首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured daily energy expenditure (DEE) and water turnover rates in lactating and non-lactating short beaked echidnas (Tachyglossus aculeatus) using the doubly labelled water technique during the lactation period in spring. Reproductively inactive echidnas were on average significantly heavier (median: 3354 g; range: 2929-3780 g; N=4) than lactating females (median: 2695 g; range: 2690-2715 g; N=3) during the equivalent time period. The median water flux rate of lactating echidnas (152 ml day(-1); range: 120-198 ml day(-1)) did not differ significantly from that of non-lactating females (170 ml day(-1); range: 128-227 ml day(-1)). The median DEE of echidnas that were lactating was 645 kJ day(-1) (range: 581-850 kJ day(-1)), which was not different from the median DEE of non-reproductive control females (763 kJ day(-1); range: 720-766 kJ day(-1)). Lactating females somehow compensate for the energy costs of milk production, resulting in a daily energy budget that is not different from that of non-reproductive females. At least part of their energy minimising strategy could involve the use of moderate heterothermy, allowing a greater proportion of daily energy expenditure to diverted to milk production.  相似文献   

2.
We measured resting metabolic rate (RMR), daily energy expenditure (DEE) and metabolisable energy intake (MEI) in two breeds of dog during peak lactation to test whether litter size differences were a likely consequence of allometric variation in energetics. RMR of Labrador retrievers (30 kg, n=12) and miniature Schnauzers (6 kg, n=4) averaged 3437 and 1062 kJ/day, respectively. DEE of Labradors (n=6) and Schnauzers (n=4) averaged 9808 and 2619 kJ/day, respectively. MEI of Labradors (n=12) was 22448 kJ/day and of Schnauzers (n=7) was 5382 kJ/day. DEE of Labrador pups (2.13 kg, n=19) was 974 kJ/day and Schnauzers (0.89 kg, n=7) were 490 kJ/day. Although Labradors had higher MEIs than Schnauzers during peak lactation, there was no difference in mass-specific energy expenditure between the two breeds. Hence, it is unlikely that litter size variation is a likely consequence of differences in maternal energy expenditure. Individual offspring were relatively more costly for mothers of the smaller breed to produce. Therefore, litter size variations were consistent with the expectation that smaller offspring should be more costly for mothers, but not that smaller mothers should per se invest more resources in reproduction.  相似文献   

3.
《Journal of avian biology》2017,48(4):536-543
For cooperatively breeding birds, it has been proposed that breeders should reduce their investment in eggs when they count on helpers, because this can be compensated for by helpers provisioning of nestlings. Data from some species have supported this prediction, but this is not the case in others. It has also been proposed that mothers should not reduce but rather increase investment if the presence of helpers enhances the reproductive value of offspring, a pattern that might also influence egg production as long as helpers are predictable for laying females. Here, we studied maternal expenditure in eggs and clutches in the Iberian magpie, to see whether mothers reduce their expenditure at the egg stage in the presence of helpers. Our results show that investment in clutches varied depending on the year, date in the season and age of the mother, but there were no reductions in maternal expenditure per individual egg when they counted on helpers. On the contrary, a pattern emerged in the opposite direction of more investment in eggs associated with the future presence of helpers at the nestling stage. Our data suggest that the predictability of helpers, along with the type of benefits accrued from the contribution of helpers, may be crucial to understanding the reaction of mothers at egg production.  相似文献   

4.
Analysis of records of a bank vole breeding colony suggests that fertility is high immediately post partum, declines during established lactation and rises after weaning of young. Mating tests with lactating females and females whose young had been removed at birth showed that receptivity is reduced during lactation, although amongst the females which did mate there was no difference between lactating and non-lactating animals in the proportion which produced litters. However, average size of litters at birth was significantly larger for the lactating than for the non-lactating females. There is some evidence suggesting that this difference may arise after ovulation has occurred. Virgin females were no more receptive or fertile than lactating females.  相似文献   

