Results

In the low P supply level, mycorrhizal colonization significantly increased β-carotene concentrations in sweet potato tubers compared with the non-mycorrhizal plants. Glomus intraradices appeared to be more efficient in increasing β-carotene concentrations than G. mosseae. Dual inoculation of the root system with the two mycorrhizal fungi did not result in a higher increase in tuber β-carotene concentrations than inoculation with the single isolates. Improved P nutrition led to higher plant tuber biomass but was not associated with increased β-carotene concentrations.

Conclusions

The results indicate a remarkable potential of mycorrhizal fungi to improve β-carotene concentrations in sweet potato tubers in low P fertilized soils. These results also suggest that β-carotene metabolism in sweet potato tubers might be specifically activated by root mycorrhizal colonization.  相似文献   

2.
Arbuscular mycorrhizal (AM) fungi are mainly thought to facilitate phosphorus uptake in plants, but they can also perform several other functions that are equally beneficial. Our recent study sheds light on the factors determining one such function, enhanced plant protection from root pathogens. Root infection by the fungal pathogen Fusarium oxysporum was determined by both plant susceptibility and the ability of an AM fungal partner to suppress the pathogen. The non-susceptible plant species (Allium cepa) had limited F. oxysporum infection even without AM fungi. In contrast, the susceptible plant species (Setaria glauca) was heavily infected and only AM fungi in the family Glomeraceae limited pathogen abundance. Plant susceptibility to pathogens was likely determined by contrasting root architectures between plants, with the simple rooted plant (A. cepa) presenting fewer sites for infection. AM fungal colonization, however, was not limited in the same way in part because plants with fewer, simple roots are more mycorrhizal dependent. Protection only by Glomus species also indicates that whatever the mechanism(s) of this function, it responds to AM fungal families differently. While poor at pathogen protection, AM fungal species in the family Gigasporaceae most benefited the growth of the simple rooted plant species. Our research indicates that plant trait differences, such as root architecture can determine how important each mycorrhizal function is to plant growth but the ability to provide these functions differs among AM fungi.Key words: arbuscular mycorrhizal fungi, Fusarium oxysporum, root architecture, pathogen protection, multi-functionalityArbuscular mycorrhizas (AM) represent the oldest and most widespread symbiosis with land plants.1 Most mycorrhizal research has focused on the ability of AM fungi to facilitate nutrient uptake, particularly phosphorus.2 Although researchers recognize that AM fungi are multi-functional,3 it is not clear what factors determine which function an AM fungus performs or its relative importance to the plant.4 Newsham et al. (1995)3 hypothesized that AM function is based on root architecture: plants with simple rooting systems are dependent on mycorrhizas for nutrient uptake, while those with complex root systems are less dependent on mycorrhizas for nutrient uptake, but are more susceptible to root pathogens because of increased numbers of infections sites.3 These two functions, phosphorus uptake and enhanced pathogen protection from mycorrhizas also depend on the identity of the fungus. Arbuscular mycorrhizal fungi in the family Gigasporaceae are more effective at enhancing plant phosphorus, while AM fungi in the Glomeraceae better protect plants from root pathogens.5Our results support both plant and fungal control of a common pathogen, Fusarium oxysporum, and the interaction between these two factors ultimately determined the level of pathogen infection and plant mycorrhizal benefit. We inoculated two plant species that have contrasting root architectures with one of six AM fungal species from two families (or no AM fungi). After five months of growth, plants were inoculated with F. oxysporum, grown for another month and then harvested. All plant seeds and fungi were collected in a local old field community.6 Allium cepa (garden onion) was not susceptible to F. oxysporum likely because it has only a few adventitious roots below the main bulb that do not present many sites for infection. In contrast, Setaria glauca (yellow foxtail) was heavily infected by F. oxysporum and has fine roots with increased numbers of branching points and lateral meristems where fungi can colonize.7 For the susceptible plant (S. glauca), AM fungal species from the family Glomeraceae were effective at reducing pathogen abundance while species from the Gigasporaceae were not. Forming a symbiosis with a Glomus species resulted in S. glauca plants that were as large as control plants. AM fungal species from the family Gigaspoaceae were more beneficial to growth of the simple rooted A. cepa, which had fewer roots to take up soil nutrients.Reduced rooting structures may limit pathogen infection sites, but AM fungal colonization was not limited in the same way and may actually alter plant root architecture. While the simple rooted A. cepa had limited pathogen susceptibility, it had twice the AM fungal colonization of the complex rooted S. glauca. Because the simple rooted plant has a greater dependence on mycorrhizas,8 it likely transmits chemical signals to rapidly initiate mycorrhizal formation,9 but then may have less control on the spread of AM fungi within the root. In contrast, S. glauca is more susceptible to fungal pathogens and may be less mycorrhizal dependent in nature.10 As a result, S. glauca may treat all colonizing root fungi as potential parasites. Colonization by AM fungi from the Glomeraceae was also much greater than those in the Gigasporaceae due to differences in fungal life history strategy between these families.11,12 AM fungal colonization can reduce root branching in plants and alter plant allocation to roots, thereby increasing mycorrhizal dependence for nutrients10,13 and potentially reducing pathogen infection sites. Mycorrhizal induced changes to plant root architecture may therefore reinforce current mycorrhizal associations and alter future fungal colonization attempts.14 An important next step is to test if AM fungal families (or species) alter plant root architecture in different ways and the degree to which these effects depend on colonization timing and the plant host.Our study did not isolate the particular mechanism by which AM fungi control pathogens, but this mechanism clearly differentiates between AM fungal families. AM fungi can control pathogens through several mechanisms including direct competition for colonization sites, indirect initiation of plant defensive responses or altering other rhizosphere biota.15 Although these AM fungal families differ in the intensity of root colonization,11 percentage of root length colonized by an AM fungus is a poor predictor of pathogen limitation compared to family identity,12,16 suggesting that direct competition for space is unlikely. AM fungi share many cell surface molecules with pathogenic fungi like Fusarium.17 These molecules can act as signals that initiate plant production of defensive compounds such as phytoalexins, phenolics and other compounds.18 While AM fungi appear to evade these defenses, only AM fungal species in the family Glomeraceae would have elicited plant responses which altered future infection by F. oxysporum. AM fungi in the Gigasporaceae may differ more from F. oxysporum in their chemical signals or not colonize roots sufficiently to induce a sustained, system-wide plant response. In addition, many rhizosphere related microbes are antagonistic to pathogenic fungi15 and may differ in their response to the different AM fungal families.19 Because rhizosphere microbes also differ among plant species, plant pathogen protection may be influenced by multiple ecological interactions that determine the specific cases when mycorrhizal pathogen protection occurs. To distinguish between these mechanisms, future experiments could test whether biochemical similarity or ecological similarity (especially with other soil biota) between an AM fungus and fungal pathogen can predict mycorrhizal induced pathogen protection.Plant and fungal identity clearly affect AM fungal function and benefit, but to accurately use AM fungi in agriculture and restoration20,21 we must clearly understand how functional mechanisms differ. Different mycorrhizal functions may be based on common plant traits like root architecture, but ecology, colonization timing and environment may alter the specific function AM fungi provide and its importance to plants. While it may be useful to establish greenhouse rules about which fungal species perform specific mycorrhizal functions, predicting their role in more complex systems relies on understanding if other factors will enhance or negate these effects. Most AM fungal species vary in their ability to perform each function and these can be locally adapted to limiting soil nutrients.22 In plants, there is also a range to which specific mycorrhizal functions may benefit plant fitness, and these responses are based on both plant traits (which change throughout a plant''s life cycle) and the local environment.23,24 Given this variation, it is critical to understand if AM fungi can respond to cues from the plant or the environment to identify what factors limit plant growth and whether a the most effective AM fungus shows a greater response.  相似文献   

