首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In dairy sheep flocks from Mediterranean countries, replacement and adult ewes are the animals most affected by gastrointestinal nematode (GIN) infections. In this study, we have exploited the information derived from an RNA-Seq experiment with the aim of identifying potential causal mutations related to GIN resistance in sheep. Considering the RNA-Seq samples from 12 ewes previously classified as six resistant and six susceptible animals to experimental infection by Teladorsagia circumcincta, we performed a variant calling analysis pipeline using two different types of software, gatk version 3.7 and Samtools version 1.4. The variants commonly identified by the two packages (high-quality variants) within two types of target regions – (i) QTL regions previously reported in sheep for parasite resistance based on SNP-chip or sequencing technology studies and (ii) functional candidate genes selected from gene expression studies related to GIN resistance in sheep – were further characterised to identify mutations with a potential functional impact. Among the genes harbouring these potential functional variants (930 and 553 respectively for the two types of regions), we identified 111 immune-related genes in the QTL regions and 132 immune-related genes from the initially selected candidate genes. For these immune-related genes harbouring potential functional variants, the enrichment analyses performed highlighted significant GO terms related to apoptosis, adhesion and inflammatory response, in relation to the QTL related variants, and significant disease-related terms such as inflammation, adhesion and necrosis, in relation to the initial candidate gene list. Overall, the study provides a valuable list of potential causal mutations that could be considered as candidate causal mutations in relation to GIN resistance in sheep. Future studies should assess the role of these suggested mutations with the aim of identifying genetic markers that could be directly implemented in sheep breeding programmes considering not only production traits, but also functional traits such as resistance to GIN infections.  相似文献   

2.
3.
李以格  张丹丹 《遗传》2021,(3):203-214
结直肠癌(colorectal cancer,CRC)是受遗传与环境因素共同影响的复杂疾病,其中遗传因素发挥重要作用.至今,全基因组关联研究(genome-wide association studies,GWAS)已经发现了大量与结直肠癌风险相关的遗传变异.随之而来的后GWAS时代,越来越多的研究侧重于利用多组学数据...  相似文献   

4.
Recent genome-wide association studies (GWAS) have identified several gene variants associated with sporadic chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). Many of these CLL/SLL susceptibility loci are located in non-coding or intergenic regions, posing a significant challenge to determine their potential functional relevance. Here, we review the literature of all CLL/SLL GWAS and validation studies, and apply eQTL analysis to identify putatively functional SNPs that affect gene expression that may be causal in the pathogenesis of CLL/SLL. We tested 12 independent risk loci for their potential to alter gene expression through cis-acting mechanisms, using publicly available gene expression profiles with matching genotype information. Sixteen SNPs were identified that are linked to differential expression of SP140, a putative tumor suppressor gene previously associated with CLL/SLL. Three additional SNPs were associated with differential expression of DACT3 and GNG8, which are involved in the WNT/β-catenin- and G protein-coupled receptor signaling pathways, respectively, that have been previously implicated in CLL/SLL pathogenesis. Using in silico functional prediction tools, we found that 14 of the 19 significant eQTL SNPs lie in multiple putative regulatory elements, several of which have prior implications in CLL/SLL or other hematological malignancies. Although experimental validation is needed, our study shows that the use of existing GWAS data in combination with eQTL analysis and in silico methods represents a useful starting point to screen for putatively causal SNPs that may be involved in the etiology of CLL/SLL.  相似文献   

5.
6.
Limousin, a renowned beef breed originating from central France, has been selectively bred over the last 100 years to improve economically important traits. We used whole-genome sequencing data from 10 unrelated Limousin bull calves to detect polymorphisms and identify regions under selection. A total of 13 943 766 variants were identified. Moreover, 311 852 bi-allelic SNPs and 92 229 indels located on autosomes were fixed for the alternative allele in all sequenced animals, including the previously reported missense deleterious F94L mutation in MSTN. We performed a whole-genome screen to discover genomic regions with excess homozygosity, using the pooled heterozygosity score and identified 171 different candidate selective sweeps. In total, 68 candidate genes were found in only 57 of these regions, indicating that a large fraction of the genome under selection might lie in non-coding regions and suggesting that a majority of adaptive mutations might be regulatory in nature. Many QTL were found within candidate selective sweep regions, including QTL associated with shear force or carcass weight. Among the putative selective sweeps, we located genes (MSTN, NCKAP5, RUNX2) that potentially contribute to important phenotypes in Limousin. Several candidate regions and genes under selection were also found in previous genome-wide selection scans performed in Limousin. In addition, we were able to pinpoint candidate causative regulatory polymorphisms in GRIK3 and RUNX2 that might have been under selection. Our results will contribute to improved understanding of the mechanisms and targets of artificial selection and will facilitate the interpretation of GWASs performed in Limousin.  相似文献   

