首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Biosynthetic pulse-chase analyses have previously demonstrated that the prohormone convertase PC2 is first synthesized as a precursor pro-PC2 and that zymogen activation to PC2 occurs following the slow exit of pro-PC2 from the endoplasmic reticulum (ER) and its concentration within the trans-Golgi network (TGN). The endocrine and neural protein 7B2 is first synthesized as a nonglycosylated precursor (pro-7B2), which is cleaved within the TGN by a furin-like ubiquitous convertase at the RRKRR155S site to generate 7B2. In this report, we demonstrate that within the ER, pro-7B2 binds pro-PC2 but not any of the other convertases furin, PC1, PACE4, or PC5. This specific binding is Ca2+ dependent and does not require an N-glycosylated pro-PC2. Mutagenesis of the RRKRRS sequence demonstrated that the intact hexapeptide is critical for this binding, because the latter was abolished by mutations of the RR152 and greatly diminished by mutations of either the R151 or S156 residues of pro-7B2. Once the complex is formed in the ER, it is then transported to the TGN where furin or a furin-like convertase cleaves both precursors, even when present as a complex. We also provide evidence that following zymogen cleavage, 7B2 remains bound to PC2, suggesting the presence of at least one other Ca2+-dependent binding site within the 7B2 sequence. Coexpression of 7B2 and PC2, although resulting in an elevation of the level of pro-PC2, did not eliminate the processing of pro-PC2 to PC2. Accordingly, cellular coexpression of 7B2 together with PC2 and proopiomelanocortin only marginally diminished the ability of PC2 to cleave proopiomelanocortin into β-endorphin in constitutive cells and had no effect in regulated cells. These results suggest that in vivo pro-7B2 is a specific PC2-binding protein that only transiently inhibits the processing of pro-PC2 until it reaches the TGN.  相似文献   

2.
Phosphorylation of human vescicle docking protein p115 at Ser-942 (homologous to Ser-940 in rat p115) promotes its dissociation from the Golgi membrane. Here we show that a peptide encompassing the 934--950 sequence of p115 is unaffected or poorly phosphorylated by a variety of Ser/Thr protein kinases with the notable exception of the Golgi apparatus casein kinase (G-CK) which phosphorylates it with an efficiency comparable to that of its optimal peptide substrates. In contrast phosphorylation of the p115 peptide by protein kinase CK2 is negligible compared to that of the specific peptide substrates of this kinase. Phosphorylation by G-CK is abolished if a conserved cluster of acidic residues at position between n + 4 and n + 9 (EDDDDE) is replaced by a neutral stretch (GAGAGA). These data strongly support the view that G-CK but not the other two classes of ubiquitous "casein kinases" (CK1 and CK2) is the natural phosphorylating agent of p115.  相似文献   

3.
Prohormone convertases 1 (PC1) and 2 (PC2) are members of a family of subtilisin-like proprotein convertases responsible for proteolytic maturation of a number of different prohormones and proneuropeptides. Although sharing more than 50% homology in their catalytic domains, PC1 and PC2 exhibit differences in substrate specificity and susceptibility to inhibitors. In addition to these differences, PC2, unlike PC1 and other members of the family, specifically binds the neuroendocrine protein 7B2. In order to identify determinants responsible for the specific properties of the PC2 catalytic domain, we compared its primary sequence with that of other PCs. This allowed us to distinguish a PC2-specific sequence at positions 242-248. We constructed two PC2 mutants in which residues 242 and 243 and residues 242-248 were replaced with the corresponding residues of PC1. Studies of in vivo cleavage of proenkephalin, in vivo production of alpha-MSH from proopiomelanocortin, and in vitro cleavage of a PC2-specific artificial substrate by mutant PC2s did not reveal profound alterations. On the other hand, both mutant pro-PC2s exhibited a considerably reduced ability to bind to 21-kDa 7B2. In addition, inhibition of mutant PC2-(242-248) by the potent natural inhibitor 7B2 CT peptide was almost completely abolished. Taken together, our results show that residues 242-248 do not play a significant role in defining the substrate specificity of PC2 but do contribute greatly to binding 7B2 and are critical for inhibition with the 7B2 CT peptide.  相似文献   

