首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Analysis of the amylase activity associated withCellulomonas flavigena showed that it was a cell associated activity that could be released upon sonication, it was active against amylopectin and starch but showed no activity against pullulan and only slight activity against amylose. The enzyme was also found to have liquifying activity and to be inducible.  相似文献   

2.
It has been estimated that less than 1% of the microorganisms in nature can be cultivated by conventional techniques. Thus, the classical approach of isolating enzymes from pure cultures allows the analysis of only a subset of the total naturally occurring microbiota in environmental samples enriched in microorganisms. To isolate useful microbial enzymes from uncultured soil microorganisms, a metagenome was isolated from soil samples, and a metagenomic library was constructed by using the pUC19 vector. The library was screened for amylase activity, and one clone from among approximately 30,000 recombinant Escherichia coli clones showed amylase activity. Sequencing of the clone revealed a novel amylolytic enzyme expressed from a novel gene. The putative amylase gene (amyM) was overexpressed and purified for characterization. Optimal conditions for the enzyme activity of the AmyM protein were 42 degrees C and pH 9.0; Ca2+ stabilized the activity. The amylase hydrolyzed soluble starch and cyclodextrins to produce high levels of maltose and hydrolyzed pullulan to panose. The enzyme showed a high transglycosylation activity, making alpha-(1, 4) linkages exclusively. The hydrolysis and transglycosylation properties of AmyM suggest that it has novel characteristics and can be regarded as an intermediate type of maltogenic amylase, alpha-amylase, and 4-alpha-glucanotransferase.  相似文献   

3.
4.
Cellulomonas sp. ATCC 21399 produced extracellular enzyme activities against Avicel, H(3)PO(4)-swollen Avicel, carboxymethylcellulose, (1-3, 1-4)-beta-D-heteroglucan, xylan, galactomannan, and amylose drying growth on microcrystalline cellulose. No extracellular cellobiase activity was produced. Crossed immunoelectrophoresis of the crude extracellular enzyme system revealed 15 immunologically distinct immunoprecipitates. The immunoprecipitates of endoglucanase A, endoglucanase B and the xylanase appeared heterogeneous with several optima, whereas the immunoprecipitates of endoglucanase C and the amylase appeared homogeneous. The heterogeneity of endoglucanase A, endoglucanase B and xylanase was also visualized using electrofocusing-immunoelectrophoresis. Electro-focusing could resolve the activity against carboxymethylcellulose into six peaks, whereas only one peak of activity against Avicel was observed. The later peak coincided with the major peak of activity against carboxymethylcellulose with isoelectric point between pH 4.0-5.0.  相似文献   

5.
Summary Growth and extracellular enzyme production of Cellulomonas sp. ATCC 21399 on carboxymethylcellulose (CMC), microcrystalline cellulose (Avicel), xylan, galactomannan and starch were compared. The bacteria grew poorly on CMC, whereas high cell densities were obtained on the other substrates. Growth on Avicel resulted in extracellular enzyme activities against CMC, Avicel, xylan, galactomannan and amylose. By contrast, growth on xylan, galactomannan and starch induced only the enzymes neccessary for the degradation of the growth substrate. Extracellular proteinase activity could be measured during growth on all substrates but CMC, and the possibility of proteolytic inactivation of some of the unstable enzymes (i.e. Avicelase and amylase) in discussed.  相似文献   

6.
7.
Amylase inhibitor producing actinobacteria were isolated and characterized from terrestrial environment and there is no much report found from marine environment, hence in the present study, 17 strains isolated from the rhizosphere sediments of mangroves were tested for their amylase inhibition ability. Seawater requirement test for the growth of actinobacteria found that the strains SSR-3, SSR-12 and SSR-16 requires at least 50% and SSR-6 requires at least 25% seawater for their growth. The inhibition activity of both prokaryotic and eukaryotic amylase was tested by using Bacillus subtilis and Aspergillus niger. The maximum amylase activity (40mm) produced by the A. niger was taken as positive control, when the test actinobacteria strains grown in the medium they inhibited amylase activity and was evidenced by the reduction in inhibition zone (14–37 mm) similarly the amylase produced by the Bacillus subtilis was also recorded maximum (35 mm) amylase activity and was taken as positive control, and the test atinobacterial strains reduced enzyme action(12–33 mm) it varied levals. This indicates that the actinobacteria strains were controlled amylase enzyme activity in both the cases. The strain SSR-10 was highly effective and SSR-8 was less effective in inhibiting eukaryotic amylase produced by A. niger. The strain SSR-2 was effective and SSR-6 showed very less effect in inhibiting the prokaryotic amylase produced by the B subtilis.  相似文献   