7.
BackgroundThe success of collapsing methods which investigate the combined effect of rare variants on complex traits has so far been limited. The manner in which variants within a gene are selected prior to analysis has a crucial impact on this success, which has resulted in analyses conventionally filtering variants according to their consequence. This study investigates whether an alternative approach to filtering, using annotations from recently developed bioinformatics tools, can aid these types of analyses in comparison to conventional approaches.ConclusionIncorporating variant annotations from non-coding bioinformatics tools should prove to be a valuable asset for rare variant analyses in the future. Filtering by variant consequence is only possible in coding regions of the genome, whereas utilising non-coding bioinformatics annotations provides an opportunity to discover unknown causal variants in non-coding regions as well. This should allow studies to uncover a greater number of causal variants for complex traits and help elucidate their functional role in disease.  相似文献   

8.
Single nucleotide polymorphisms (SNPs) are increasingly used to tag genetic loci associated with phenotypes such as risk of complex diseases. Technically, this is done genome-wide without prior restriction or knowledge of biological feasibility in scans referred to as genome-wide association studies (GWAS). Depending on the linkage disequilibrium (LD) structure at a particular locus, such tagSNPs may be surrogates for many thousands of other SNPs, and it is difficult to distinguish those that may play a functional role in the phenotype from those simply genetically linked. Because a large proportion of tagSNPs have been identified within non-coding regions of the genome, distinguishing functional from non-functional SNPs has been an even greater challenge. A strategy was recently proposed that prioritizes surrogate SNPs based on non-coding chromatin and epigenomic mapping techniques that have become feasible with the advent of massively parallel sequencing. Here, we introduce an R/Bioconductor software package that enables the identification of candidate functional SNPs by integrating information from tagSNP locations, lists of linked SNPs from the 1000 genomes project and locations of chromatin features which may have functional significance. Availability: FunciSNP is available from Bioconductor (bioconductor.org).  相似文献   

9.
10.
Abstract

The renin–angiotensin–aldosterone system (RAAS) plays a key role in the regulation of blood pressure (BP). Mutations on the genes that encode components of the RAAS have played a significant role in genetic susceptibility to hypertension and have been intensively scrutinized. The identification of such probably causal mutations not only provides insight into the RAAS but may also serve as antihypertensive therapeutic targets and diagnostic markers. The methods for analyzing the SNPs from the huge dataset of SNPs, containing both functional and neutral SNPs is challenging by the experimental approach on every SNPs to determine their biological significance. To explore the functional significance of genetic mutation (SNPs), we adopted combined sequence and sequence-structure-based SNP analysis algorithm. Out of 3864 SNPs reported in dbSNP, we found 108 missense SNPs in the coding region and remaining in the non-coding region. In this study, we are reporting only those SNPs in coding region to be deleterious when three or more tools are predicted to be deleterious and which have high RMSD from the native structure. Based on these analyses, we have identified two SNPs of REN gene, eight SNPs of AGT gene, three SNPs of ACE gene, two SNPs of AT1R gene, three SNPs of CYP11B2 gene and three SNPs of CMA1 gene in the coding region were found to be deleterious. Further this type of study will be helpful in reducing the cost and time for identification of potential SNP and also helpful in selecting potential SNP for experimental study out of SNP pool.  相似文献   