3.
Enkianthus is the most basal extant genus in the phylogeny of ericaceous plants. Its members harbor arbuscular mycorrhiza (AM)-like hyphal structures in their roots but, as yet, no study has surveyed the AM fungal species component. Roots from six species of Enkianthus were collected from five distantly located sites in Japan. Intracellular hyphal coils were observed in the root cortical cells of all species. Fungal DNA sequences of the small subunit ribosomal RNA gene were obtained from 73 of 75 segments of Enkianthus campanulatus roots by PCR using either AML2 or NS31/AM1primer pairs. Results indicated that all E. campanulatus trees were extensively associated with Glomus spp. A phylogenetic analysis showed that 71 root segments harbored fungi belonging to Glomus group A. Among eight delineated clades, seven did not nest with any known AM fungal species. One clade was detected in all roots at all sites at relatively high frequencies, but the rest were detected sporadically at each site. The placement of sequences from distantly located sites into a single clade without known AM fungal species suggests the common association of E. campanulatus with particular AM fungal taxa.  相似文献   

4.
Li AR  Smith SE  Smith FA  Guan KY 《Annals of botany》2012,109(6):1075-1080

Background and Aims

Plant parasitism and arbuscular mycorrhizal (AM) associations have many parallels and share a number of regulatory pathways. Despite a rapid increase in investigations addressing the roles of AM fungi in regulating interactions between parasitic plants and their hosts, few studies have tested the effect of AM fungi on the initiation and differentiation of haustoria, the parasite-specific structures exclusively responsible for host attachment and nutrient transfer. In this study, we tested the influence of AM fungi on haustorium formation in a root hemiparasitic plant.

