首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The present investigation deals with facile polyol mediated synthesis and characterization of ZnO nanoparticles and their antimicrobial activities against pathogenic microorganisms. The synthesis process was carried out by refluxing zinc acetate precursor in diethylene glycol(DEG) and triethylene glycol(TEG) in the presence and in the absence of sodium acetate for 2 h and 3 h. All synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD), UV visible spectroscopy (UV), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy(FESEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) technique. All nanoparticles showed different degree of antibacterial and antibiofilm activity against Gram-positive Staphylococcus aureus (NCIM 2654)and Gram-negative Proteus vulgaris (NCIM 2613). The antibacterial and antibiofilm activity was inversely proportional to the size of the synthesized ZnO nanoparticles. Among all prepared particles, ZnO nanoparticles with least size (~ 15 nm) prepared by refluxing zinc acetate dihydrate in diethylene glycol for 3 h exhibited remarkable antibacterial and antibiofilm activity which may serve as potential alternatives in biomedical application.  相似文献   

2.
The emergence of diseases and mortalities in aquaculture and development of antibiotics resistance in aquatic microbes, has renewed a great interest towards alternative methods of prevention and control of diseases. Nanoparticles have enormous potential in controlling human and animal pathogens and have scope of application in aquaculture. The present investigation was carried out to find out suitable nanoparticles having antimicrobial effect against aquatic microbes. Different commercial as well as laboratory synthesized metal and metal oxide nanoparticles were screened for their antimicrobial activities against a wide range of bacterial and fungal agents including certain freshwater cyanobacteria. Among different nanoparticles, synthesized copper oxide (CuO), zinc oxide (ZnO), silver (Ag) and silver doped titanium dioxide (Ag–TiO2) showed broad spectrum antibacterial activity. On the contrary, nanoparticles like Zn and ZnO showed antifungal activity against fungi like Penicillium and Mucor species. Since CuO, ZnO and Ag nanoparticles showed higher antimicrobial activity, they may be explored for aquaculture use.  相似文献   

3.
The present work aims to synthesize zinc oxide (ZnO) nanoparticles via green approaches using leaf extract of Parthenium hysterophorus. UV–vis and FT-IR tests confirmed the existence of biomolecules, active materials, and metal oxides. The X-ray diffraction structural study exposes the ZnO nanoparticles formation with hexagonal phase structures. SEM and TEM analysis reveal surface morphologies of ZnO nanoparticles and most of them are spherical with a size range of 10 nm. ZnO nanoparticles were revealed strong antimicrobial activity against both bacterial and fungal strains. The germination of seeds and vegetative growth of Sesamum indicum has been greatly improved.  相似文献   

4.
Zinc oxide, an established inorganic metal oxide in nanoparticles form exhibits tremendous anti-bacterial activity. The present study focuses on determining the anti-bacterial activity of green synthesized zinc oxide nanoparticles (ZnO NPs). Results clearly validate the effective synthesis of spherical shaped nanoparticles with average size range of 60–80 nm. SEM and EDAX data buttresses the results obtained by XRD pattern in terms of size and purity. ZnO NPs exhibited dose-dependent anti-bacterial activity against Escherichia coli (E. coli) and the IC50 value was calculated to be around 20 μg/mL. Growth kinetics study was conducted in the presence of nanoparticles which demonstrated the bacteriostatic effect of ZnO NPs. The study recommends the potential use of ZnO NPs in industries like food, pharmaceutical, agriculture, cosmetic industries for its anti-bacterial activity.  相似文献   

5.
During the last several years, various chemical methods have been used for synthesis of a variety of metal nanoparticles. Most of these methods pose severe environmental problems and biological risks; therefore the present study reports a biological route for synthesis of zinc oxide nanoparticles using Pseudomonas aeruginosa rhamnolipids (RLs) (denoted as OnZ@LR) and their antioxidant property. Formation of stable OnZ@LR nanoparticles gave mostly spherical particles with a particle size ranging from 35 to 80 nm. The OnZ@LR nanoparticles were characterized by UV-visible (UV–vis) spectroscopy, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis. The UV–vis spectra presented a characteristic absorbance peak at ∼360 nm for synthesized OnZ@LR nanoparticles. The XRD spectrum showed that OnZ@LR nanoparticles are crystalline in nature and have typical wurtzite type polycrystals. Antioxidant potential of OnZ@LR nanoparticles was assessed through 2,2–diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, and superoxide anion free radicals with varying concentration and time of the storage up to 15 months, while it was found to decline in bare ZnO nanoparticles. Similarly, the inhibitory effects on β-carotene oxidation and lipid peroxidation were also observed. These results elucidate the significance of P. aeruginosa RL as effective stabilizing agents to develop surface protective ZnO nanoparticles, which can be used as promising antioxidants in biological system.  相似文献   

