首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of colicin genes is controlled by the SOS-system (Lex A repressor) and the adenylate-cyclase system (cAMP-CAP complex). The effect of plasmid DNA supercoiling on the expression of the operons of colicins E1, E2, and E3 has been studied by using E. coli minicells. It has been shown for the colicin E1 operon that it is the promoter that is influenced by supercoiling: an increase in negative supercoiling elevates the expression and, vice versa, DNA relaxation reduces the expression. The effect of supercoiling on gene activity of the colicin E1 immunity protein has not been observed, which may be due to the specific orientation of this gene. With the two other colicins supercoiling affects the expression of all genes which constitute the operon. The regulation of the colicin operon expression has been confirmed to occur at three levels: by the LexA protein, by the cAMP-CAP complex, and by the plasmid DNA supercoiling.  相似文献   

2.
A major group of colicins comprises molecules that possess nuclease activity and kill sensitive cells by cleaving RNA or DNA. Recent data open the possibility that the tRNase colicin D, the rRNase colicin E3 and the DNase colicin E7 undergo proteolytic processing, such that only the C-terminal domain of the molecule, carrying the nuclease activity, enters the cytoplasm. The proteases responsible for the proteolytic processing remain unidentified. In the case of colicin D, the characterization of a colicin D-resistant mutant shows that the inner membrane protease LepB is involved in colicin D toxicity, but is not solely responsible for the cleavage of colicin D. The lepB mutant resistant to colicin D remains sensitive to other colicins tested (B, E1, E3 and E2), and the mutant protease retains activity towards its normal substrates. The cleavage of colicin D observed in vitro releases a C-terminal fragment retaining tRNase activity, and occurs in a region of the amino acid sequence that is conserved in other nuclease colicins, suggesting that they may also require a processing step for their cytotoxicity. The immunity proteins of both colicins D and E3 appear to have a dual role, protecting the colicin molecule against proteolytic cleavage and inhibiting the nuclease activity of the colicin. The possibility that processing is an essential step common to cell killing by all nuclease colicins, and that the immunity protein must be removed from the colicin prior to processing, is discussed.  相似文献   

3.
The question of a common receptor for colicins E1, E2 and E3 was studied by comparing the kinetics of their action in different colicin mixtures with that of each colicin alone.The rate of specific adsorption of colicins was studied in two ways: by assaying the decreasing amount of free colicin in the solution (direct) and by determining the numbers of surviving colony-forming bacteria (indirect). At the same multiplicity, the rate of adsorption and inhibitory effect varied for each colicin tested (E1, E2, E3 and K).These differences were the basis of our study on the inhibitory effects of mixtures of two colicins added either simultaneously or successively.The results were conclusive: E1 and K bind to receptor sites different from a common receptor site for colicins E2 and E3. Thus colicin E1 should be excluded from the E group. It is suggested to sign it J as previously.The authors wish to thank Dr. B. marda for his mathematical advice.  相似文献   

4.
The nucleotide sequence of a 2.4 kb Dral-EcoRV fragment of pColD-CA23 DNA was determined. The segment of DNA contained the colicin D structural gene (cda) and the colicin D immunity gene (cdi). From the nucleotide sequence it was deduced that colicin D had a molecular weight of 74683D and that the immunity protein had a molecular weight of 10057D. The amino-terminal portion of colicin D was found to be 96% homologous with the same region of colicin B. Both colicins share the same cell-surface receptor, FepA, and require the TonB protein for uptake. A putative TonB box pentapeptide sequence was identified in the amino terminus of the colicin D protein sequence. Since colicin D inhibits protein synthesis, it was unexpected that no homology was found between the carboxy-terminal part of this colicin and that of the protein synthesis inhibiting colicin E3 and cloacin DF13. This could indicate that colicin D does not function in the same manner as the latter two bacteriocins. The observed homology with colicin B supports the domain structure concept of colicin organization. The structural organization of the colicin operon is discussed. The extensive amino-terminal homology between colicins D and B, and the strong carboxy-terminal homology between colicins B, A, and N suggest an evolutionary assembly of colicin genes from a few DNA fragments which encode the functional domains responsible for colicin activity and uptake.  相似文献   

5.
pH-dependent membrane fusion is promoted by various colicins.   总被引:4,自引:0,他引:4       下载免费PDF全文
The ability of colicin A, a bacteriocin produced by some Enterobacteriaceae, to fuse phospholipid vesicles at acidic pH, was demonstrated by electron microscopy and resonance energy transfer. The fusion depends on protein concentration and on the nature of the phospholipids. Vesicles, prepared from Escherichia coli phospholipids, fused one or more rounds at pH 4.5 upon addition of stoichiometric amounts of colicin A. Fusion was not only induced by pore-forming colicins (E1, K) but also by colicins that contain nuclease activities (E2, E3). By recombinant DNA technology it is shown that the first glycine-rich 70 NH2-terminal amino acids and, most probably, the extreme COOH-terminal end of colicin A are involved in the fusion activity of the protein. The physiological relevance of this property of colicins is discussed.  相似文献   