Methods

Using a facultative root hemiparasitic species (Pedicularis tricolor) with the potential to form AM associations, the effects of inoculation were tested with two AM fungal species, Glomus mosseae and Glomus intraradices, on haustorium initiation in P. tricolor grown alone or with Hordeum vulgare ‘Fleet’ (barley) as the host plant. This study consisted of two greenhouse pot experiments.

Key Results

Both AM fungal species dramatically suppressed intraspecific haustorium initiation in P. tricolor at a very low colonization level. The suppression over-rode inductive effects of the parasite''s host plant on haustoria production and caused significant growth depression of P. tricolor.

Conclusions

AM fungi had strong and direct suppressive effects on haustorium formation in the root hemiparasite. The significant role of AM fungi in haustorium initiation of parasitic plants was demonstrated for the first time. This study provides new clues for the regulation of haustorium formation and a route to development of new biocontrol strategies in management of parasitic weeds.  相似文献   

5.
Little is known about the functioning of arbuscular mycorrhizal (AM) symbiosis over the course of primary succession, where soil, host plants, and AM fungal communities all undergo significant changes. Over the course of succession at the studied post-mining site, plant cover changes from an herbaceous community to the closed canopy of a deciduous forest. Calamagrostis epigejos (Poaceae) is a common denominator at all stages, and it dominates among AM host species. Its growth response to AM fungi was studied at four distinctive stages of natural succession: 12, 20, 30, and 50 years of age, each represented by three spatially separated sites. Soils obtained from all 12 studied sites were γ-sterilized and used in a greenhouse experiment in which C. epigejos plants were (1) inoculated with a respective community of native AM fungi, (2) inoculated with reference AM fungal isolates from laboratory collection, or (3) cultivated without AM fungi. AM fungi strongly boosted plant growth during the first two stages but not during the latter two, where the effect was neutral or even negative. While plant phosphorus (P) uptake was generally increased by AM fungi, no contribution of mycorrhizae to nitrogen (N) uptake was recorded. Based on N:P in plant biomass, we related the turn from a positive to a neutral/negative effect of AM fungi on plant growth, observed along the chronosequence, to a shift in relative P and N availability. No functional differences were found between native and reference inocula, yet root colonization by the native AM fungi decreased relative to the reference inoculum in the later succession stages, thereby indicating shifts in the composition of AM fungal communities reflected in different functional characteristics of their members.  相似文献   

6.
To determine the mycorrhizal status of pteridophyte gametophytes in diverse taxa, the mycorrhizal colonization of wild gametophytes was investigated in terrestrial cordate gametophytes of pre-polypod leptosporangiate ferns, i.e., one species of Osmundaceae (Osmunda banksiifolia), two species of Gleicheniaceae (Diplopterygium glaucum, Dicranopteris linearis), and four species of Cyatheales including tree ferns (Plagiogyriaceae: Plagiogyria japonica, Plagiogyria euphlebia; Cyatheaceae: Cyathea podophylla, Cyathea lepifera). Microscopic observations revealed that 58 to 97 % of gametophytes in all species were colonized with arbuscular mycorrhizal (AM) fungi. Fungal colonization was limited to the multilayered midrib (cushion) tissue in all gametophytes examined. Molecular identification using fungal SSU rDNA sequences indicated that the AM fungi in gametophytes primarily belonged to the Glomeraceae, but also included the Claroideoglomeraceae, Gigasporaceae, Acaulosporaceae, and Archaeosporales. This study provides the first evidence for AM fungal colonization of wild gametophytes in the Plagiogyriaceae and Cyatheaceae. Taxonomically divergent photosynthetic gametophytes are similarly colonized by AM fungi, suggesting that mycorrhizal associations with AM fungi could widely occur in terrestrial pteridophyte gametophytes.  相似文献   

7.
Mycorrhizal symbiosis in orchids is unique in that fungal presence is considered a requirement for germination as well as for further development. Additionally, orchid fungal associations can exhibit high specificity in nature. Yet, an important ecological question remains unanswered: ‘With which orchid mycorrhizal fungi (OMF) do un-inoculated orchid seedlings form symbiosis when cultured ex situ?’ Simultaneously, it is asserted that orchid conservation efforts involving ex situ plant culture should exclusively utilize natural symbionts of the respective orchid taxa. We present a first comparison of OMF communities within the roots of asymbiotically cultured plants of the rare orchid Platanthera chapmanii grown ex situ (ES), and those occurring naturally in situ (IS). Nuclear ribosomal internal transcribed spacer (nrITS) barcoding region was used to identify peloton forming OMF from roots collected between 2012 and 2014 from both growing environments. Our 114 sequences clustered into 11 operational taxonomic units (OTUs) belonging to four closely related clades of the fungal family Tulasnellaceae. Shannon–Wiener (H) and Simpson diversity (D) indices were similar (p = 0.81 for both) for ES and IS OMF communities. Beta diversity comparisons also showed similarity between ES and IS treatments based on weighted (p = 0.10) and unweighted (p = 0.20) Bray–Curtis dissimilarity matrices. Bayesian and Maximum Likelihood (ML) phylograms clustered ES and IS derived fungal OTUs into the same clades. Our data suggest that P. chapmanii: (1) forms symbiosis with taxonomically similar fungi in ex situ culture and in its native soil, and (2) exhibits a narrow phylogenetic breadth of mycorrhizal fungal OTUs within the Tulasnellaceae.  相似文献   