6.
Transition metal oxide has emerged as one of the most potential candidates for environment remediation by utilizing solar energy through photocatalysis. This study compares the optical characteristics of zinc oxide (ZnO) and ceria-doped zinc oxide (CeZnO) nanoparticles synthesized through a facile chemical precipitation method without using any assistant catalyst. The present work investigates the consequences of ceria (cerium dioxide, CeO2) intrusion on the photocatalytic activity of ZnO nanoparticles using methylene blue (MB) as a probe pollutant. The CeZnO showed an increase in photoactivity when compared to ZnO nanoparticles for degradation of MB in an aqueous solution under ultraviolet (UV) irradiance. The resulting heterojunction between ZnO and that of ceria enhances the charge separation efficiency showing a strong correlation between ZnO and CeO2 heterojunction on the charge transfer mechanism across the interface.  相似文献   

7.
Silver nanoparticles (Ag-NPs) are known to have inhibitory and fungicidal effects. Resistance against fungal infection has emerged as a major health problem in recent years, which needs great and immediate concern. Here, we report the extracellular biological synthesis of silver nanoparticles through a simple green route approach using a marine mangrove (Rhizophora mucronata) and silver nitrate. Aqueous extract of marine mangrove helped in reduction and was used as capping agent in biological synthesis. Nanoparticles were characterized using microscopy and spectroscopy techniques such as HRTEM, UV–Vis absorption spectroscopy and FTIR spectroscopy. X-ray diffraction analysis showed that the nanoparticles had face centered cubic structure with crystalline nature. FTIR spectroscopy showed the presence of different functional groups, such as hydroxyl and carbonyl, involved in the synthesis of nanoparticles. The antifungal activity of fluconazole and itraconazole was enhanced against the tested pathogenic fungi in the presence of Ag-NP and confirmed from increase in fold area of inhibition. This environmentally friendly method of biological synthesis can be easily integrated for various medical applications.  相似文献   

8.
9.
The secrets gleaned from nature have led to the development of biomimetic approaches for the growth of advanced nanomaterials. Biological methods for nanoparticle synthesis using microorganisms, enzymes, and plants or plant extracts have been suggested as possible ecofriendly alternatives to chemical and physical methods. Here, we report extracellular mycosynthesis of ZnO-NPs by Alternaria alternata (Fr.) Keissl (1912). On treating zinc sulfate solution with fungal culture filtrate, rapid reduction of ZnSO4 was observed leading to the formation of highly stable ZnO-NPs in the solution and up-to-date literature survey showed this was the first report of biosynthesis of ZnO-NPs using this fungus. The particles thereby obtained were characterized by different analytical techniques. EDX-spectrum revealed the presence of zinc and oxygen in the nanoparticles. FTIR spectroscopy confirmed the presence of a protein shell outside the nanoparticles which in turn also support their stabilization. DLS and TEM analysis of the ZnO-NPs indicated that they ranged in size from 45 to 150 nm with average size of 75 ± 5 nm. But potential negative impacts of nanomaterials are sometimes overlooked during the discovery phase of research. Therefore, in the present study, bio-safety of mycosynthesized ZnO-NPs were evaluated by using cytotoxicity and genotoxicity assays in human lymphocyte cells, in vitro. Cytotoxicity studied as function of membrane integrity and mitochondrial dehydrogenase activity revealed significant (P < 0.05) toxicity at treatment concentration of 500 μg/ml and above. Additionally, DNA damaging potential was also studied using comet assay. The results revealed significant genotoxicity at the highest concentration (1,000 μg/ml).  相似文献   

10.
Nanomaterials offer a number of properties that are of interest to the field of neural tissue engineering. Specifically, materials that exhibit nanoscale surface dimensions have been shown to promote neuron function while simultaneously minimizing the activity of cells such as astrocytes that inhibit central nervous system regeneration. Studies demonstrating enhanced neural tissue regeneration in electrical fields through the use of conductive materials have led to interest in piezoelectric materials (or those materials which generate a transient electrical potential when mechanically deformed) such as zinc oxide (ZnO). It has been speculated that ZnO nanoparticles possess increased piezoelectric properties over ZnO micron particles. Due to this promise in neural applications, the objective of the present in vitro study was, for the first time, to assess the activity of astroglial cells on ZnO nanoparticle polymer composites. ZnO nanoparticles embedded in polyurethane were analyzed via scanning electron microscopy to evaluate nanoscale surface features of the composites. The surface chemistry was characterized via X-ray photoelectron spectroscopy. Astroglial cell response was evaluated based on cell adhesion and proliferation. Astrocyte adhesion was significantly reduced on ZnO nanoparticle/polyurethane (PU) composites with a weight ratio of 50:50 (PU:ZnO) wt.%, 75:25 (PU:ZnO) wt.%, and 90:10 (PU:ZnO) wt.% in comparison to pure PU. The successful production of ZnO nanoparticle composite scaffolds suitable for decreasing astroglial cell density demonstrates their potential as a nerve guidance channel material with greater efficiency than what may be available today.  相似文献   