5.
Life history theory predicts that mothers should trade off current and future reproductive attempts to maximize lifetime fitness. When breeding conditions are favourable, mothers may either increase investment in the eggs to improve the quality of the offspring or save resources for future reproduction as the good raising environment is likely to compensate for a 'bad start'. In cooperatively breeding birds, the presence of helpers improves breeding conditions so that mothers may vary the number, size and quality of the eggs in response to the composition of the group. Here, we show that in cooperatively breeding carrion crows Corvus corone corone, where nonbreeding males are more philopatric and more helpful at the nest than females, breeding females decreased egg size as the number of subordinate males in the group increased. However, despite the smaller investment in egg size, fledglings' weight increased in groups with more male subordinates, improving post-fledging survival and indicating that helpers fully compensated for the initial 'bad start'. These results highlight a 'hidden effect' of helpers that bears profound implications for understanding the ultimate function of helping.  相似文献   

6.
Maternal investment tactics in superb fairy-wrens   总被引:2,自引:0,他引:2  
In cooperatively breeding species, parents often use helper contributions to offspring care to cut their own costs of investment (i.e. load-lightening). Understanding the process of load-lightening is essential to understanding both the rules governing parental investment and the adaptive value of helping behaviour, but little experimental work has been conducted. Here we report the results of field experiments to determine maternal provisioning rules in cooperatively breeding superb fairy-wrens (Malurus cyaneus). By manipulating carer: offspring ratios, we demonstrate that helpers allow females to reduce the rate at which they provision their brood. Female reductions, however, were less than that provided by helpers, so that chicks still received food at a faster rate in the presence of helpers. Despite this, chicks fed by parents and helpers were not heavier than those provisioned by parents alone. This is because maternal load-lightening not only occurs during the chick provisioning stage, but also at the egg investment stage. Theoretically, complete load-lightening is predicted when parents value themselves more highly than their offspring. We tested this idea by 'presenting' mothers with a 'choice' between reducing their own levels of care and increasing investment in their offspring. We found that mothers preferred to cut their contributions to brood care, just as predicted. Our experiments help to explain why helper effects on offspring success have been difficult to detect in superb fairy-wrens, and suggest that the accuracy with which theoretical predictions of parental provisioning rules are matched in cooperative birds depends on measuring maternal responses to helper presence at both the egg and chick stages.  相似文献   

7.
The high energetic costs of lactation can lead to fundamental trade-offs in life-history traits, particularly in young females that reproduce before completing body growth. We assessed whether lactating female mountain goats (Oreamnos americanus) used behavioural tactics at fine spatio-temporal scales to increase energy intake to compensate for the costs of lactation. Lactating females increased bite rate and chewing rate compared with non-lactating females, but selected similar foraging sites in terms of plant quality and abundance. At peak lactation, forage intake of lactating females was >40% greater than that of non-lactating females. For females that had reached asymptotic body mass (i.e. ≥6 years old), summer mass gain of lactating females was similar to that of non-lactating females. At 4 and 5 years of age, however, daily mass gain of lactating females was about 20% lower than that of non-lactating females. We conclude that increased foraging may allow fully-grown lactating females to compensate for the energetic costs of lactation, but that there is a major trade-off between mass gain and lactation for younger females. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Females in numerous rodent species engage in communal nesting and breeding, in which they share one or more nests to rear their young. A potential cost of communal nesting and breeding is that mothers divert resources to unrelated offspring. One way mothers could avoid this cost is to recognize and favour their own young over unrelated offspring when allocating maternal effort. We assessed whether female degus (Octodon degus), a communally nesting and breeding caviomorph rodent, discriminate between their own and unrelated offspring during lactation. Female degus previously have been shown to distinguish between their own and unrelated pups when exposed to odours from both. We measured pup discrimination based on differences in the retrieval behaviour of females that were in early or intermediate lactation directed towards their own and unrelated offspring; offspring presented were of similar or different age. Before any event of pup retrieval, lactating females spent similar amounts of time and interacted to a similar extent with their own and unrelated pups. During pup retrieval, all lactating females transported both pups to the nest. Neither relatedness to pups, nor pup‐age differences, influenced the order in which pups were retrieved to the nest. Dams waited similar amounts of time before retrieving the first pup when the first transported young was their own or unrelated. Likewise, females waited similar amounts of time before retrieving the second pup when the pup transported first was their own or unrelated. The time between first and second pup transport events was longer when dams were in early when compared with intermediate lactation, but only when pups were of similar age. All experimental subjects nursed unrelated pups after they were retrieved. Collectively, our results do not support the hypothesis that communally breeding female degus use their recognition ability to discriminate against unrelated offspring in favour of their own young.  相似文献   