8.
While the arbuscular mycorrhizal (AM) symbiosis is known to be widespread in terrestrial ecosystems, there is growing evidence that aquatic plants also form the symbiosis. It has been suggested that symbiosis with AM fungi may represent an important adaptation for isoëtid plants growing on nutrient-poor sediments in oligotrophic lakes. In this study, we address AM fungal root colonization intensity, richness and community composition (based on small subunit (SSU) ribosomal RNA (rRNA) gene sequencing) in five populations of the isoëtid plant species Lobelia dortmanna inhabiting oligotrophic lakes in Southern Sweden. We found that the roots of L. dortmanna hosted rich AM fungal communities and about 15 % of the detected molecular taxa were previously unrecorded. AM fungal root colonization intensity and taxon richness varied along an environmental gradient, being higher in oligotrophic and lower in mesotrophic lakes. The overall phylogenetic structure of this aquatic fungal community differed from that described in terrestrial systems: The roots of L. dortmanna hosted more Archaeosporaceae and fewer Glomeraceae taxa than would be expected based on global data from terrestrial AM fungal communities.  相似文献   

9.
10.
The ascomycetous dark septate endophytic (DSE) fungi characterized by their melanized hyphae can confer abiotic stress tolerance in their associated plants in addition to improving plant growth and health. In this study inoculation of the DSE fungus Nectria haematococca Berk. & Broome significantly improved all the plant growth parameters like the plant height, stem girth, leaf characteristics and plant biomass of drought-stressed tomato. Root characters like the total root length, primary root diameter, 2nd order root number and diameter, root hair number and length were also significantly influenced by the fungal inoculation. Nevertheless, N. haematococca inoculation did not affect root colonization by native arbuscular mycorrhizal (AM) fungi and no significant correlation existed between the AM and DSE fungal variables examined. The proline accumulation in shoots of N. haematococca inoculated plants was significantly higher than uninoculated plants. The present study clearly indicates for the first time the ability of the DSE fungus, N. haematococca in inducing the drought stress tolerance and promoting the growth of the host plant under water stress.  相似文献   

11.
In many deforested regions of the tropics, afforestation with native tree species could valorize a growing reservoir of degraded, previously overused and abandoned land. The inoculation of tropical tree seedlings with arbuscular mycorrhizal fungi (AM fungi) can improve tree growth and viability, but efficiency may depend on plant and AM fungal genotype. To study such effects, seven phylogenetically diverse AM fungi, native to Ecuador, from seven genera and a non-native AM fungus (Rhizophagus irregularis DAOM197198) were used to inoculate the tropical potential crop tree (PCT) species Handroanthus chrysanthus (synonym Tabebuia chrysantha), Cedrela montana, and Heliocarpus americanus. Twenty-four plant-fungus combinations were studied in five different fertilization and AMF inoculation treatments. Numerous plant growth parameters and mycorrhizal root colonization were assessed. The inoculation with any of the tested AM fungi improved seedling growth significantly and in most cases reduced plant mortality. Plants produced up to threefold higher biomass, when compared to the standard nursery practice. AM fungal inoculation alone or in combination with low fertilization both outperformed full fertilization in terms of plant growth promotion. Interestingly, root colonization levels for individual fungi strongly depended on the host tree species, but surprisingly the colonization strength did not correlate with plant growth promotion. The combination of AM fungal inoculation with a low dosage of slow release fertilizer improved PCT seedling performance strongest, but also AM fungal treatments without any fertilization were highly efficient. The AM fungi tested are promising candidates to improve management practices in tropical tree seedling production.  相似文献   