11.
Nanotechnology is an emerging field with tremendous potential and usage of medicinal plants and green preparation of nanoparticles (NPs) is one of the widely explored areas. These have been shown to be effective against different biological activities such as diabetes mellitus, cancer, antioxidant, antimicrobial, etc. The current studies focus on the green synthesis of zinc NPs (ZnO NPs) from aqueous leaf extract of Murraya koenigii (MK). The synthesized Murraya koeingii zinc oxide NPs (MK ZnO NPs) were characterized using UV–visible spectroscopy, dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive spectrum (EDS) and cyclic voltammetry (CV). The synthesized MK ZnO NPs were evaluated for their in vitro antidiabetic, antioxidant, antimicrobial, and cytotoxic activity. They demonstrated significant antidiabetic and cytotoxic activity, as well as moderate free-radical scavenging and antibacterial activity.  相似文献   

12.
Zinc oxide (ZnO) has broad applications in various areas. Nanoparticle synthesis using plants is an alternative to conventional physical and chemical methods. It is known that the biological synthesis of nanoparticles is gaining importance due to its simplicity, eco-friendliness and extensive antimicrobial activity. Also, in this study we report the synthesis of ZnO nanoparticles using Trifolium pratense flower extract. The prepared ZnO nanoparticles have been characterized by UV–Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) with Energy dispersive X-ray analysis (EDX). Besides, this study determines the antimicrobial efficacy of the synthesized ZnO nanoparticles against clinical and standard strains of S. aureus and P. aeruginosa and standard strain of E. coli.  相似文献   

13.
Nanoparticle metal oxides represent a new class of important materials that are increasingly being developed for use in research and health-related applications. Highly ionic metal oxides are interesting not only for their wide variety of physical and chemical properties but also for their antibacterial activity. Although the in vitro antibacterial activity and efficacy of regular zinc oxides have been investigated, little is known about the antibacterial activity of nanoparticles of ZnO. Preliminary growth analysis data suggest that nanoparticles of ZnO have significantly higher antibacterial effects on Staphylococcus aureus than do five other metal oxide nanoparticles. In addition, studies have clearly demonstrated that ZnO nanoparticles have a wide range of antibacterial effects on a number of other microorganisms. The antibacterial activity of ZnO may be dependent on the size and the presence of normal visible light. The data suggest that ZnO nanoparticles have a potential application as a bacteriostatic agent in visible light and may have future applications in the development of derivative agents to control the spread and infection of a variety of bacterial strains.  相似文献   

14.
Antifungal activities of zinc oxide nanoparticles (ZnO NPs) and their mode of action against two postharvest pathogenic fungi (Botrytis cinerea and Penicillium expansum) were investigated in this study. ZnO NPs with sizes of 70 ± 15 nm and concentrations of 0, 3, 6 and 12 mmol l−1 were used. Traditional microbiological plating, scanning electron microscopy (SEM), and Raman spectroscopy were used to study antifungal activities of ZnO NPs and to characterize the changes in morphology and cellular compositions of fungal hyphae treated with ZnO NPs. Results show that ZnO NPs at concentrations greater than 3 mmol l−1 can significantly inhibit the growth of B. cinerea and P. expansum. P. expansum was more sensitive to the treatment with ZnO NPs than B. cinerea. SEM images and Raman spectra indicate two different antifungal activities of ZnO NPs against B. cinerea and P. expansum. ZnO NPs inhibited the growth of B. cinerea by affecting cellular functions, which caused deformation in fungal hyphae. In comparison, ZnO NPs prevented the development of conidiophores and conidia of P. expansum, which eventually led to the death of fungal hyphae. These results suggest that ZnO NPs could be used as an effective fungicide in agricultural and food safety applications.  相似文献   