4.
In neuronal precursor cells, the magnitude and longevity of mitogen-activated protein (MAP) kinase cascade activation contribute to the nature of the cellular response, differentiation, or proliferation. However, the mechanisms by which neurotrophins promote prolonged MAP kinase signaling are not well understood. Here we defined the Rin GTPase as a novel component of the regulatory machinery contributing to the selective integration of MAP kinase signaling and neuronal development. Rin is expressed exclusively in neurons and is activated by neurotrophin signaling, and loss-of-function analysis demonstrates that Rin makes an essential contribution to nerve growth factor (NGF)-mediated neuronal differentiation. Most surprisingly, although Rin was unable to stimulate MAP kinase activity in NIH 3T3 cells, it potently activated isoform-specific p38alpha MAP kinase signaling and weakly stimulated ERK signaling in pheochromocytoma (PC6) cells. This cell-type specificity is explained in part by the finding that Rin binds and stimulates b-Raf but does not activate c-Raf. Accordingly, selective down-regulation of Rin in PC6 cells suppressed neurotrophin-elicited activation of b-Raf and p38, without obvious effects on NGF-induced ERK activation. Moreover, the ability of NGF to promote neurite outgrowth was inhibited by Rin knockdown. Together, these observations establish Rin as a neuronal specific regulator of neurotrophin signaling, required to couple NGF stimulation to sustain activation of p38 MAP kinase and b-Raf signaling cascades required for neuronal development.  相似文献   

5.
Previous studies showed that insulin antagonizes AMP-activated protein kinase activation by ischemia and that protein kinase B might be implicated. Here we investigated whether the direct phosphorylation of AMP-activated protein kinase by protein kinase B might participate in this effect. Protein kinase B phosphorylated recombinant bacterially expressed AMP-activated protein kinase heterotrimers at Ser(485) of the alpha1-subunits. In perfused rat hearts, phosphorylation of the alpha1/alpha2 AMP-activated protein kinase subunits on Ser(485)/Ser(491) was increased by insulin and insulin pretreatment decreased the phosphorylation of the alpha-subunits at Thr(172) in a subsequent ischemic episode. It is proposed that the effect of insulin to antagonize AMP-activated protein kinase activation involves a hierarchical mechanism whereby Ser(485)/Ser(491) phosphorylation by protein kinase B reduces subsequent phosphorylation of Thr(172) by LKB1 and the resulting activation of AMP-activated protein kinase.  相似文献   

6.
Abstract : Prohormone convertase (PC) 2 plays an important role in the processing of neuropeptide precursors via the regulated secretory pathway in neuronal and endocrine tissues. PC2 interacts with 7B2, a neuroendocrine protein that is cleaved to a 21-kDa domain involved in proPC2 maturation and a carboxyl-terminal peptide (CT peptide) that represents a potent inhibitor of PC2 in vitro. A role for the CT peptide as an inhibitor in vivo has not yet been established. To study the involvement of the CT peptide in PC2-mediated cleavages in neuroendocrine cells, we constructed a mutant proenkephalin (PE) expression vector containing PE with its carboxyl-terminal peptide (peptide B) replaced with the 7B2 inhibitory CT peptide. This PECT chimera was stably transfected into two PC2-expressing cell lines, AtT-20/PC2 and Rin cells. Although recombinant PECT proved to be a potent (n M ) inhibitor of PC2 in vitro, cellular PC2-mediated cleavages of PE were not inhibited by the PECT chimera, nor was proopiomelanocortin cleavage (as assessed by adrenocorticotropin cleavage to α-melanocyte-stimulating hormone) inhibited further than in control cells expressing only the competitive substrate PE. Tests of stimulated secretion showed that both the CT peptide and the PE portion of the chimera were stored in regulated secretory granules of transfected clones. In both AtT-20/PC2 and Rin cells expressing the chimera, the CT peptide was substantially internally hydrolyzed, potentially accounting for the observed lack of inhibition. Taken together, our data suggest that overexpressed CT peptide derived from PECT is unable to inhibit PC2 in mature secretory granules, most likely due to its inactivation by PC2 or by other enzyme(s).  相似文献   