12.
Plant association with arbuscular mycorrhizal (AM) fungi is usually regarded as mutualistic. However, this positive effect could disappear if the benefit of the fungal-plant association changes with colonization density. In order to test the conditionality of this interaction, we evaluated plant performance and tolerance to defoliation across five levels of commercial AM fungal inoculum concentrations. Additionally, we evaluated if plant performance and tolerance were similarly affected by a whole soil community collected under a native congener. Along the gradient of inoculation, plant performance exhibited a peak at intermediate inoculum concentration, indicating the presence of an optimum level of AM fungal concentration that maximized AM fungal benefit. Root colonization by fungal hyphae increased linearly across the experimental inoculation gradient. Paralleling root colonization, plant tolerance to defoliation decreased linearly along the inoculum gradient. Plant performance was similar under the whole soil and commercial treatments. Our results show a negative correlation between tolerance to defoliation and AM fungal inoculum concentration, indicating that AM fungi colonization could constrain the evolution of plant tolerance to herbivory.Key words: compensation, defences, ecological interactions, herbivory, multitrophic interactions, mycorrhizal fungi, toleranceArbuscular mycorrhizal (AM) fungi occur in all ecosystems of the world and associate with the roots of about 70% of all vascular plants.1 This association is typically regarded as mutualistic, because there is a bidirectional transfer of nutrients between the host plant and its fungal partners. Carbon compounds are passed from the plant to the fungus and, in return, there is a transfer of mineral nutrients, principally nitrate and phosphate.2 However, this association also entails costs. The amount of carbon allocated to AM fungi is estimated to range from 4% to 20% of a plant''s total carbon budget.2 Throughout the literature, there are examples of the conditionality of this relationship exemplified by a continuum of the effects of AM fungal colonization on hosts from positive, through null to negative.35 Moreover, it has been suggested that the benefit of a plant associating with fungal symbionts depends not only on the identity of AM fungi4 and plant genotypes6 but also on hyphal colonization density in roots.7 In a recent greenhouse study, we examined components of the conditionality of plant interactions with soil biota.8 We were interested in knowing how the performance and tolerance to defoliation of the annual plant Datura stramonium varied along a concentration gradient of commercial AM fungal inoculum containing four Glomus species (Mycorrhizal Applications, Grants Pass, OR USA).We found a curvilinear relationship between AM fungal inoculum concentration and plant performance, as predicted by previous models.7 The quadratic decelerating function between inoculum concentration and plant performance indicates an optimum level of AM fungal concentration (1/24th total pot volume) that maximizes AM fungal benefit (Fig. 1A). This result suggests that, in D. stramonium, positive associations between AM fungi and plant fitness may not be proportional and, that at high colonization densities, mycorrhizae may have detrimental effects, perhaps by competing with plants for nutrients, or by interfering with other essential interactions.4,5 We also found, from root examination, that hyphal colonization of roots increased linearly with AM fungi inoculum concentration. Moreover, we found that tolerance to herbivory decreased linearly with increasing AM fungal inoculum concentration (r2 = −0.40; F1,27 = 5.89; p = 0.0222; Fig. 1B), suggesting that, in our system, at high densities, mycorrhizae may become parasitic and may compete for resources (e.g., carbon) with the induced host plant response to leaf damage.Open in a separate windowFigure 1Effect of a gradient in AM fungi inoculum concentration on D. stramonium performance. (A) Non-linear relation between seed production and inoculum concentration. In general, plants achieved their maximal performance at an inoculum concentration of 1/24th total pot volume. (B) Tolerance to defoliation decreased linearly with inoculum concentration. Tolerance was calculated as the difference in standardized seed production between related damaged and undamaged genetically related plants corresponding to six genetic full-sib families.In order to know whether the effects we found in the greenhouse using commercial inoculum could be expected in the field, we addressed whether or not D. stramonium performance and tolerance were similarly influenced by whole soil field communities; including AM fungi, pathogens, root herbivores, etc. Unfortunately, D. stramonium is not native to the area where this research was undertaken, so we collected soil immediately below plants of a native congener Datura wrightii, a perennial herb that grows at the Putah Creek Reserve (UC, Davis). Pots were inoculated at a 1/12th total pot volume with this live soil and plants were grown concurrently with those in the previous experiment. We compared plant performance and tolerance under the live soil treatment and the last level of the commercial AMF inoculum gradient (both inoculated at a 1/12th total pot volume). Results indicated no differences in foliar area (F1,94 = 1.18; p = 0.2782), root mass (F1,94 = 0.99; p = 0.3222), flowering day (χ2 = 0.31; p = 0.5804) and fitness (χ2 = 0.03; p = 0.8691). Moreover, root colonization levels were (F1,94 = 0.75; p = 0.3877) in both 1/12th volume vs. live soil, as well as in the 0 AMF and sterilized soil (F1,94 = 2.56; p = 0.1130). Despite these similarities, plant tolerance did differ significantly between AMF and live soil treatments (F1,94 = 5.49; p = 0.0411), tolerance being greater under the live soil treatment (0.3755 ± 0.0311 tolerance) relative to the 1/12th AM fungal treatment (−0.5744 ± 0.2714 tolerance). This result suggests that the expression of plant tolerance may also depend on the identity of AMF colonizing roots or the number and identities of soil bacteria. We did not know which microbial species were in the soils we collected.We show that, when inoculated over a gradient of abundance, Glomus AM fungal colonization consistently decreased tolerance to herbivory. The presence of mycorrhizae could therefore decrease the adaptive value of traits increasing tolerance. We also show here that though live soil inoculum had similar effects in magnitude and direction to those of commercial AMF incoculum on growth and fitness, live soil biota collected under a congener of D. stramonium increased tolerance to herbivory at the same levels of root colonization. Overall, the results of this study indicate that the interaction between soil biotic components and the response of D. stramonium to leaf damage is highly conditional; and can depend on amounts of root colonization, as well as perhaps identities of AM fungi and bacteria. In both cases, soil biota affected the impact of damage to leaves aboveground. AM fungi may mediate the efficacy of tolerance as a defense, and this effect may be especially important in light of herbivore adaptation, when tolerance may be favored over resistance as a plant defense strategy.10  相似文献   