15.
Alstonia scholaris is one of the most important medicinal plants and herein, we present the synthesis of zinc oxide nanoparticles using the bark extract of Alstonia scholaris, and evaluation of their antimicrobial efficacy. Stable ZnO nanoparticles were formed by treating 90 mL of 1 mM zinc nitrate aqueous solution with 10 mL of 10% bark extract. The formation of Alstonia scholaris bark extract mediated zinc oxide nanoparticles was confirmed by UV–visible spectroscopic analysis and recorded the localized surface plasmon resonance (LSPR) at 430 nm. Fourier transform infrared spectroscopic (FT-IR) analysis revealed that primary and secondary amine groups in combination with the proteins present in the bark extract is responsible for the reduction and stabilization of the ZnONPs. The crystalline phase of the nanocrystals was determined by XRD analysis and morphology was studied using transmission electron microscopy (TEM). The hydrodynamic diameter (26.2 nm) and a positive zeta potential (43.0 mV) were measured using the dynamic light scattering technique. The antimicrobial activity of Alstonia scholaris ZnONPs was evaluated (in-vitro) using disc diffusion method against fungi, Gram-negative and Gram-positive bacteria which were isolated from the biofilm formed in drinking water PVC pipelines. The results obtained suggested that ZnO nanoparticles exhibit a good anti-fungal activity than bactericidal effect towards all pathogens tested in in-vitro disc diffusion method (170 ppm, 100 ppm and 50 ppm). Further, the toxicity of biosynthesized ZnONPs was tested against Alstonia scholaris to evaluate the cytotoxic effect that displayed LC50 value of 95% confidence intervals.  相似文献   

16.

Background

Microorganisms that are exposed to pollutants in the environment, such as metals/metalloids, have a remarkable ability to fight the metal stress by various mechanisms. These metal-microbe interactions have already found an important role in biotechnological applications. It is only recently that microorganisms have been explored as potential biofactories for synthesis of metal/metalloid nanoparticles. Biosynthesis of selenium (Se0) nanospheres in aerobic conditions by a bacterial strain isolated from the coalmine soil is reported in the present study.

Results

The strain CM100B, identified as Bacillus cereus by morphological, biochemical and 16S rRNA gene sequencing [GenBank:GU551935.1] was studied for its ability to generate selenium nanoparticles (SNs) by transformation of toxic selenite (SeO3 2-) anions into red elemental selenium (Se0) under aerobic conditions. Also, the ability of the strain to tolerate high levels of toxic selenite ions was studied by challenging the microbe with different concentrations of sodium selenite (0.5 mM-10 mM). ESEM, AFM and SEM studies revealed the spherical Se0 nanospheres adhering to bacterial biomass as well as present as free particles. The TEM microscopy showed the accumulation of spherical nanostructures as intracellular and extracellular deposits. The deposits were identified as element selenium by EDX analysis. This is also indicated by the red coloration of the culture broth that starts within 2-3 h of exposure to selenite oxyions. Selenium nanoparticles (SNs) were further characterized by UV-Visible spectroscopy, TEM and zeta potential measurement. The size of nanospheres was in the range of 150-200 nm with high negative charge of -46.86 mV.

Conclusions

This bacterial isolate has the potential to be used as a bionanofactory for the synthesis of stable, nearly monodisperse Se0 nanoparticles as well as for detoxification of the toxic selenite anions in the environment. A hypothetical mechanism for the biogenesis of selenium nanoparticles (SNs) involving membrane associated reductase enzyme(s) that reduces selenite (SeO3 2-) to Se0 through electron shuttle enzymatic metal reduction process has been proposed.  相似文献   

17.
The plant Cassia angustifolia belongs to Saudi Arabia, which is one of the native places and now cultured throughout the global countries. Medical care in the Arab world is an essential outlet for medicinal plants, both because they are crucial elements for prophetic medicine and due to their lengthy background in the Middle East. C.angustifolia is one of the medicinal plants used in the Saudi Arabia. The usage of plant extracts for synthesizing nanoparticles is conducive to other biological material, since it avoids the lengthy phase of cell culture maintenance. Silver nanoparticles attract further attention due to their strong conductivity, stability and antimicrobial activity across different metal nanoparticles. The present study was designed in the Saudi C. angustifolia leaves with the zinc synthesis of nanoparticles and its antibacterial ability. The plant extracts of C. angustifolia was used for synthesis of zinc nanoparticles, antimicrobial activities against bacterial strains have been tested along with transmission electron microscope (TEM), UV spectroscopy and antimicrobial activities have been conducted. This study showed that silver ions may be transferred from the plant extract to silver nanoparticles. AgNPs biogenic capacity to antibacterial with lovo cell with IC50 ranged from 33.5 ± 0.2 μg/mL demonstrated strong antibacterial capacity to antibody. The overall absorption value for the extract was between 420 and 440 nm and the color transition to green was the plasma absorption of the AgNPs. TEM results was showed in 200,000 magnification. The uniqueness of the current study is that Cassia angustifolia leaf extract from Saudi Arabia was used to prepare the metallic nanoparticles. Additionally, ZnCl2 may also be used as nanoparticles of mineral salt and zinc, which, since their application has been confirmed, are antimicrobial.  相似文献   