9.
1. Energy and water requirements of lactating porcupines were compared with results of previous studies on energetics of reproduction in small-bodied rodents. 2. Mass-specific food and water intake of control and lactating porcupines was examined throughout the 68-78 days of lactation. Water intake of lactating females was 16% higher than that of non-lactating animals. 3. Digestive efficiency of porcupines fed commercial rabbit chow was 54-60%; there was no significant difference in efficiency between lactating and non-lactating animals. 4. Total mean energetic intake throughout lactation was only 17% greater than that of non-lactating animals. 5. Reproductive rate and costs of lactation in porcupines are considerably less than in other rodents and other comparably-sized mammals, but the amount of energy allocated to each offspring is quite high. 6. The reproductive pattern of porcupines is associated with low juvenile mortality and long adult lifespan (both of which reflect the porcupine's protective morphology), and may be related to the quality of winter diets.  相似文献   

10.
Food intake and digestion were investigated at four stages in the first 218 days of lactation in tammar wallabies ( Macropus eugenii ) carrying litters of one, and in non-lactating females as a control. This period of lactation in tammars, which includes the phase of exponential growth of the young, is comparable to gestation plus early lactation in ruminant placentals. Food and energy intakes by mothers remained at the non-lactating level while rate of growth of young was slow (up to Day 105 of lactation) but then rose as the growth rate of young increased, keeping pace with the predicted requirements for milk synthesis and export. There was no indication of the energy deficit seen in late gestation and early lactation in many herbivorous placental mammals. The gross efficiency of utilization of ME for growth of offspring was estimated as 13–15%, which is at least as high as values for placentals during gestation. The mean intake of metabolizable energy (ME) at 218 days was 603 kJ.kg-0.75.d-1, which represented 136% of ME intake by nonlactating females, or an increment of 159 kJ.kg-0.75.d-1. It was estimated that ME intake may rise to 773 kJ.kg-0.75.d-1 at peak lactation, which would be 174% of the non-lactating level or an increment of 329 kJ.kg-0.75. d-1. This allometrically-scaled increment is similar to values for some ruminants that use body reserves extensively to offset peak lactational food requirements. These and previously-reported trends suggest that ecologically comparable herbivorous marsupials and placentals utilize different physiological strategies to minimize demands on food resources during reproduction, but that both daily and overall demands can be similar.  相似文献   

11.
Isotope-based techniques for the measurement of water turnover, energy expenditure, and milk intake often assume that there is no recycling of isotopes once they have left the labeled animal. In experiments involving lactating females or their suckling offspring, there are several possible routes of isotope recycling. These include the consumption of labeled milk by offspring, the ingestion of labeled excreta, and the rebreathing of exhaled labeled CO(2) or water vapor by both mother and offspring. Isotope recycling might be especially important during lactation because the offspring are in close contact with each other and their mother for prolonged periods. We show here in 24- to 30-day-old domestic dog Canis familiaris puppies that there was no detectable transfer of (18)O or (2)H from labeled to unlabeled pups in two litters (16 pups, 8 labeled, 8 unlabeled) that were weaned early and independent of their mother. However, there was a significant transfer of both isotopes from labeled to unlabeled pups and from labeled pups to their mothers in nine equivalent nursing litters of the same age (27 labeled, 26 unlabeled pups). The increases in enrichment of isotopes in unlabeled offspring were greater than the increases in enrichment of the mothers. This indicates that maternal ingestion of offspring excreta and subsequent transfer of isotope in milk is not the sole pathway of recycling. Additional routes must also be important, such as exchange of isotope between pups on saliva-coated nipples and perhaps direct ingestion of excreta by unweaned young. Recycling is unlikely to be an important factor when determining maternal metabolic rate during peak lactation in domestic dogs. However, experiments that are designed to assess the energy demands of pups and isotope-based estimates of water turnover in offspring may need to take into account any effects of isotope recycling. In a theoretical example, removing the effects of recycling increased the measured energy expenditure in pups by up to 7% and increased the calculated elimination rates of both isotopes by up to 11.1% in (18)oxygen and 10.9% in (2)hydrogen.  相似文献   

