首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conspicuous impacts of inconspicuous hosts on the Lyme disease epidemic   总被引:1,自引:0,他引:1  
Emerging zoonotic pathogens are a constant threat to human health throughout the world. Control strategies to protect public health regularly fail, due in part to the tendency to focus on a single host species assumed to be the primary reservoir for a pathogen. Here, we present evidence that a diverse set of species can play an important role in determining disease risk to humans using Lyme disease as a model. Host-targeted public health strategies to control the Lyme disease epidemic in North America have focused on interrupting Borrelia burgdorferi sensu stricto (ss) transmission between blacklegged ticks and the putative dominant reservoir species, white-footed mice. However, B. burgdorferi ss infects more than a dozen vertebrate species, any of which could transmit the pathogen to feeding ticks and increase the density of infected ticks and Lyme disease risk. Using genetic and ecological data, we demonstrate that mice are neither the primary host for ticks nor the primary reservoir for B. burgdorferi ss, feeding 10% of all ticks and 25% of B. burgdorferi-infected ticks. Inconspicuous shrews feed 35% of all ticks and 55% of infected ticks. Because several important host species influence Lyme disease risk, interventions directed at a multiple host species will be required to control this epidemic.  相似文献   

2.
Zoonoses disproportionately affect tropical communities and are associated with human modification and use of ecosystems. Effective management is hampered by poor ecological understanding of disease transmission and often focuses on human vaccination or treatment. Better ecological understanding of multi-vector and multi-host transmission, social and environmental factors altering human exposure, might enable a broader suite of management options. Options may include “ecological interventions” that target vectors or hosts and require good knowledge of underlying transmission processes, which may be more effective, economical, and long lasting than conventional approaches. New frameworks identify the hierarchical series of barriers that a pathogen needs to overcome before human spillover occurs and demonstrate how ecological interventions may strengthen these barriers and complement human-focused disease control. We extend these frameworks for vector-borne zoonoses, focusing on Kyasanur Forest Disease Virus (KFDV), a tick-borne, neglected zoonosis affecting poor forest communities in India, involving complex communities of tick and host species. We identify the hierarchical barriers to pathogen transmission targeted by existing management. We show that existing interventions mainly focus on human barriers (via personal protection and vaccination) or at barriers relating to Kyasanur Forest Disease (KFD) vectors (tick control on cattle and at the sites of host (monkey) deaths). We review the validity of existing management guidance for KFD through literature review and interviews with disease managers. Efficacy of interventions was difficult to quantify due to poor empirical understanding of KFDV–vector–host ecology, particularly the role of cattle and monkeys in the disease transmission cycle. Cattle are hypothesised to amplify tick populations. Monkeys may act as sentinels of human infection or are hypothesised to act as amplifying hosts for KFDV, but the spatial scale of risk arising from ticks infected via monkeys versus small mammal reservoirs is unclear. We identified 19 urgent research priorities for refinement of current management strategies or development of ecological interventions targeting vectors and host barriers to prevent disease spillover in the future.  相似文献   

3.
In Brazil capybara, the biggest existing rodent species, and associated tick species, Amblyomma cajennense and Amblyomma dubitatum, are undergoing an unplanned host and parasite population expansion in both urban and rural areas. However, scientific information about such issue, particularly in urban areas, is scanty. Such rodent and ticks are associated in some municipalities, particularly in southeastern Brazil, with the transmission of the highly lethal Rickettsia rickettsia caused spotted-fever. In this study ecological aspects related to the establishment and expansion of capybaras and ticks in urban areas of Uberlandia, Minas Gerais State, Brazil were evaluated. For this purpose, capybara and tick abundance in four urban areas and an ecological reserve was determined. Abundance of capybaras varied between areas and over the sampling period and these differences were related to human activities. A positive correlation was found between capybara and tick abundance, however, the tick species had an uneven distribution within the municipality and environmental factors rather than host availability were blamed for such. On the whole these observations show that capybara populations in urban areas are associated to high environmental infestation of ticks and the increased risk of bites and of pathogen transmission to humans. At the same time the uneven distribution of tick species might implicate in an unequal risk of tick-borne diseases within the same urban area.  相似文献   