18.
Marine endophytes are the most untapped group of microorganisms having enormous applications in pharmaceutical and cosmetra id="spar0060">Marine endophytes are the most untapped group of microorganisms having enormous applications in pharmaceutical and cosmetic industries. In the present study, we have optimized a method for biogenic synthesis of gold nanoparticles (AuNPs) from Cladosporium cladosporioides, an endophytic fungus of the seaweed, Sargassumwightii. The identity of the fungus was established by the 18 s rRNA and ITS sequence. The AuNPs synthesized using C. cladosporioides were characterized by UV–vis spectrophotometer, Field Emission Scanning Electron Microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Dynamic light scattering, Atomic force microscopy, and Energy dispersive X-ray spectroscopic studies. They were tested for free radical scavenging activity (DPPH and FRAP assay) and antimicrobial activity against a panel of pathogenic microorganisms. The AuNps were within 100 nm as confirmed by the above methods. An attempt was made to understand the mechanism of the gold nanoparticle synthesis using the fungal extract. The present study shows the involvement of NADPH-dependent reductase and phenolic compounds in the bioreduction of the gold metal salts to nanoparticles. The AuNPs showed significant antioxidant as well as the antimicrobial activity. Hence, this study has shown a great potential for the development of a cost effective antimicrobial treatment utilizing biogenic gold nanoparticles.  相似文献   

19.
Citrus black rot disease being caused by Alternaria citri is a major disease of citrus plants with 30–35% economic loss annually. Fungicides had not been effective in the control of this disease during last few decades. In the present study, antifungal role of green synthesized zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs) were studied against Alternaria citri. Alternaria citri was isolated from disease fruits samples and was identified by staining with lacto phenol cotton blue. Furthermore, CuO and ZnO NPs were synthesized by utilizing the lemon peels extract as the reducing and capping agent. Nanoparticles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. From the XRD data, the calculated size of CuO NPs was to be 18 nm and ZnO NPs was16.8 nm using Scherrer equation. The SEM analyses revealed the surface morphology of all the metal oxide NPs synthesized were rounded, elongated and or spherical in the shape. The zone of inhibition was observed to be 50 ± 0.5 mm by CuO NPs, followed by 51.5 ± 0.5 mm by ZnO NPs and maximum zone of antifungal inhibition was observed to be 53 ± 0.6 mm by mix metal oxide NPs. The results of minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of the synthesized nanoparticles showed that at the certain concentrations (80 mg ml?1), these NPs were capable of inhibiting the fungal growth, whereas above that specified concentrations (100 mg ml?1), NPs completely inhibited the fungal growth. Based on these findings, the green synthesized NPs can be used as alternative to fungicide in order to control the citrus black rot disease.  相似文献   

20.
Green chemistry is a boon for the development of safe, stable and ecofriendly nanostructures using biological tools. The present study was carried out to explore the potential of selected fungal strains for biosynthesis of intra- and extracellular gold nanostructures. Out of the seven cultures, two fungal strains (SBS-3 and SBS-7) were selected on the basis of development of dark pink colour in cell free supernatant and fungal beads, respectively indicative of extra- and intracellular gold nanoparticles production. Both biomass associated and cell free gold nanoparticles were characterized using X-ray diffractogram (XRD) analysis and transmission electron microscopy (TEM). XRD analysis confirmed crystalline, face-centered cubic lattice of metallic gold nanoparticles along with average crystallite size. A marginal difference in average crystallite size of extracellular (17.76 nm) and intracellular (26 and 22 nm) Au-nanostructures was observed using Scherrer equation. In TEM, a variety of shapes (triangles, spherical, hexagonal) were observed in both extra- and intracellular nanoparticles. 18S rRNA gene sequence analysis by multiple sequence alignment (BLAST) indicated 99 % homology of SBS-3 to Aspergillus fumigatus with 99 % alignment coverage and 98 % homology of SBS-7 to Aspergillus flavus with 98 % alignment coverage respectively. Native-PAGE and activity staining further confirmed enzyme linked synthesis of gold nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号