12.
Koalas are generally considered to be limited by their ability to acquire energy from their diet of Eucalyptus foliage and have the lowest mass-specific peak lactational energy output measured in any mammal to date. This study considered the energetics and sources of energy utilised for reproduction in free-ranging female koalas. Energy requirements and foliage intake were greater in both lactating and non-lactating females in winter than summer, presumably due to demands of thermoregulation. Koalas met the peak energy requirements of lactation primarily by a 36% increase in their intake of foliage. Metabolic energy expenditure (field metabolic rate, 1778 kJ.day–1 for a 6.25-kg female at the time of peak lactation) was not elevated during lactation. This was due to compensation for part of their lactational demands by reduction of another, non-reproductive, component of their energy budget. The observed energetic compensation was probably due primarily to substitution of the waste heat from the metabolic costs of milk production and increased heat increment of feeding for thermoregulatory energy expenditure. There may also have been energetic compensation by reduction of some aspect of maintenance metabolism. Such energetic compensation, together with the strategy of spreading lactation over a long period, minimises the magnitude of lactational energy demands on koalas, and thus the increase in daily food intake required during lactation. As the nutritional requirements of females at peak lactation are the highest of any members of the population, low reproductive requirements effectively increase the types and amount of habitat able to support koala populations.Abbreviations FMR field metabolic rate - HIF heat increment of feeding - RMR resting metabolic rate - O2 rate of oxygen consumptionCommunicated by I.D. Hume  相似文献   

13.
The timing of the chick‐rearing phase is known to have a profound effect on the reproductive success of birds. However, little is known about the energetic costs faced by the parents during different periods of the breeding season. These costs may have vital consequences for both their survival and future reproduction. In most studies, daily energy expenditure (DEE) of breeding and non‐breeding birds has been compared, without controlling for the effect of season. In the present study, we examined the energy demands of breeding compared to non‐breeding Palestine sunbirds Nectarinia osea and whether there were sex‐specific differences in DEE within and between different seasons. We predicted that DEE would be elevated when birds rear chicks, especially at cooler ambient temperatures. Time‐energy budgets were constructed for pairs of sunbirds, rearing chicks, or not breeding, in spring and summer. There were significant seasonal differences in estimates of DEE in non‐breeders that were 21% higher in spring than in summer. We attributed these to increases in non‐flight metabolic rate rather than changes in time spent on different activities. Our estimates of DEE for the birds that were rearing chicks were higher than non‐breeding adults. In females the increase in DEE when breeding, compared to when not breeding, was similar in both spring and summer, while males increased their DEE much less when breeding in spring. The differences in estimated DEE, however, were not significant between male and female birds in any season. Between seasons, female breeders had 17.1% higher DEE in spring than in summer, while male breeders showed no difference in DEE when rearing chicks in different seasons. Accordingly, our initial prediction was supported, as DEE in chick‐rearing adults was higher than in non‐breeding adults. In addition, although temperatures are lower in spring, breeding in the spring is only more costly than breeding in summer for females. Apparently, males are more flexible in reallocating their time and energy spent on different activities.  相似文献   

14.
In cooperatively breeding species, in which non‐breeding helpers assist in rearing the offspring of breeding individuals, conflicts of interest commonly occur between breeders and helpers over their respective contributions to offspring care. During such conflicts, breeders might use aggressive behavior to enforce contributions of helpers to offspring care, especially if helpers are not related to the breeders and their offspring and thus do not stand to gain indirect fitness benefits by helping. Using a combination of behavioral and genetic data, we investigated in the cooperatively breeding El Oro parakeet Pyrrhura orcesi (i) whether breeders are commonly dominant over helpers, (ii) whether they use aggressive behavior toward helpers to enforce offspring provisioning, and (iii) whether the relatedness of helpers to the nestlings affects the frequency of—or the reaction of helpers to—such aggressions. Even though breeders were generally dominant over helpers, we found no evidence for the enforcement of alloparental care. This finding was independent of the relatedness between helpers and nestlings, even though distantly related helpers overall contributed little to offspring care. We suggest that the inability of breeders to properly assess the work rates of their helpers at least partly explains the absence of enforcement. More generally, our results add to a body of evidence suggesting that enforcement might be an exceptional rather than a general mechanism underlying the expression of alloparental care in cooperatively breeding species.  相似文献   