6.
Escherichia coli strains B and K12 W 1655 F+ are able to bind more lethal units of colicins E2, E3, G, H, Ia, and K+ X per one stable L-form cell (of the protoplast type) than per one rod cell; colicin D is bound in a higher amount on E. coli B rods. This pattern remains unchanged, if the same colicins are attached on chloroform-killed cells of both forms. Rods of both E. coli strains are more sensitive to colicins D, E2, E3, K + X (as--in the strain B--to colicin Ia) than cells of the respective L-forms. In the strain W 1655 F+ both cell forms are equally highly sensitive to colicin Ia. The stable L-forms of both strains are much more sensitive to colicins G and H than the rods. Thus the Gram-negative cell wall decreases the probability of a colicin molecule to get attached to its receptor in the cytoplasmic membrane. On the other hand, in E. coli cells the attachment of most colicin molecules to the wall receptors increases the probability of their biological effect. There is no such effect of the wall-attachment on the action of colicins G or H. The strain B is tolerant to colicin E2, while being resistant to E3; thus the cytoplasmic membrane receptor sites for them are not identical.  相似文献   

7.
8.
The primary target of colicin E7 in sensitive bacteria are their DNA molecules. In agarose gel electrophoresis of lysates of cells treated with colicin E7, both chromosomal and plasmid DNA bands disappear, in direct relation to E7 concentration and to the duration of treatment. DNA degradation is followed by a cessation of DNA synthesis. In E7-immune bacteria, no damage to DNA due to colicin E7 occurs. The mode of action of colicin E7 thus appears to be equal to that of colicin E2. Also, colicin E8 causes a distinct damage to chromosomal and plasmid DNA in sensitive, but not in immune bacteria. None of the colicins E1, E3, E4, E5, E6 or E9 has any influence on bacterial DNA.  相似文献   

9.
The energy-dependent exchange of intracellular Mg(2+) with extracellular Mg(2+) or Co(2+) is inhibited by colicin E1 and, less strongly, by colicin K. Treatment with either colicin causes a net loss of intracellular Mg(2+). This loss begins immediately in cells treated with colicin E1, but in colicin K-treated cells the onset of Mg(2+) loss is delayed 1 to 10 min, depending upon the temperature and the multiplicity of colicin K. Both colicins differ from chemical inhibitors of energy-yielding metabolism; energy poisons block transport of Mg(2+) and Co(2+), but both colicins increase passive permeability to Mg(2+) and Co(2+). Inhibitors of energy-yielding metabolism (and of Mg(2+) exchange) block the initiation of Mg(2+) loss by either colicin, but do not stop colicin-promoted efflux once it has begun. Colicin E1 added before colicin K prevents the more rapid Mg(2+) efflux characteristic of colicin K-treated cells. Quantitative comparisons of the effects of colicins E1 and K upon permeability to Mg(2+) and Co(2+) lead us to conclude that the two colicins are not identical in their mode of action.  相似文献   

10.
DNase colicins E2 and E7, both of which appropriate the BtuB/Tol translocation machinery to cross the outer membrane, undergo a processing step as they enter the cytoplasm. This endoproteolytic cleavage is essential for their killing action. A processed form of the same size, 18.5 kDa, which corresponds to the C-terminal catalytic domain, was detected in the cytoplasm of bacteria treated with either of the two DNase colicins. The inner-membrane protease FtsH is necessary for the processing that allows the translocation of the colicin DNase domain into the cytoplasm. The processing occurs near residue D420, at the same position as the FtsH-dependent cleavage in RNase colicins E3 and D. The cleavage site is located 30 amino acids upstream of the DNase domain. In contrast, the previously reported periplasm-dependent colicin cleavage, located at R452 in colicin E2, was shown to be generated by the outer-membrane protease OmpT and we show that this cleavage is not physiologically relevant for colicin import. Residue R452, whose mutated derivatives led to toxicity defect, was shown to have no role in colicin processing and translocation, but it plays a key role in the catalytic activity, as previously reported for other DNase colicins. Membrane associated forms of colicins E2 and E7 were detected on target cells as proteinase K resistant peptides, which include both the receptor-binding and DNase domains. A similar, but much less proteinase K-resistant form was also detected with RNase colicin E3. These colicin forms are not relevant for colicin import, but their detection on the cell surface indicates that whole nuclease-colicin molecules are found in a stable association with the outer-membrane receptor BtuB of the target cells.  相似文献   