7.
The enzyme 5-lipoxygenase initiates the synthesis of leukotrienes from arachidonic acid. Protein kinase A phosphorylates 5-lipoxygenase on Ser(523), and this reduces its activity. We report here that phosphorylation of Ser(523) also shifts the subcellular distribution of 5-lipoxygenase from the nucleus to the cytoplasm. Phosphorylation and redistribution of 5-lipoxygenase could be produced by overexpression of the protein kinase A catalytic subunit alpha, by pharmacological activators of protein kinase A, and by prostaglandin E(2). Mimicking phosphorylation by replacing Ser(523) with glutamic acid caused cytoplasmic localization; replacement of Ser(523) with alanine prevented phosphorylation and redistribution in response to protein kinase A activation. Because Ser(523) is positioned within the nuclear localization sequence-518 of 5-lipoxygenase, the ability of protein kinase A to phosphorylate and alter the localization of green fluorescent protein fused to the nuclear localization sequence-518 peptide was also tested. Site-directed replacement of Ser(523) with glutamic acid within the peptide impaired nuclear accumulation; overexpression of the protein kinase A catalytic subunit alpha and pharmacological activation of protein kinase caused phosphorylation of the fusion protein at Ser(523), and the phosphorylated protein was found chiefly in the cytoplasm. Taken together, these results indicate that phosphorylation of Ser(523) inhibits the nuclear import function of a nuclear localization sequence, resulting in the accumulation of 5-lipoxygenase enzyme in the cytoplasm. As cytoplasmic localization can be associated with reduced leukotriene synthetic capacity, phosphorylation of Ser(523) serves to inhibit leukotriene production by both impairing catalytic activity and by placing the enzyme in a site that is unfavorable for action.  相似文献   

8.
The substrate specificity of protein kinase C has been examined using a series of synthetic peptide analogs of glycogen synthase, ribosomal protein S6, and the epidermal growth factor receptor. The glycogen synthase analog peptide Pro1-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala10 was phosphorylated at Ser7 with a Km of 40.3 microM. Peptide phosphorylation was strongly dependent on Arg4. When lysine was substituted for Arg4 the Km was increased approximately 20-fold. Addition of basic residues on either the NH2-terminal or COOH-terminal side of the phosphorylation site of the glycogen synthase peptide improved the kinetics of peptide phosphorylation. The analog Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala-Lys-Lys was phosphorylated with a Km of 4.1 microM. Substitution of Ser7 with threonine increased the apparent Km to 151 microM. The truncated peptide Pro1-Leu-Ser-Arg-Thr-Leu-Ser-Val8 was phosphorylated with similar kinetic constants to the parent peptide, however, deletion of Val8 increased the apparent Km to 761 microM. The ribosomal peptide S6-(229-239) was phosphorylated with a Km of approximately 0.5 microM predominantly on Ser236 and is one of the most potent synthetic peptide substrates reported for a protein kinase. The apparent Km for S6 peptide phosphorylation was increased by either deletion of the NH2-terminal 3 residues Ala229-Arg-231 or by substitution of Arg238 on the COOH-terminal side of the phosphorylation site with alanine. This analog peptide, [Ala238]S6-(229-239) was phosphorylated with an approximate 6-fold reduction in Vmax and a switch in the preferred site of phosphorylation from Ser236 to Ser235. These results support the concept that basic residues on both sides of the phosphorylation site can have an important influence on the kinetics of phosphorylation and site specificity of protein kinase C.  相似文献   

9.
The URA7-encoded CTP synthetase [EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)] in the yeast Saccharomyces cerevisiae is phosphorylated on a serine residue and stimulated by cAMP-dependent protein kinase (protein kinase A) in vitro. In vivo, the phosphorylation of CTP synthetase is mediated by the RAS/cAMP pathway. In this work, we examined the hypothesis that amino acid residue Ser424 contained in a protein kinase A sequence motif in the URA7-encoded CTP synthetase is the target site for protein kinase A. A CTP synthetase synthetic peptide (SLGRKDSHSA) containing the protein kinase A motif was a substrate (Km = 30 microM) for protein kinase A. This peptide also inhibited (IC50 = 45 microM) the phosphorylation of purified wild-type CTP synthetase by protein kinase A. CTP synthetase with a Ser424 --> Ala (S424A) mutation was constructed by site-directed mutagenesis. The mutated enzyme was not phosphorylated in response to the activation of protein kinase A activity in vivo. Purified S424A mutant CTP synthetase was not phosphorylated and stimulated by protein kinase A. The S424A mutant CTP synthetase had reduced Vmax and elevated Km values for ATP and UTP when compared with the protein kinase A-phosphorylated wild-type enzyme. The specificity constants for ATP and UTP for the S424A mutant CTP synthetase were 4.2- and 2.9-fold lower, respectively, when compared with that of the phosphorylated enzyme. In addition, the S424A mutant enzyme was 2.7-fold more sensitive to CTP product inhibition when compared with the phosphorylated wild-type enzyme. These data indicated that the protein kinase A target site in CTP synthetase was Ser424 and that the phosphorylation of this site played a role in the regulation of CTP synthetase activity.  相似文献   