15.
Lactation is the most energetically demanding period in the female mammal's life. We measured maternal energy intake, uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT), serum-leptin concentration, and litter growth in lactating Brandt's voles (Lasiopodomys brandtii) with different litter sizes. Litter mass was positively related to litter size but there was no difference in pup mass at birth. Maternal gross energy intake at peak lactation was positively correlated with litter size and litter mass. Maternal resting metabolic rate (RMR) was positively correlated with litter mass, but not with litter size. No significant differences were detected in body-fat mass, serum-leptin concentration, or UCP1 in lactating voles with different litter sizes. Serum-leptin concentration was negatively correlated with energy intake during lactation. Our data did not support the hypothesis that there is a trade-off in energy allocation between maternal maintenance and offspring growth in lactating Brandt's voles, but support the idea that if the mothers with ten pups should have less energy available for their maintenance than mothers raising fewer pups. Also, leptin is probably not the only factor that induces the high energy intake in mothers with large litter sizes, although it was involved in the regulation of energy intake during lactation.  相似文献   

16.
Lactation is the most energetically expensive period for female mammals and is associated with some of the highest sustained metabolic rates (SusMR) in vertebrates (reported as total energy throughput). Females typically deal with this energy demand by increasing food intake and the structure of the alimentary tract may act as the central constraint to ceilings on SusMR at about seven times resting or standard metabolic rate (SMR). However, demands of lactation may also be met by using a form of metabolic compensation such as reducing locomotor activities or entering torpor. In some phocid seals, cetaceans and bears, females fast throughout lactation and thus cannot offset the high energetic costs of lactation through increased food intake. We demonstrate that fasting grey seal females sustain, for several weeks, one of the highest total daily energy expenditures (DEE; 7.4 x SMR) reported in mammals, while progressively reducing maintenance metabolic expenditures during lactation through means not explained by reduction in lean body mass or behavioural changes. Simultaneously, the energy-exported in milk is progressively increased, associated with increased lipoprotein lipase activity in the mammary gland, resulting in greater offspring growth. Our results suggest that females use compensatory mechanisms to help meet the extraordinary energetic costs of lactation. Additionally, although the concepts of SusMR and ceilings on total DEE may be somewhat different in fasting lactating species, our data on phocid seals demonstrate that metabolic ceilings on milk energy output, in general, are not constrained by the same kind of peripheral limitations as are other energy-consuming tissues. In phocid seals, the high ceilings on DEE during lactation, coupled with metabolic compensation, are undoubtedly important factors enabling shortened lactation.  相似文献   

17.
Cooperatively breeding birds have been used frequently to study sex allocation because the adaptive value of the sexes partly depends upon the costs and benefits for parents of receiving help. I examined patterns of directional sex allocation in relation to maternal condition (Trivers-Willard hypothesis), territory quality (helper competition hypothesis), and the number of available helpers (helper repayment hypothesis) in the superb starling, Lamprotornis superbus, a plural cooperative breeder with helpers of both sexes. Superb starlings biased their offspring sex ratio in relation to prebreeding rainfall, which was correlated with maternal condition. Mothers produced relatively more female offspring in wetter years, when they were in better condition, and more male offspring in drier years, when they were in poorer condition. There was no relationship between offspring sex ratio and territory quality or the number of available helpers. Although helping was male biased, females had a greater variance in reproductive success than males. These results are consistent with the Trivers-Willard hypothesis and suggest that although females in most cooperatively breeding species make sex allocation decisions to increase their future direct reproductive success, female superb starlings appear to base this decision on their current body condition to increase their own inclusive fitness.  相似文献   

18.
In many bird populations, variation in the timing of reproduction exists but it is not obvious how this variation is maintained as timing has substantial fitness consequences. Daily energy expenditure (DEE) during the egg laying period increases with decreasing temperatures and thus perhaps only females that can produce eggs at low energetic cost will lay early in the season, at low temperatures. We tested whether late laying females have a higher daily energy expenditure during egg laying than early laying females in 43 great tits (Parus major), by comparing on the same day the DEE of early females late in their laying sequence with DEE of late females early in their egg laying sequence. We also validated the assumption that there are no within female differences in DEE within the egg laying sequence. We found a negative effect of temperature and a positive effect of female body mass on DEE but no evidence for differences in DEE between early and late laying females. However, costs incurred during egg laying may have carry-over effects later in the breeding cycle and if such carry-over effects differ for early and late laying females this could contribute to the maintenance of phenotypic variation in laying dates.  相似文献   