4.
Pathogen species often consist of genetically distinct strains, which can establish mixed infections or coinfections in the host. In coinfections, interactions between pathogen strains can have important consequences for their transmission success. We used the tick-borne bacterium Borrelia afzelii, which is the most common cause of Lyme disease in Europe, as a model multi-strain pathogen to investigate the relationship between coinfection, competition between strains, and strain-specific transmission success. Mus musculus mice were infected with one or two strains of B. afzelii, strain transmission success was measured by feeding ticks on mice, and the distribution of each strain in six different mouse organs and the ticks was measured using qPCR. Coinfection and competition reduced the tissue infection prevalence of both strains and changed their bacterial abundance in some tissues. Coinfection and competition also reduced the transmission success of the B. afzelii strains from the infected hosts to feeding ticks. The ability of the B. afzelii strains to establish infection in the host tissues was strongly correlated with their transmission success to the tick vector. Our study demonstrates that coinfection and competition between pathogen strains inside the host tissues can have major consequences for their transmission success.Subject terms: Microbial ecology, Bacteria  相似文献   

5.
Anthropogenic factors, including climate warming, are increasing the incidence and prevalence of infectious diseases worldwide. Infectious diseases caused by pathogenic parasites can have severe impacts on host survival, thereby altering the selection regime and inducing evolutionary responses in their hosts. Knowledge about such evolutionary consequences in natural populations is critical to mitigate potential ecological and economic effects. However, studies on pathogen-induced trait changes are scarce and the pace of evolutionary change is largely unknown, particularly in vertebrates. Here, we use a time series from long-term monitoring of perch to estimate temporal trends in the maturation schedule before and after a severe pathogen outbreak. We show that the disease induced a phenotypic change from a previously increasing to a decreasing size at maturation, the most important life-history transition in animals. Evolutionary rates imposed by the pathogen were high and comparable to those reported for populations exposed to intense human harvesting. Pathogens thus represent highly potent drivers of adaptive phenotypic evolution in vertebrates.  相似文献   

6.
On mammals and birds communities of ectoparasites are present, which can include scores of ticks, mites and insects species. The parasitizing of arthropods terrestrial vertebrates appeared as far back a the Cretaceous period, and after 70-100 mil. years of the coevolution ectoparasites have assimilated all food resources and localities of the hosts' bodies. To the present only spatial and (to the less extent) trophic niches of parasitic insects, ticks and mites are studied completely enough. The main results these investigations are discussed in the present paper. A high abundance of the communities is reached because of their partition into the number of ecological niches. Host is complex of ecological niches for many ectoparasites species. These niches reiterate in the populations of a species closely related species of hosts and repeat from generation to generation. The each part of host (niche) being assimilated be certain parasite species is available potentially for other species. The partition of host into ecological niches is clearer than the structure of ecosystems including free-living organisms. A real extent of the ecological niches occupation by different species of ticks, mites and insects is considerably lower than a potential maximum. The degree of ecological niches saturation depends on the history of the coevolution of parasites community components, previous colonization be new ectoparasite species and many other ecological factors affecting host-parasite system. The use of the ecological niche conception in parasitology is proved to be rather promising. Ectoparasites communities because of their species diversity, different types of feeding and a number of habitats on host represent convenient models and study of them can contribute significantly to the developmeht of the general conception of ecological niche.  相似文献   

7.
Patterns of diversity within large regional biotas express the outcomes of processes, operating on both regional and local scales, that influence evolutionary diversification as well as the distribution and abundance of species. Regional analyses of species distributions suggest that neither ecological sorting of species based on their adaptations to the physical environment, nor interactions between competing species, adequately explain patterns of species richness. Potentially competing species appear to utilise broadly overlapping resources with similar proficiency. Phylogenetic and phylogeographic analyses reveal that species abundances and distributions within regions vary independently of evolutionary relationship. This implies the existence of dynamic, species‐specific controls on population growth, as could be applied by specialised pathogens or other antagonists. Here, I argue that the changing balance of coevolved interactions between hosts and their antagonists shapes the distribution and abundance of individual host populations as well as patterns of local species richness. Geographical expansion creates allopatric populations and thereby could promote diversification; contraction ultimately leads to extinction. This taxon‐cycle dynamic links regional diversity and distribution to intrinsic biological interactions independently of extrinsic ecological conditions. These hypotheses emphasise the central importance of investigating the impacts of pathogens on species abundance and distribution, and the potential consequences of coevolutionary changes in pathogen‐host relationships for species formation and extinction.  相似文献   