11.
Genome-wide association studies (GWAS) have successfully identified many genetic variants associated with complex diseases and traits. However, functional consequence of genetic variants studied in GWAS is not yet fully investigated, which would hinder the application of GWAS. We therefore performed a systematic functional analysis of HapMap SNPs, which have been most commonly used as the reference panel for GWAS. Our study highlights several characteristics of HapMap SNPs and identifies subsets of genetic variants with interesting functional implication. The results show that HapMap SNPs have good coverage within RefSeq genes, especially within known disease-related genes. On the other hand, only a small percentage of SNPs are non-synonymous SNPs while many SNPs are actually located at gene deserts. Moreover, many functionally important variants are not yet still interrogated. A redesigned SNP reference panel with additional functionally important variants would be useful to identify disease-causal variants in the future genome-wide studies.  相似文献   

12.
Identifying causal genetic variants underlying heritable phenotypic variation is a long‐standing goal in evolutionary genetics. We previously identified several quantitative trait loci (QTL) for five morphological traits in a captive population of zebra finches (Taeniopygia guttata) by whole‐genome linkage mapping. We here follow up on these studies with the aim to narrow down on the quantitative trait variants (QTN) in one wild and three captive populations. First, we performed an association study using 672 single nucleotide polymorphisms (SNPs) within candidate genes located in the previously identified QTL regions in a sample of 939 wild‐caught zebra finches. Then, we validated the most promising SNP–phenotype associations (n = 25 SNPs) in 5228 birds from four populations. Genotype–phenotype associations were generally weak in the wild population, where linkage disequilibrium (LD) spans only short genomic distances. In contrast, in captive populations, where LD blocks are large, apparent SNP effects on morphological traits (i.e. associations) were highly repeatable with independent data from the same population. Most of those SNPs also showed significant associations with the same trait in other captive populations, but the direction and magnitude of these effects varied among populations. This suggests that the tested SNPs are not the causal QTN but rather physically linked to them, and that LD between SNPs and causal variants differs between populations due to founder effects. While the identification of QTN remains challenging in nonmodel organisms, we illustrate that it is indeed possible to confirm the location and magnitude of QTL in a population with stable linkage between markers and causal variants.  相似文献   

13.
Partner and Localizer of BRCA2 or PALB2 is a typical tumor suppressor protein, that responds to DNA double stranded breaks through homologous recombination repair. Heterozygous mutations in PALB2 are known to contribute to the susceptibility of breast and ovarian cancer. However, there is no comprehensive study characterizing the structural and functional impacts of SNPs located in the PALB2 gene. Therefore, it is of interest to document a comprehensive analysis of coding and non-coding SNPs located at the PALB2 loci using in silico tools. The data for 1455 non-synonymous SNPs (nsSNPs) located in the PALB2 loci were retrieved from the dbSNP database. Comprehensive characterization of the SNPs using a combination of in silico tools such as SIFT, PROVEAN, PolyPhen, PANTHER, PhD-SNP, Pmut, MutPred 2.0 and SNAP-2, identified 28 functionally important SNPs. Among these, 16 nsSNPs were further selected for structural analysis using conservation profile and protein stability. The most deleterious nsSNPs were documented within the WD40 domain of PALB2. A general outline of the structural consequences of each variant was developed using the HOPE project data. These 16 mutant structures were further modelled using SWISS Model and three most damaging mutant models (rs78179744, rs180177123 and rs45525135) were identified. The non-coding SNPs in the 3'' UTR region of the PALB2 gene were analyzed for altered miRNA target sites. The comprehensive characterization of the coding and non-coding SNPs in the PALB2 locus has provided a list of damaging SNPs with potential disease association. Further validation through genetic association study will reveal their clinical significance.  相似文献   

14.
Understanding the functional consequences of genetic variation in the non-coding regions of the human genome remains a challenge. We introduce h ere a computational tool, TURF, to prioritize regulatory variants with tissue-specific function by leveraging evidence from functional genomics experiments, including over 3000 functional genomics datasets from the ENCODE project provided in the RegulomeDB database. TURF is able to generate prediction scores at both organism and tissue/organ-specific levels for any non-coding variant on the genome. We present that TURF has an overall top performance in prediction by using validated variants from MPRA experiments. We also demonstrate how TURF can pick out the regulatory variants with tissue-specific function over a candidate list from associate studies. Furthermore, we found that various GWAS traits showed the enrichment of regulatory variants predicted by TURF scores in the trait-relevant organs, which indicates that these variants can be a valuable source for future studies.  相似文献   