13.
The diversity of coral associated fungi is not enough understood, especially for scleractinian corals. Members of Porites are common and dominant species of scleractinian corals. To date, the fungal communities associated with coral Porites pukoensis have been not reported. In this paper, the diversity and activity of coral associated fungi in P. pukoensis were explored, 23 fungal strains were isolated, belonging to 10 genera and Aspergillus sp. (30.4 %) was predominant fungal genera. The sequence of isolate C1-23 in GenBank was only 90 % similarity to the most closely related sequences. It is concluded that rich fungal symbionts are attached to P. pukoensis, the rate of isolates with antibacterial activity was up to 30 %, particularly some isolates showed stronger bioactivities to gram-negative bacteria. It is included that the diversity of coral associated fungi in P. pukoensis is abundant and its activity is obviously. So the activities of fungi in P. pukoensis were deserved for further study.  相似文献   

14.
Rice (Oryza sativa L.) is, on a global scale, one of the most important food crops. Although endophytic fungi and bacteria associated with rice have been investigated, little is known about the endophytic fungi of wild rice (Oryza granulate) in China. Here we studied the root endophytic mycobiota residing in roots of O. granulate by the use of an integrated approach consisting of microscopy, cultivation, ecological indices, and direct PCR. Microscopy confirmed the ubiquitousness of dark septate endophytes (DSEs) and sclerotium-like structures in root tissues. Isolations from 204 root segments from 15 wild rice plants yielded 58 isolates, for which 31 internal transcribed spacer (ITS)-based genotypes were recorded. The best BLAST match indicated that 34.5% of all taxa encountered may represent hitherto undescribed species. Most of the fungi were isolated with a very low frequency. Calculation of ecological indices and estimation of taxon accumulation curves indicated a high diversity of fungal species. A culture-independent approach was also performed to analyze the endophytic fungal community. Three individual clone libraries were constructed. Using a threshold of 90% similarity, 35 potentially different sequences (phylotypes) were found among 186 positive clones. Phylogenetic analysis showed that frequently detected clones were classified as Basidiomycota, and 60.2% of total analyzed clones were affiliated with unknown taxa. Exophiala, Cladophialophora, Harpophora, Periconia macrospinosa, and the Ceratobasidium/Rhizoctonia complex may act as potential DSE groups. A comparison of the fungal communities characterized by the two approaches demonstrated distinctive fungal groups, and only a few taxa overlapped. Our findings indicate a complex and rich endophytic fungal consortium in wild rice roots, thus offering a potential bioresource for establishing a novel model of plant-fungal mutualistic interactions.The majority of terrestrial plant roots are intimately associated with mycorrhizal fungi, and many aspects of the ecological roles played by these mycorrhizal fungi are well understood. In recent years, however, endophytic fungi have been gaining increasing interest. There is accumulating evidence that plant roots usually harbor mycorrhizal as well as endophytic fungi (29, 30, 34, 39, 52, 63). Dark septate endophytes (DSEs), which are characterized by dark pigmented hyphae and sclerotium-like structures, are believed to represent primary nonmycorrhizal root-inhabiting fungi (23). In some cases, DSEs are even more frequent than mycorrhizal fungi (68).Endophytic fungi have frequently been reported to be associated with crop plants, including wheat (Triticum aestivum), wild barley (Hordeum brevisubulatum and Hordeum bogdanii), soya bean (Glycine max), and maize (Zea mays) (6, 9, 11, 13, 21, 26, 27, 33, 36, 67). Some of the endophytic fungi in these crops conferred resistance of the plant to insect or fungal pathogens (55).Domesticated from the wild grass Oryza rufipogon 10,000 to 14,000 years ago, rice is today the main staple for more than 3 billion people (i.e., half of the world''s population). Its consumption exceeds 100 kg per capita annually in many Asian countries, and it is the principal food for most of the world''s poorest people, particularly in Asia. The association of arbuscular mycorrhizal fungi and endophytic bacteria with rice plants has been well documented (15, 32, 35, 44, 53, 56, 60). Less, however, is known about its fungal endophytes. Fungal endophytes have been detected in cultivated rice (Oryza sativa L.) (12, 14, 37, 61, 70), and antagonistic or plant growth-stimulating properties have been claimed for some of these isolates. For example, endophytic Fusarium spp. from cultivated rice roots proved to be effective in biocontrol of a root-knot nematode (28). The occurrence of mycorrhizal and endophytic fungi in a variety of rice cultivars has also recently been reported (63).Nondomesticated, wild plant species may live in symbiosis with a unique and rich mycoflora that may have been lost during breeding of the cultivars used in agriculture (20, 59). The purpose of this research was to characterize the endophytic fungal community of the roots of rare (nearly extinct) wild rice (Oryza granulate) from a nature reserve in Yunnan, China. Our results showed that arbuscular mycorrhizal fungi were apparently absent from wild rice roots. This finding was confirmed by standard root staining techniques and molecular detection using the arbuscular mycorrhizal (AM)-specific primer pairs (69). The characterization of root endophytes in wild rice as reported in this study will improve our knowledge concerning the ecology and evolution of mutualistic plant-fungus interactions.  相似文献   