8.
The α‐amylase in the midgut and salivary glands of Eurygaster integriceps was isolated and characterized. The specific activity of α‐amylase in the midgut was 1.77 U/mg protein and in the salivary glands was 1.65 U/mg protein. Sodium dodecylsulfate electrophoresis showed that both midgut and salivary glands contain isozymes. Only a trace amount of α‐amylase activity was detected in the first nymphal stage (0.19 U/mg protein), whereas α‐amylase activity was highest in the third nymphal stage (1.21 U/mg protein). The results show that α‐amylase activity in the immature stages increase constantly to the third instar stage. There was no significant difference in enzyme activity between the third, fourth and fifth nymphal stages and adults. The optimum pH and temperature for the enzyme activity was determined to be 6.5 and 35°C, respectively. The enzyme activity was inhibited by addition of ethylenediaminetetraacetic acid, urea, sodium dodecylsulfate and Mg2+, but NaCl and KCl enhanced enzyme activity.  相似文献   

9.
The authors aim to establish a method that can quantitatively evaluate vital reactions to stress. We have been examining the correlation between stress and salivary amylase activity in order to verify its validity as a stress index. In order to quantify human stress, which changes over time, the relationship between stress and salivary amylase activity must be verified by fast and repeated analysis of salivary amylase activity. Standard biosensors are designed such that the enzyme immobilized on an electrode (enzyme electrode) and the substrate-dependent activity is measured. The reverse approach of measuring the alpha-amylase-dependent activity was adopted. We fabricated an amylase activity analytical system. Maltopentaose was selected as a substrate for alpha-amylase and a flow-injection-type device was used to supply maltopentaose continuously. alpha-Glucosidase, having relatively low enzyme activity, was immobilized on a pre-activated membrane so that it could be enclosed in a pre-column, Glucose oxidase, having higher enzyme activity, was immobilized on a working electrode so that it could function as an amperometric biosensor. A saliva-collecting device was fabricated to make saliva pretreatment unnecessary. As a result, an amylase activity analytical system was fabricated that enabled us to measure salivary amylase activity from 0 to 30 kU/l, with an R(2) value of 0.97. The time-course changes in the salivary amylase activities for 1 week were 5.1%, and the initial sensitivity remained nearly constant. Through this study, we were able to verify the possible development of the amylase activity analytical system.  相似文献   

10.
An actinomycete strain 7326 producing cold-adapted α-amylase was isolated from the deep sea sediment of Prydz Bay, Antarctic. It was identified as Nocardiopsis based on morphology, 16S rRNA gene sequence analysis, and physiological and biochemical characteristics. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram activity staining of purified amylase showed a single band equal to a molecular mass of about 55 kDa. The optimal activity temperature of Nocardiopsis sp. 7326 amylase was 35°C, and the activity decreased dramatically at temperatures above 45°C. The enzyme was stable between pH 5 and 10, and exhibited a maximal activity at pH 8.0. Ca2+, Mn2+, Mg2+, Cu2+, and Co2+ stimulated the activity of the enzyme significantly, and Rb2+, Hg2+, and EDTA inhibited the activity. The hydrolysates of soluble starch by the enzyme were mainly glucose, maltose, and maltotriose. This is the first report on the isolation and characterization of cold-adapted amylase from Nocardiopsis sp.  相似文献   

11.
A potent fungus for amylase production, Chrysosporium asperatum, was isolated from among 30 different cultures obtained from wood samples collected in the Junagadh forest, India. All of the isolated cultures were screened for their ability to produce amylase by submerged fermentation. Among the selected cultures, C. asperatum (Class Euascomycetes; Onygenales; Onygenaceae) gave maximum amylase production. In all of the different media tested, potato starch was found to be a good substrate for production of amylase enzyme at 30 degrees C and pH 5.0. Production of enzyme reached the maximum when a combination of starch and 2% xylose, and organic nitrogen (1% yeast extract) and ammonium sulfate were used as carbon and nitrogen sources, respectively. There was no significant effect of metal ions on enzyme activity. The enzyme was relatively stable at 50 degrees C for 20 min, and no inhibitory effect of Ca+2 ions on amylase production was observed.  相似文献   