15.
《Genomics》2021,113(5):3395-3404
Domestication processes and artificial selection are likely to leave signatures that can be detected at a molecular level in farmed rainbow trout (Oncorhynchus mykiss). These signatures of selection are genomic regions that contain functional genetic variants conferring a higher fitness to their bearers. We genotyped 749 rainbow trout from a commercial population using a rainbow trout Axiom 57 K SNP array panel and identified putative genomic regions under selection using the pcadapt, Composite Likelihood Ratio (CLR) and Integrated Haplotype Score (iHS) methods. After applying quality-control pipelines and statistical analyses, we detected 12, 96 and 16 SNPs putatively under selection, associated with 96, 781 and 115 candidate genes, respectively. Several of these candidate genes were associated with growth, early development, reproduction, behavior and immune system traits. In addition, some of the SNPs were found in interesting regions located in autosomal inversions on Omy05 and Omy20. These findings could represent a genome-wide map of selection signatures in farmed rainbow trout and could be important in explaining domestication and selection for genetic traits of commercial interest.  相似文献   

16.
MicroRNAs (miRNAs) are small non-coding RNAs, which regulate gene expression. Single nucleotide polymorphisms (SNPs) may occur in miRNA biogenesis pathway genes, primary miRNA, pre-miRNA or a mature miRNA sequence. Such polymorphisms may be functional with respect to biogenesis and actions of mature miRNA. Specific SNPs were identified in predicted miRNA target sites within 3' untranslated regions of mRNAs. These SNPs have a potential to affect the efficiency of miRNA binding to the target sites or can create or disrupt binding sites. Resulting gene dysregulation may involve changes in phenotype and may eventually prove critical for the susceptibility to cancer and its onset as well as for estimates of prognosis and therapy response. In this review, we provide a comprehensive list of potentially functional miRNA-related SNPs and summarize their importance as candidate cancer biomarkers.  相似文献   

17.
18.
Non-coding variants have long been recognized as important contributors to common disease risks, but with the expansion of clinical whole genome sequencing, examples of rare, high-impact non-coding variants are also accumulating. Despite recent advances in the study of regulatory elements and the availability of specialized data collections, the systematic annotation of non-coding variants from genome sequencing remains challenging. Here, we propose a new framework for the prioritization of non-coding regulatory variants that integrates information about regulatory regions with prediction scores and HPO-based prioritization. Firstly, we created a comprehensive collection of annotations for regulatory regions including a database of 2.4 million regulatory elements (GREEN-DB) annotated with controlled gene(s), tissue(s) and associated phenotype(s) where available. Secondly, we calculated a variation constraint metric and showed that constrained regulatory regions associate with disease-associated genes and essential genes from mouse knock-outs. Thirdly, we compared 19 non-coding impact prediction scores providing suggestions for variant prioritization. Finally, we developed a VCF annotation tool (GREEN-VARAN) that can integrate all these elements to annotate variants for their potential regulatory impact. In our evaluation, we show that GREEN-DB can capture previously published disease-associated non-coding variants as well as identify additional candidate disease genes in trio analyses.  相似文献   

19.
20.
The Mytilus complex of marine mussel species forms a mosaic of hybrid zones, found across temperate regions of the globe. This allows us to study ‘replicated’ instances of secondary contact between closely related species. Previous work on this complex has shown that local introgression is both widespread and highly heterogeneous, and has identified SNPs that are outliers of differentiation between lineages. Here, we developed an ancestry‐informative panel of such SNPs. We then compared their frequencies in newly sampled populations, including samples from within the hybrid zones, and parental populations at different distances from the contact. Results show that close to the hybrid zones, some outlier loci are near to fixation for the heterospecific allele, suggesting enhanced local introgression, or the local sweep of a shared ancestral allele. Conversely, genomic cline analyses, treating local parental populations as the reference, reveal a globally high concordance among loci, albeit with a few signals of asymmetric introgression. Enhanced local introgression at specific loci is consistent with the early transfer of adaptive variants after contact, possibly including asymmetric bi‐stable variants (Dobzhansky‐Muller incompatibilities), or haplotypes loaded with fewer deleterious mutations. Having escaped one barrier, however, these variants can be trapped or delayed at the next barrier, confining the introgression locally. These results shed light on the decay of species barriers during phases of contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号