10.
《The Journal of cell biology》1995,129(6):1641-1650
The prohormone convertase PC2, which is thought to mediate the proteolytic conversion of many peptide hormones, has recently been shown to interact with the neuroendocrine-specific polypeptide 7B2 in Xenopus intermediate lobe (Braks, J. A. M., and G. J. M. Martens. Cell. 78:263. 1994). In the present work we have stably transfected neuroendocrine cell lines with rat 7B2 constructs and found that overexpression of 27 kD 7B2 greatly facilitates the kinetics of maturation of proPC2, both in AtT-20/PC2 cells and in Rin5f cells. The half-life of conversion of proPC2 was reduced from 2.7 to 1.7 h in AtT- 20/PC2 cells stably transfected with 27 kD 7B2 cDNA. The previously proposed "chaperone" domain was not sufficient for this facilitation event; however, a construct corresponding to the 21-kD 7B2 protein (which represents the naturally occurring maturation product) functioned well. A 7B2 construct in which maturation of 27 kD 7B2 to its 21-kD form was blocked was unable to facilitate maturation of proPC2. To correlate effects on PC2 maturation with the actual generation of PC2 enzymatic activity, a similar transfection of 21 kD 7B2 was performed using CHO cells previously amplified for the expression of proPC2. Enzymatic activity cleaving the fluorogenic substrate Cbz-Arg-Ser-Lys-Arg-AMC was highly correlated with the expression of immunoreactive 21 kD 7B2 in the conditioned medium; medium obtained from the parent cell line was completely inactive. Enzymatic activity was identified as PC2 on the basis of inhibition by the carboxy-terminal peptide of 7B2, which has previously been shown to represent a potent and specific PC2 inhibitor. Taken together, our in vivo results indicate that the interesting secretory protein 7B2 is a bifunctional molecule with an amino-terminal domain involved in proPC2 transport as well as activation.  相似文献   

11.
Persistent activation of protein kinase D (PKD) via protein kinase C (PKC)-mediated signal transduction is accompanied by phosphorylation at Ser(744) and Ser(748) located in the catalytic domain activation loop, but whether PKC isoforms directly phosphorylate these residues, induce PKD autophosphorylation, or recruit intermediate upstream kinase(s) is unclear. Here, we explore the mechanism whereby PKC activates PKD in response to cellular stimuli. We first assessed in vitro PKC-PKD transphosphorylation and PKD activation. A PKD738-753 activation loop peptide was well phosphorylated by immunoprecipitated PKC isoforms, consistent with similarities between the loop and their known substrate specificities. A similar peptide with glutamic acid replacing Ser(748) was preferentially phosphorylated by PKCepsilon, suggesting that PKD containing phosphate at Ser(748) is rapidly targeted by this isoform at Ser(744). When incubated in the presence of phosphatidylserine, phorbol 12,13-dibutyrate and ATP, intact PKD slowly autophosphorylated in the activation loop but only at Ser(748). In contrast, addition of purified PKCepsilon to the incubation mixture induced rapid Ser(744) and Ser(748) phosphorylation, concomitant with persistent 2-3-fold increases in PKD activity, measured using reimmunoprecipitated PKD to phosphorylate an exogenous peptide, syntide-2. We also further examined pleckstrin homology domain-mediated PKD regulation to determine its relationship with activation loop phosphorylation. The high constitutive activity of the pleckstrin homology (PH) domain deletion mutant PKD-deltaPH was not abrogated by mutation of Ser(744) and Ser(748) to alanines, suggesting that one function of activation loop phosphorylation in the PKD activation mechanism is to relieve autoinhibition by the PH domain. These studies provide evidence of a direct PKCepsilon-PKD phosphorylation cascade and provide additional insight into the activation mechanism.  相似文献   