15.
Knowledge of fungal root-associates is essential for effective conservation of tropical epiphytic orchids. We investigated the diversity of root-associated fungi of Cyrtochilum myanthum, Scaphyglottis punctulata and Stelis superbiens from a tropical mountain rainforest in southern Ecuador, using a culture dependent approach. We identified 115 fungal isolates, corresponding to 49 fungal OTUs, based on sequences of the nrDNA ITS and partial 28S region. Members of Ascomycota were unambiguously dominant (37 OTUs), including Trichoderma sp. as the most frequent taxon. Members of Basidiomycota (Agaricales and Polyporales) and Mucoromycota (Umbelopsidales and Mortierellales) were also identified. Four potential mycorrhizal OTUs of Tulasnellaceae and Ceratobasidiaceae were isolated from C. myanthum and S. superbiens. Fungal community composition was examined using Sørensen and Jaccard indices of similarity. Alfa diversity was significantly different between C. myanthum and S. superbiens. No difference in beta diversity of the fungal communities between the 3 orchid species and the collecting sites was detected. The study revealed a high diversity of fungi associated with orchid roots. Our results contribute to a better understanding of specific relationships between epiphytic orchids and their root-associated fungi.  相似文献   

16.

Background and Aims

Because most parasitic plants do not form mycorrhizal associations, the nutritional roles of arbuscular mycorrhizal (AM) fungi in them have hardly been tested. Some facultative root hemiparasitic Pedicularis species form AM associations and hence are ideal for testing both direct and indirect effects of AM fungi on their nutrient acquisition. The aim of this study was to test the influence of AM inoculation on phosphorus (P) uptake by Pedicularis rex and P. tricolor.

Methods

32P labelling was used in compartmented pots to assess the contribution of the AM pathway and the influence of AM inoculation on P uptake from a host plant into the root hemiparasites. Laboratory isolates of fungal species (Glomus mosseae and G. intraradices) and the host species (Hordeum vulgare ‘Fleet’) to which the two Pedicularis species showed obvious responses in haustorium formation and growth in previous studies were used.

Key Results

The AM colonization of both Pedicularis spp. was low (<15 % root length) and only a very small proportion of total plant P (<1 %) was delivered from the soil via the AM fungus. In a separate experiment, inoculation with AM fungi strongly interfered with P acquisition by both Pedicularis species from their host barley, almost certainly because the numbers of haustoria formed by the parasite were significantly reduced in AM plants.

Conclusions

Roles of AM fungi in nutrient acquisition by root parasitic plants were quantitatively demonstrated for the first time. Evidence was obtained for a novel mechanism of preventing root parasitic plants from overexploiting host resources through AM fungal-induced suppression of the absorptive structures in the parasites.  相似文献   