11.
Isolation and some properties of colicin V preparations.   总被引:2,自引:0,他引:2  
E. coli strain CLI(V) produces colicin V which can exist in two chemically different forms. A heat-stable, liposaccharide-protein complex is present as a main component of the cell wash. An intracellular colicin is a heat-labile and seems to be a simple protein. Preliminary experiments have shown that colicin V inhibits simultaneously synthesis of protein, RNA and DNA. Its mode of action is similar to colicins: E1, B, K and A.  相似文献   

12.
Escherichia coli strain CL137, a K-12 derivative made E colicinogenic by contact with Fredericq's strain K317, was unaffected by colicin E2-P9, but K-12 carrying ColE2-P9 was sensitive to the E colicin made by strains CL137 and K317. This colicin we named E7-K317 because by the test of colicinogenic immunity it differed from colicins E1-K30, E2-P9, and E3-CA38 and from recently recognized colicins termed E4Horak, E5, and E6. Strain K317 as conjugational donor transmitted E7 colicinogeny; about half the E7-colicinogenic transconjugants were immune to colicin E2-P9. A spontaneous variant of CL137 retained E7 colicinogeny but was sensitive to E2 colicins. We attribute the E2 immunity of strain CL137 and some E7-coliconogeic transconjugants to a "colicin-immunity plasmid," ColE2imm-K317, from strain K317. Tra+ E7-colicinogenic transconjugants restricted phage BF23 in the same way as strains carrying ColIb-P9. We attribute Tra+ and restricting ability to a plasmid, pRES-K317, acquired from strain K317, and related to the ColI plasmids.  相似文献   

13.
Thirty eight mutant clones of the colicin indicator strainEscherichia coli K 12 ROW, selected by their insensitivity to any of the colicins El–E7, were isolated. Comparison of their sensitivity-resistance patterns to colicins El–E7 enabled us to draw a rough preliminary map of the receptor for E colicins. In this receptor, the highly specific binding site for colicin El partially overlaps with the domain shared by all colicins E2 through E7. A specific binding site of this domain appears to be common for colicins E3 and E6; a part of the E3 and E6 binding site is also common for colicins E4 and E5 and a small, least specific, part also for colicins E2 and E7. Using colicin assay experiments, the binding capacity of coliein E receptor mutants could be estimated. A decreased, but not completely lost ability of certain mutants to bind colicins E, correlated to their lowered sensitivity to them, was found. Thus the phenomenon of partial colicin resistance was established, showing that colicin sensitivity—resistance is not a qualitative but a quantitative marker.  相似文献   

14.
It has long been suggested that the import of nuclease colicins requires protein processing; however it had never been formally demonstrated. Here we show that two RNase colicins, E3 and D, which appropriate two different translocation machineries to cross the outer membrane (BtuB/Tol and FepA/TonB, respectively), undergo a processing step inside the cell that is essential to their killing action. We have detected the presence of the C-terminal catalytic domains of these colicins in the cytoplasm of target bacteria. The same processed forms were identified in both colicin-sensitive cells and in cells immune to colicin because of the expression of the cognate immunity protein. We demonstrate that the inner membrane protease FtsH is necessary for the processing of colicins D and E3 during their import. We also show that the signal peptidase LepB interacts directly with the central domain of colicin D in vitro and that it is a specific but not a catalytic requirement for in vivo processing of colicin D. The interaction of colicin D with LepB may ensure a stable association with the inner membrane that in turn allows the colicin recognition by FtsH. We have also shown that the outer membrane protease OmpT is responsible for alternative and distinct endoproteolytic cleavages of colicins D and E3 in vitro, presumably reflecting its known role in the bacterial defense against antimicrobial peptides. Even though the OmpT-catalyzed in vitro cleavage also liberates the catalytic domain from colicins D and E3, it is not involved in the processing of nuclease colicins during their import into the cytoplasm.  相似文献   

15.
H Pilsl  V Braun 《Journal of bacteriology》1995,177(23):6973-6977
Sequence determination of the Escherichia coli colicin K determinant revealed identity with the E. coli colicin 5 determinant in the immunity and lysis proteins, strong homologies in the pore-forming region (93.7%) and the Tsx receptor-binding region (77%) of the colicins, and low levels of homology (20.3%) in the N-terminal region of the colicins. This latter region is responsible for the Tol-dependent uptake of colicin K and the Ton-dependent uptake of colicin 5 in the respective colicins. During evolution, the DNA encoding colicin activity and binding to the Tsx receptor was apparently recombined with two different DNA fragments that determined different uptake routes, leading to the differences observed in colicin K and colicin 5 import.  相似文献   