12.
Many growth factors whose receptors are protein tyrosine kinases stimulate the MAP kinase pathway by activating first the GTP-binding protein Ras and then the protein kinase p74raf-1. p74raf-1 phosphorylates and activates MAP kinase kinase (MAPKK). To understand the mechanism of activation of MAPKK, we have identified Ser217 and Ser221 of MAPKK1 as the sites phosphorylated by p74raf-1. This represents the first characterization of sites phosphorylated by this proto-oncogene product. Ser217 and Ser221 lie in a region of the catalytic domain where the activating phosphorylation sites of several other protein kinases are located. Among MAPKK family members, this region is the most conserved, suggesting that all members of the family are activated by the phosphorylation of these sites. A 'kinase-dead' MAPKK1 mutant was phosphorylated at the same residues as the wild-type enzyme, establishing that both sites are phosphorylated directly by p74raf-1, and not by autophosphorylation. Only the diphosphorylated form of MAPKK1 (phosphorylated at both Ser217 and Ser221) was detected, even when the stoichiometry of phosphorylation by p74raf-1 was low, indicating that phosphorylation of one of these sites is rate limiting, phosphorylation of the second then occurring extremely rapidly. Ser217 and Ser221 were both phosphorylated in vivo within minutes when PC12 cells were stimulated with nerve growth factor. Analysis of MAPKK1 mutants in which either Ser217 or Ser221 were changed to glutamic acid, and the finding that inactivation of maximally activated MAPKK1 required the dephosphorylation of both serines, shows that phosphorylation of either residue is sufficient for maximal activation.  相似文献   

13.
Two synthetic peptides containing the previously identified calmodulin (CaM)-binding domain of Ca2+/CaM-dependent protein kinase II (CaM-kinase II) (residues 296-309, Payne, M. E., Fong, Y.-L., Ono, T., Colbran, R. J., Kemp, B. E., Soderling, T. R., and Means, A. R. (1988) J. Biol. Chem. 263, 7190-7195) were phosphorylated by Ca2+/CaM-independent forms of the kinase. In the presence of EGTA, CaMK-(290-309) was phosphorylated exclusively on threonine residues (Km = 13 microM; Vmax = 211 nmol/min/mg). When the phosphorylated product was analyzed by reversed-phase high performance liquid chromatography (HPLC) two radioactive peaks were resolved. The first peak contained CaMK-(290-309) phosphorylated on Thr306, whereas the second peak contained CaMK-(290-309) phosphorylated on Thr305. However, under the same conditions CaMK-(294-319) was phosphorylated predominantly (approximately 70%) on serine residues (Km = 23 microM; Vmax = 99 nmol/min/mg) and HPLC analysis revealed a single major radioactive peak predominantly (more than 90%) phosphorylated at Ser314. Phosphorylation of both peptides was completely blocked in the presence of Ca2+ and a stoichiometric amount of CaM. Samples of each phosphorylated peptide were tested for CaM-binding ability by two procedures and compared to the nonphosphorylated peptides. Phosphorylation of either Thr305 or Thr306 greatly reduced the interaction between CaMK-(290-309) and CaM, whereas phosphorylation of Ser314 did not affect the ability of CaMK-(294-319) to bind CaM. These results indicate that Thr305 and/or Thr306 may be the Ca2+/CaM-independent autophosphorylation site(s) responsible for the loss of ability of CaM-kinase II to bind and be activated by Ca2+/CaM (Hashimoto, Y., Schworer, C. M., Colbran, R. J., and Soderling, T. R., J. Biol. Chem. 262, 8051-8055).  相似文献   

14.
90-kDa ribosomal S6 kinase-2 (RSK2) belongs to a family of growth factor-activated serine/threonine kinases composed of two kinase domains connected by a regulatory linker region. The N-terminal kinase of RSK2 is involved in substrate phosphorylation. Its activation requires phosphorylation of the linker region at Ser(369), catalyzed by extracellular signal-regulated kinase (ERK), and at Ser(386), catalyzed by the C-terminal kinase, after its activation by ERK. In addition, the N-terminal kinase must be phosphorylated at Ser(227) in the activation loop by an as yet unidentified kinase. Here, we show that the isolated N-terminal kinase of RSK2 (amino acids 1-360) is phosphorylated at Ser(227) by PDK1, a constitutively active kinase, leading to 100-fold stimulation of kinase activity. In COS7 cells, ectopic PDK1 induced the phosphorylation of full-length RSK2 at Ser(227) and Ser(386), without involvement of ERK, leading to partial activation of RSK2. Similarly, two other members of the RSK family, RSK1 and RSK3, were partially activated by PDK1 in COS7 cells. Finally, our data indicate that full activation of RSK2 by growth factor requires the cooperation of ERK and PDK1 through phosphorylation of Ser(227), Ser(369), and Ser(386). Our study extend recent findings which implicate PDK1 in the activation of protein kinases B and C and p70(S6K), suggesting that PDK1 controls several major growth factor-activated signal transduction pathways.  相似文献   