19.
Summary We have analyzed seasonal shifts of energy and time allocation in a population of golden-mantled ground squirrels (Spermophilus saturatus) by directly measuring total daily energy expenditure (DEE) with an isotopic technique (doubly labeled water=dlw), and by estimating components of total DEE through an integration of field behavioral observations with laboratory-measured rates of energy expenditure (oxygen consumption) associated with major behavioral and physiological states. Hibernation laster about 7 1/2 months, and the 4 1/2-month activity season consisted of mating, a 28-d gestation of 3–5 young, 5 1/2 weeks of postnatal growth building to a peak in lactation just before the young emerged above ground, an additional 2–3-week period of maternal care before dispersal, and finally restoration of body mass preceding hibernation. Although the hibernation season comprised nearly two-thirds of the year, it involved only 13–17% of annual energy expenditure, leaving about 85% of energy expenditure for the active season. Ground squirrels were actually present on the surface for only about 11% of the year's time, and the foraging time required to obtain the total annual energy supply amounted to only about 2% of the year's time. The squirrels fed mainly on herbs in the early season and hypogeous fungi later; both were used extensively during peak lactation when female energy expenditure and demand were maximal. Average daily foraging time increased steadily throughout the season to a maximum of 28% of aboveground time as availability of greens diminished and fungus predominated in the diet; time availability did not limit foraging since the animals sat on average for 65% of the daily surface time of about 7 h. Timing of reproduction is apparently optimized such that peak reproductive energy demands are matched with maximal food availability and moderate thermal conditions that minimize energy demand. Despite the greater body mass of males, the greatest total DEE (measured by dlw) of any squirrels at any time of year was that of females during peak lactation. For production of young and lactation through above-ground emergence of an average litter of 2.7, females required a total energy increase of 24% above annual nonreproductive metabolism. Yearling females all bred and performed similarly to older females, yet some costs were greater because the yearlings began and ended hibernation at smaller mass, compensated by giving birth later, and finally showed a greater absolute increase in body mass over the active season than older females. Annual metabolic energy expenditure of breeding males was about 18% greater than that of females, due to greater male body mass. Yet the annual energy intake requirement for both sexes was essentially identical (about 42MJ) due to the greater reproductive export by females in the form of newborn and milk. During the mating season males showed wide-ranging exploratory behavior and social interactions, including aggression, that involved considerable locomotory energy expenditures. Although we did not directly account for the energetics of these specific reproductive behaviors, they are critical to male reproductive success and on a daily basis they probably involved much greater energy expenditure than sperm production. Some yearling males avoided these costs by foregoing testicular development, yet they allocated four times as much energy to growth as older males, thereby increasing somatic condition for the future.  相似文献   

20.
Grooming is the most common form of affiliative behavior in primates that apart from hygienic and hedonistic benefits offers important social benefits for the performing individuals. This study examined grooming behavior in a cooperatively breeding primate species, characterized by single female breeding per group, polyandrous matings, dizygotic twinning, delayed offspring dispersal, and intensive helping behavior. In this system, breeding females profit from the presence of helpers but also helpers profit from staying in a group and assisting in infant care due to the accumulation of direct and indirect fitness benefits. We examined grooming relationships of breeding females with three classes of partners (breeding males, potentially breeding males, (sub)adult non-breeding offspring) during three reproductive phases (post-partum ovarian inactivity, ovarian activity, pregnancy) in two groups of wild moustached tamarins (Saguinus mystax). We investigated whether grooming can be used to regulate group size by either "pay-for-help" or "pay-to-stay" mechanisms. Grooming of breeding females with breeding males and non-breeding offspring was more intense and more balanced than with potentially breeding males, and most grooming occurred during the breeding females' pregnancies. Grooming was skewed toward more investment by the breeding females with breeding males during the phases of ovarian activity, and with potentially breeding males during pregnancies. Our results suggest that grooming might be a mechanism used by female moustached tamarins to induce mate association with the breeding male, and to induce certain individuals to stay in the group and help with infant care.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号