12.
A haloalkaliphilic archaebacterium, Natronococcus sp. strain Ah-36, produced extracellularly a maltotriose-forming amylase. The amylase was purified to homogeneity by ethanol precipitation, hydroxylapatite chromatography, hydrophobic chromatography, and gel filtration. The molecular weight of the enzyme was estimated to be 74,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amylase exhibited maximal activity at pH 8.7 and 55 degrees C in the presence of 2.5 M NaCl. The activity was irreversibly lost at low ionic strength. KCl, RbCl, and CsCl could partially substitute for NaCl at higher concentrations. The amylase was stable in the range of pH 6.0 to 8.6 and up to 50 degrees C in the presence of 2.5 M NaCl. Stabilization of the enzyme by soluble starch was observed in all cases. The enzyme activity was inhibited by the addition of 1 mM ZnCl2 or 1 mM N-bromosuccinimide. The amylase hydrolyzed soluble starch, amylose, amylopectin, and, more slowly, glycogen to produce maltotriose with small amounts of maltose and glucose of an alpha-configuration. Malto-oligosaccharides ranging from maltotetraose to maltoheptaose were also hydrolyzed; however, maltotriose and maltose were not hydrolyzed even with a prolonged reaction time. Transferase activity was detected by using maltotetraose or maltopentaose as a substrate. The amylase hydrolyzed gamma-cyclodextrin. alpha-Cyclodextrin and beta-cyclodextrin, however, were not hydrolyzed, although these compounds acted as competitive inhibitors to the amylase activity. Amino acid analysis showed that the amylase was characteristically enriched in glutamic acid or glutamine and in glycine.  相似文献   

13.
The objective of the present study was to isolate halotolerant bacteria from the sediment sample collected from Marakanam Solar Salterns, Tamil Nadu, India using NaCl supplemented media and screened for amylase production. Among the 22 isolates recovered, two strains that had immense potential were selected for amylase production and designated as P1 and P2. The phylogenetic analysis revealed that P1 and P2 have highest homology with Pontibacillus chungwhensis (99%) and Bacillus barbaricus (100%). Their amylase activity was optimized to obtain high yield under various temperature, pH and NaCl concentration. P1 and P2 strain showed respective, amylase activity maximum at 35 °C and 40 °C; pH 7.0 and 8.0; 1.5 M and 1.0 M NaCl concentration. Further under optimized conditions, the amylase activity of P1 strain (49.6 U mL?1) was higher than P2 strain. Therefore, the amylase enzyme isolated from P. chungwhensis P1 was immobilized in sodium alginate beads. Compared to the free enzyme form (49.6 U mL?1), the immobilized enzyme showed higher amylase activity as 90.3 U mL?1. The enzyme was further purified partially and the molecular mass was determined as 40 kDa by SDS–PAGE. Thus, high activity of amylase even under increased NaCl concentration would render immense benefits in food processing industries.  相似文献   

14.
We constructed aSmaI genomic library ofCellulomonas biazotea DNA inE. coli and in theS. cerevisiae shuttle vector, YEP 24. Three clone were identified that conferred the ability forE. coli orS. cerevisiae transformants to produce carboxymethylcellulase (CMCase). Cells transformed with these clones were compared with one another and with nontransformed cells for hyper-production of CMCase.In vivo andin vitro studies indicated that the CMCase genes were fully expressed and the enzyme activity was located extracellularly. The optimum pH and temperature for the CMCase thus cloned were pH 7 and 50°C, respectively, as was the case for the donor.  相似文献   

15.
Summary A method for the continuous production of extracellular alpha amylase by surface immobilized cells of Bacillus amyloliquefaciens NRC 2147 has been developed. A large-pore, macroreticular anionic exchange resin was capable of initially immobilizing an effective cell concentration of 17.5 g DW/1 (based on a total reactor volume of 160 ml). The reactor was operated continuously with a nutrient medium containing 15 g/l soluble starch, as well as yeast extract and salts. Aeration was achieved by sparging oxygen enriched air into the column inlet. Fermentor plugging by cells was avoided by periodically substituting the nutrient medium with medium lacking in both soluble starch and yeast extract. This fermentor was operated for over 200 h and obtained a steady state enzyme concentration of 18700 amylase activity units per litre (18.7 kU/l), and an enzyme volumetric productivity of 9700 amylase activity units per litre per hour (9.7 kU/l-h). Parallel fermentations were performed using a 2 l stirred vessel fermentor capable of operation in batch and continuous mode. All fermentation conditions employed were identical to those of the immobilized cell experiments in order to assess the performance of the immobilized cell reactor. Batch stirred tank operation yielded a maximum amylase activity of 150 kU/l and a volumetric productivity of 2.45 kU/l-h. The maximum cell concentration obtained was 5.85 g DW/l. Continuous stirred tank fermentation obtained a maximum effluent amylase activity of 6.9 kU/l and a maximum enzyme volumetric productivity of 2.73 kU/l-h. Both of these maximum values were observed at a dilution rate of 0.345 l/h. The immobilized cell reactor was observed to achieve larger volumetric productivities than either mode of stirred tank fermentation, but achieved an enzyme activity concentration lower than that of the batch stirred tank fermentor.  相似文献   