15.
Tyrosine hydroxylase was maximally phosphorylated by protein kinase C, with a stoichiometry of 0.43 mol of phosphate/mol of tyrosine hydroxylase subunit at Ser40, and by calmodulin-dependent protein kinase II, with stoichiometries of 0.43 mol/mol at Ser40 and 0.76 mol/mol at Ser19, respectively, without undergoing any significant direct activation. In contrast, the enzyme was maximally phosphorylated with a stoichiometry of 0.78 mol of phosphate/mol of subunit at Ser40 by cAMP-dependent protein kinase, which resulted in a large activation of the enzyme (about 3-fold activation under the assay conditions). Incubation of the enzyme, which had previously been maximally phosphorylated by calmodulin-dependent protein kinase II, with protein kinase C under phosphorylating conditions resulted in no additional incorporation of phosphate into the enzyme, suggesting that both protein kinases phosphorylated Ser40 of the same subunits of the enzyme. Since tyrosine hydroxylase is thought to be composed of four identical subunits, the results may indicate that calmodulin-dependent protein kinase II or protein kinase C phosphorylates only two of the four subunits of the enzyme at Ser40 without affecting the enzyme activity and that cAMP-dependent protein kinase phosphorylates Ser40 of all four subunits of the enzyme molecule, causing a marked activation. Based on a linear relationship between phosphorylation and the resulting activation of the enzyme by cAMP-dependent protein kinase, possible mechanisms for the activation of the enzyme by the protein kinase are discussed.  相似文献   

16.
Kleijn M  Proud CG 《FEBS letters》2000,476(3):262-265
Epidermal and nerve growth factors (EGF and NGF) activate protein synthesis and initiation factor eIF2B in rat phaeochromocytoma (PC12) cells. The activation of protein synthesis by EGF or NGF depends upon extracellular regulated kinase kinase (MEK)/extracellular regulated kinase signalling. Here we show that PD98059, an inhibitor of MEK activation, blocks the activation of eIF2B by EGF or NGF. It is known that eIF2B activity can be inhibited by phosphorylation at Ser535 in its epsilon-subunit by glycogen synthase kinase (GSK)-3. We find that inactivation of GSK-3 by EGF or NGF is blocked by PD98059. However, neither EGF nor NGF caused a detectable change in phosphorylation of Ser535 of eIF2Bepsilon. Thus, the EGF- and NGF-induced activation of eIF2B in PC12 cells involves regulatory mechanisms distinct from dephosphorylation of the GSK-3 site.  相似文献   

17.
Although the processing profile of the membrane-bound epidermal growth factor precursor (pro-EGF) is tissue-specific, it has not been investigated at the cellular level nor have the cognate proteinases been defined. Among the proprotein convertases (PCs), only the membrane-bound PC7, the most ancient and conserved basic amino acid-specific PC family member, induces the processing of pro-EGF into an ~115-kDa transmembrane form (EGF-115) at an unusual VHPR(290)↓A motif. Because site-directed mutagenesis revealed that Arg(290) is not critical, the generation of EGF-115 by PC7 is likely indirect. This was confirmed by testing a wide range of protease inhibitors, which revealed that the production of EGF-115 is most probably achieved via the activation by PC7 of a latent serine and/or cysteine protease(s). EGF-115 is more abundant at the cell surface than pro-EGF and is associated with a stronger EGF receptor (EGFR) activation, as evidenced by higher levels of phosphorylated ERK1/2. This suggests that the generation of EGF-115 represents a regulatory mechanism of juxtacrine EGFR activation. Thus, PC7 is distinct from the other PCs in its ability to enhance the activation of the cell surface EGFR.  相似文献   