17.
Arbuscular mycorrhizal (AM) symbiosis is among the factors contributing to plant survival in serpentine soils characterised by unfavourable physicochemical properties. However, AM fungi show a considerable functional diversity, which is further modified by host plant identity and edaphic conditions. To determine the variability among serpentine AM fungal isolates in their effects on plant growth and nutrition, a greenhouse experiment was conducted involving two serpentine and two non-serpentine populations of Knautia arvensis plants grown in their native substrates. The plants were inoculated with one of the four serpentine AM fungal isolates or with a complex AM fungal community native to the respective plant population. At harvest after 6-month cultivation, intraradical fungal development was assessed, AM fungal taxa established from native fungal communities were determined and plant growth and element uptake evaluated. AM symbiosis significantly improved the performance of all the K. arvensis populations. The extent of mycorrhizal growth promotion was mainly governed by nutritional status of the substrate, while the effect of AM fungal identity was negligible. Inoculation with the native AM fungal communities was not more efficient than inoculation with single AM fungal isolates in any plant population. Contrary to the growth effects, a certain variation among AM fungal isolates was revealed in terms of their effects on plant nutrient uptake, especially P, Mg and Ca, with none of the AM fungi being generally superior in this respect. Regardless of AM symbiosis, K. arvensis populations significantly differed in their relative nutrient accumulation ratios, clearly showing the plant’s ability to adapt to nutrient deficiency/excess.  相似文献   

18.

Background and Aims

The structures of arbuscular mycorrhizal (AM) fungi (hyphae, arbuscules, vesicles, spores) are used to make inferences about fungal activity based on stored samples, yet the impact of storage method has not been quantified, despite known effects of temperature and host condition on AM fungal colonisation.

Methods

We measured how four storage treatments (cool or ambient conditions, with and without plant shoots attached, i.e. n?=?four treatment combinations) affected AM fungal colonisation of subterranean clover (Trifolium subterraneum L.) after 0, 2, 6 and 10 days of storage. Roots were assessed for colonisation of fine root endophyte and coarse AM fungi.

Results

For coarse AM fungi, total colonisation was unaffected, but arbuscules were reduced at Day 6 and increased again by Day 10, except Ambient-Minus-Shoots. There was a loss of vesicles in all treatments at Day 2, and an increase in spore number at Day 6 within Cool-Plus-Shoots. In contrast, for fine root endophyte, total colonisation was greatly reduced at Day 6 but increased again at Day 10, in all except the Cool-Plus-Shoots treatment.

Conclusions

Our data demonstrate that AM fungal activity is not suspended in commonly used plant storage conditions. Storage method and time impacted AM fungal colonisation, particularly for fine root endophyte. We recommend samples are processed within 2 days of harvest.
  相似文献   

19.

Background and aims

This is an in natura study aimed to determine the potential of Rosmarinus officinalis for phytostabilization of trace metal and metalloid (TMM)-contaminated soils in the Calanques National Park (Marseille, southeast of France). The link between rosemary tolerance/accumulation of As, Pb, Sb, and Zn and root symbioses with arbuscular mycorrhizal (AM) fungi and/or dark septate endophytes (DSE) was examined.

Methods

Eight sites along a gradient of contamination were selected for soil and root collections. TMM concentrations were analyzed in all the samples and root symbioses were observed. Moreover, in the roots of various diameters collected in the most contaminated site, X-ray microfluorescence methods were used to determine TMM localization in tissues.

Results

Rosemary accumulated, in its roots, the most labile TMM fraction in the soil. The positive linear correlation between TMM concentrations in soil and endophyte root colonization rates suggests the involvement of AM fungi and DSE in rosemary tolerance to TMM. Moreover, a typical TMM localization in root peripheral tissues of thin roots containing endophytes forming AM and DSE development was observed using X-ray microfluorescence.

Conclusions

Rosemary and its root symbioses appeared as a potential candidate for a phytostabilization process of metal-contaminated soils in Mediterranean area.  相似文献   

20.
Arbuscular mycorrhizal (AM) fungi are widespread root symbionts that often improve the fitness of their plant hosts. We tested whether local adaptation in mycorrhizal symbioses would shape the community structure of these root symbionts in a way that maximizes their symbiotic functioning. We grew a native prairie grass (Andropogon gerardii) with all possible combinations of soils and AM fungal inocula from three different prairies that varied in soil characteristics and disturbance history (two native prairie remnants and one recently restored). We identified the AM fungi colonizing A. gerardii roots using PCR amplification and cloning of the small subunit rRNA gene. We observed 13 operational taxonomic units (OTUs) belonging to six genera in three families. Taxonomic richness was higher in the restored than the native prairies with one member of the Gigaspora dominating the roots of plants grown with inocula from native prairies. Inoculum source and the soil environment influenced the composition of AM fungi that colonized plant roots. Correspondingly, host plants and AM fungi responded significantly to the soil–inoculum combinations such that home fungi often had the highest fitness and provided the greatest benefit to A. gerardii. Similar patterns were observed within the soil–inoculum combinations originating from two native prairies, where five sequence types of a single Gigaspora OTU were virtually the only root colonizers. Our results indicate that indigenous assemblages of AM fungi were adapted to the local soil environment and that this process occurred both at a community scale and at the scale of fungal sequence types within a dominant OTU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号