16.
A maltotetraose- and maltotriose-producing amylase which is stable at alkaline pHs and high temperatures was detected in the culture filtrate of a strain of Chloroflexus aurantiacus J-10-F1, a thermophilic, green, photosynthetic bacterium. The enzyme was purified to homogeneity, as demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, by means of ultrafiltration, ammonium sulfate fractionation, and DEAE-cellulose, hydroxyapatite, and high-performance liquid chromatographies. The molecular mass of the purified enzyme was estimated to be about 210,000 Da. The isoelectric point of the enzyme was estimated to be 6.24 by polyacrylamide gel electrofocusing. The amylase was stable up to 55°C and at alkaline pHs of up to 12.0. The optimum pH and temperature of the enzyme activity were 7.5 and 71°C, respectively. Metal ions such as Hg2+, Zn2+, Cu2+, Mn2+, and Ni2+ strongly inhibited the enzyme activity. The enzyme activity was reactivated specifically by Ca2+ after the enzyme was treated with 1 mM EDTA. This enzyme could digest various kinds of raw-starch granules from corn, cassava, and potato. Both maltotetraose and maltotriose were formed as the main enzymatic products from soluble starch.  相似文献   

17.
The α-amylase and glucoamylase produced by a protease-, glycosidase-less mutant HF-15 of Aspergillus awamori var. kawachi were found to be adsorbable onto chitin. This adsorption was pH-independent, different from the adsorption onto raw corn starch. The binding between amylases and chitin was so tight that a chitin-immobilized amylase was obtained without the aid of a cross linking agent, glutaraldehyde, and it retained more than 90% of the original activity of the free enzyme. The immobilized amylase digested gelatinized potato starch, glycogen and even raw corn starch to the same high extent as glucose similar to the free enzyme, but it was different from the unbound crude enzyme in the lack of transglucosidase activity, and slightly different in pH- and thermo-stabilities. An experiment using the immobilized amylase for alcohol fermentation demonstrated the possibility of recycling the enzyme for raw starch saccharification.  相似文献   

18.
The level of amylase activity in larvae and adults of Drosophila melanogaster is dependent on the dietary carbohydrate source; flies or larvae from a food medium containing starch show higher levels of activity than individuals from a food containing simple sugars. This is shown to be due to repression of activity by sugars rather than enhancement of activity by starch. Moreover, the changes in enzyme activity reflect a change in enzyme quantity rather than a change in catalytic efficiency. The seeming stimulation of amylase activity by sucrose in some experiments is due, simply, to comparisons with "starvation" diets which cause a large nonspecific reduction in enzyme activity. Though all strains tested showed repression of enzyme activity by simple sugars, the degree of repression varies between strains. Also, in those strains which carry a duplication of the amylase structural gene, the two isozymal forms of amylase can be differentially repressed by dietary sugars.  相似文献   

19.
We have investigated the effect of the locust myosuppressin, SchistoFLRFamide, on the activity of amylase and alpha-glucosidase in the midgut of 2-week old male locusts. Total enzyme activity in the lumen contents and tissue extracts of midguts responds to SchistoFLRFamide in a dose-dependent manner that appears to vary with the feeding state of the locust and duration of exposure to the peptide. Starvation for 24h prior to assessment alters the distribution of enzyme activity between the midgut lumen contents and tissue extracts in response to SchistoFLRFamide when compared with fed locusts. Duration of exposure to SchistoFLRFamide also alters the distribution of total amylase and alpha-glucosidase activity; as duration of exposure increases, lower concentrations of SchistoFLRFamide increase total enzyme activity in the lumen contents while decreasing total enzyme activity in the tissue extracts. We suggest that the minimum amino acid sequence in SchistoFLRFamide necessary to increase both amylase and alpha-glucosidase activity is DHVFLRFamide. We have determined that two other peptides endogenous to the locust, AFIRFamide and GQERNFLRFamide, increase amylase and alpha-glucosidase activity in midgut lumen contents.  相似文献   

20.
Thermoactinomyces thalpophilus isolated from flour mill wastes was found to produce extracellular amylase in shake flask cultures using sorghum as carbon source. Sorghum in mineral salts medium significantly supported a higher rate of amylase synthesis by the organism than soluble starch, giving peak amylase activity at the stationary phase. The optimum temperature and pH of the enzyme was 90°C and 5·0, respectively, with more than 50% enzyme activity retained at 100°C (30 min).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号