18.
Aquaporins are water channel proteins that facilitate the movement of water and other small solutes across biological membranes. Plants usually have large aquaporin families, providing them with many ways to regulate the water transport. Some aquaporins are regulated post-translationally by phosphorylation. We have previously shown that the water channel activity of SoPIP2;1, an aquaporin in the plasma membrane of spinach leaves, was enhanced by phosphorylation at Ser115 and Ser274. These two serine residues are highly conserved in all plasma membrane aquaporins of the PIP2 subgroup. In this study we have purified and characterized two protein kinases phosphorylating Ser115 and Ser274 in SoPIP2;1. By anion exchange chromatography, the Ser115 kinase was purified from the soluble protein fraction isolated from spinach leaves. The Ca2+-dependent Ser274 kinase was purified by peptide affinity chromatography using plasma membranes isolated from spinach leaves. When characterized, the Ser115 kinase was Mg2+-dependent, Ca2+-independent and had a pH-optimum at 6.5. In accordance with previous studies using the oocyte expression system, site-directed mutagenesis and kinase and phosphatase inhibitors, the phosphorylation of Ser274, but not of Ser115, was increased in the presence of phosphatase inhibitors while kinase inhibitors decreased the phosphorylation of both Ser274 and Ser115. The molecular weight of the Ser274 kinase was approximately 50 kDa. The identification and characterization of these two protein kinases is an important step towards elucidating the signal transduction pathway for gating of the aquaporin SoPIP2;1.  相似文献   

19.
Aquaporins are water channel proteins that facilitate the movement of water and other small solutes across biological membranes. Plants usually have large aquaporin families, providing them with many ways to regulate the water transport. Some aquaporins are regulated post-translationally by phosphorylation. We have previously shown that the water channel activity of SoPIP2;1, an aquaporin in the plasma membrane of spinach leaves, was enhanced by phosphorylation at Ser115 and Ser274. These two serine residues are highly conserved in all plasma membrane aquaporins of the PIP2 subgroup. In this study we have purified and characterized two protein kinases phosphorylating Ser115 and Ser274 in SoPIP2;1. By anion exchange chromatography, the Ser115 kinase was purified from the soluble protein fraction isolated from spinach leaves. The Ca2+-dependent Ser274 kinase was purified by peptide affinity chromatography using plasma membranes isolated from spinach leaves. When characterized, the Ser115 kinase was Mg2+-dependent, Ca2+-independent and had a pH-optimum at 6.5. In accordance with previous studies using the oocyte expression system, site-directed mutagenesis and kinase and phosphatase inhibitors, the phosphorylation of Ser274, but not of Ser115, was increased in the presence of phosphatase inhibitors while kinase inhibitors decreased the phosphorylation of both Ser274 and Ser115. The molecular weight of the Ser274 kinase was approximately 50 kDa. The identification and characterization of these two protein kinases is an important step towards elucidating the signal transduction pathway for gating of the aquaporin SoPIP2;1.  相似文献   

20.
The phosphorylation and activation of tyrosine hydroxylase was examined in PC12 cells following depolarization with KCl or treatment with nerve growth factor. Both treatments activate tyrosine hydroxylase (TH) and increase enzyme phosphorylation. Site-specific analysis of the tryptic phosphopeptides of TH isolated from [32P]phosphate-labeled PC12 cells demonstrated that the major phosphorylated peptide (termed "H25") did not contain any of the previously reported phosphorylation sites. Phosphoamino acid analysis of this peptide demonstrated that the phosphorylated residue was a serine. Synthetic tryptic peptides containing putative phosphorylation sites were prepared, and subjected to high performance liquid chromatography analysis and isoelectric focusing. The tryptic phosphopeptide containing serine 31 comigrated with the H25 peptide during both of these analytical techniques. The tryptic phosphopeptide produced by the phosphorylation of tyrosine hydroxylase by the recently discovered proline-directed protein kinase and the phosphorylated synthetic phosphopeptide TH2-12 are clearly separated from H25 by this analysis. We conclude that serine 31 is phosphorylated during KCl depolarization and nerve growth factor treatment of PC12 cells and that this phosphorylation is responsible for the activation of tyrosine hydroxylase. Since this site is not located in a sequence selective for any of the "classical" protein kinases, we suggest that a novel protein kinase may be responsible for the phosphorylation of this site. Since serine 31 has a proline residue on the carboxyl-terminal side, the possibility that this kinase may be related to the recently reported proline-directed protein kinase is discussed. Other sites that are also phosphorylated on TH during KCl depolarization include serine 19, which is known to be phosphorylated by calmodulin-dependent protein kinase II. A schematic model for the regulation of tyrosine hydroxylase activity by phosphorylation of the NH2-terminal regulatory domain is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号