16.
17.
The 421-residue protein TolA is required for the translocation of group A colicins (colicins E1, E2, E3, A, K, and N) across the cell envelope of Escherichia coli. Mutations in TolA can render cells tolerant to these colicins and cause hypersensitivity to detergents and certain antibiotics, as well as a tendency to leak periplasmic proteins. TolA contains a long alpha-helical domain which connects a membrane anchor to the C-terminal domain, which is required for colicin sensitivity. The functional role of the alpha-helical domain was tested by deletion of residues 56 to 169 (TolA delta1), 166 to 287 (TolA delta2), or 54 to 287 (TolA delta3) of the alpha-helical domain of TolA, which removed the N-terminal half, the C-terminal half, or nearly the entire alpha-helical domain of TolA, respectively. TolA and TolA deletion mutants were expressed from a plasmid in an E. coli strain producing no chromosomally encoded TolA. Cellular sensitivity to the detergent deoxycholate was increased for each deletion mutant, implying that more than half of the TolA alpha-helical domain is necessary for cell envelope stability. Removal of either the N- or C-terminal half of the alpha-helical domain resulted in a slight (ca. 5-fold) decrease in cytotoxicity of the TolA-dependent colicins A, E1, E3, and N compared to cells producing wild-type TolA when these mutants were expressed alone or with TolQ, -R, and -B. In cells containing TolA delta3, the cytotoxicity of colicins A and E3 was decreased by a factor of >3,000, and K+ efflux induced by colicins A and N was not detectable. In contrast, for colicin E1 action on TolA delta3 cells, there was little decrease in the cytotoxic activity (<5-fold) or the rate of K+ efflux, which was similar to that from wild-type cells. It was concluded that the mechanism(s) by which cellular uptake of colicin E1 is mediated by the TolA protein differs from that for colicins A, E3, and N. Possible explanations for the distinct interaction and unique translocation mechanism of colicin E1 are discussed.  相似文献   

18.
Mechanism of export of colicin E1 and colicin E3.   总被引:10,自引:5,他引:5       下载免费PDF全文
The mechanism of export of colicins E1 and E3 was examined. Neither colicin E1, colicin E3, Nor colicin E3 immunity protein appears to be synthesized as a precursor protein with an amino-terminal extension. Instead, the colicins, as well as the colicin E3 immunity protein, appear to leave the cells where they are made, long after their synthesis, by a nonspecific mechanism which results in increased permeability of the producing cells. Induction of ColE3-containing cells with mitomycin C leads to actual lysis of those cells, as some time after synthesis of the colicin E3 and its immunity protein has been completed. Induction of ColE1-containing cells results in increased permeability of the cells, but not in actual lysis, and most of the colicin E1 produced never leaves the producing cells. Intracellular proteins such as elongation factor G can be found outside of colicinogenic cells after mitomycin C induction, along with the colicin. Until substantial increases in permeability occur, most of the colicin remains cell associated, in the soluble cytosol, rather than in a membrane-associated form.  相似文献   

19.
Purification and molecular properties of a new colicin.   总被引:6,自引:0,他引:6  
The process of isolation and purification of a new colicin isolated from a Citrobacter strain is described. Escherichia coli sensitive cells are protected by vitamin B12 from the action of this bacteriocin; this suggests that it belongs to the E group of colicins. Therefore, we have called it colicin E4. It has a molecular weight of 56 000 and two molecular forms of isoelectric points 9.4 and 8.2 are separated in electrofocusing on polyacrylamide gels. It has a sedimentation coefficient of 3.4 S and the absorption coefficient A1(280%) nm is 6.23 cm(-1). Using an antibody raised against pure colicin E4, no cross-reaction was detected against colicins A, E1 or K. The physiological effect of colicin E4 on sensitive cells is very similar to that of colicins E1, K or I which disrupt the energized membrane state.  相似文献   

20.
Rough strains of Salmonella typhimurium were sensitive to coliphage BF23. Spontaneous mutants resistant to BF23 (bfe) were isolated, and the trait was mapped using phage P1. The bfe gene in S. typhimurium was located between argF (66% co-transducible) and rif (61% co-transducible). The BF23-sensitive S. typhimurium strains were not sensitive to the E colicins. Cells of these rough strains absorbed colicin, as measured by loss of E2 or E3 killing units from colicin solutions and by specific adsorption of 125I-colicin E2 to bfe+ cells. Sensitivity to colicins E1, E2, and E3 was observed in a S. typhimurium strain carrying the F'8 gal+ episome. This episome complemented the tolB mutation of Escherichia coli. We conclude that the bfe+ protein satisfies requirements for adsorption of both phage BF23 and the E colicins. In addition, expression of a gene from E. coli, possibly tolB, is necessary for efficient E colicin killing of S. typhimurium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号