8.
The need to prevent and cure emerging diseases often precludes their continuing study in situ. We present studies on the process of disease emergence by host shifts using the model system of anther-smut disease (Microbotryum violaceum) on the plant genus Silene (Caryophyllaceae). This system has little direct social impact, and it is readily amenable to experimental manipulation. Our microevolutionary studies have focused on the host shift of Microbotryum from Silene alba (=latifolia; white campion) onto Silene vulgaris (bladder campion) in a population in Virginia. Karyotypic variation shows that the host shift is recent and originates from the disease on sympatric S. alba. Analysis of the spatial pattern of disease shows that the host shift has been contingent on the co-occurrence of the two species at a local scale. Cross-inoculation studies show that families of the new host differ greatly in their susceptibility to the pathogen, indicating the potential for rapid evolution of resistance. Disease expression on the new host is frequently abnormal, suggesting that the pathogen is imperfectly adapted to its new host. In experimental populations, disease transmission within populations of the old host is greater than within populations of the new host. However, there is also a high transmission rate of the disease from the new host back to the old host, suggesting a feedback effect that increases disease prevalence in the community as a whole. Continuing studies of these populations are designed to determine whether this new host-pathogen system is likely to be self-sustaining and to quantify evolutionary changes in both the host and the pathogen.  相似文献   

9.
Emerging pathogens are a growing threat to human health, agriculture and the diversity of ecological communities but may also help control problematic species. Here we investigated the diversity, distribution and consequences of emerging fungal pathogens infecting an aggressive invasive grass that is rapidly colonising habitats throughout the eastern USA. We document the recent emergence and accumulation over time of diverse pathogens that are members of a single fungal genus and represent multiple, recently described or undescribed species. We also show that experimental suppression of these pathogens increased host performance in the field, demonstrating the negative effects of emerging pathogens on invasive plants. Our results suggest that invasive species can facilitate pathogen emergence and amplification, raising concerns about movement of pathogens among agricultural, horticultural, and wild grasses. However, one possible benefit of pathogen accumulation is suppression of aggressive invaders over the long term, potentially abating their negative impacts on native communities.  相似文献   

10.
Pathogens are a significant component of all plant communities. In recent years, the potential for existing and emerging pathogens of agricultural crops to cause increased yield losses as a consequence of changing climatic patterns has raised considerable concern. In contrast, the response of naturally occurring, endemic pathogens to a warming climate has received little attention. Here, we report on the impact of a signature variable of global climate change – increasing temperature – on the long‐term epidemiology of a natural host–pathogen association involving the rust pathogen Triphragmium ulmariae and its host plant Filipendula ulmaria. In a host–pathogen metapopulation involving approximately 230 host populations growing on an archipelago of islands in the Gulf of Bothnia we assessed changes in host population size and pathogen epidemiological measures over a 25‐year period. We show how the incidence of disease and its severity declines over that period and most importantly demonstrate a positive association between a long‐term trend of increasing extinction rates in individual pathogen populations of the metapopulation and increasing temperature. Our results are highly suggestive that changing climatic patterns, particularly mean monthly growing season (April‐November) temperature, are markedly influencing the epidemiology of plant disease in this host–pathogen association. Given the important role plant pathogens have in shaping the structure of communities, changes in the epidemiology of pathogens have potentially far‐reaching impacts on ecological and evolutionary processes. For these reasons, it is essential to increase understanding of pathogen epidemiology, its response to warming, and to invoke these responses in forecasts for the future.  相似文献   

11.
Ticks are obligatory parasites with complex life cycles that often depend on larger bodied vertebrates as final hosts. These traits make them particularly sensitive to local coextinction with their host. Loss of wildlife abundance and diversity should thus lead to loss of tick abundance and diversity to the point where only generalist tick species remain. However, direct empirical tests of these hypotheses are lacking, despite their relevance to our understanding of tick-borne disease emergence in disturbed environments. Here, we compare vertebrate and tick communities across 12 forest islands and peninsulas in the Panama Canal that ranged 1000-fold in size (2.6–2811.3?ha). We used drag sampling and camera trapping to directly assess the abundance and diversity of communities of questing ticks and vertebrate hosts. We found that the abundance and species richness of ticks were positively related to those of wildlife. Specialist tick species were only present in fragments where their final hosts were found. Further, less diverse tick communities had a higher relative abundance of the generalist tick species Amblyomma oblongoguttatum, a potential vector of spotted fever group rickettsiosis. These findings support the host-parasite coextinction hypothesis, and indicate that loss of wildlife can indeed have cascading effects on tick communities. Our results also imply that opportunities for pathogen transmission via generalist ticks may be higher in habitats with degraded tick communities. If these patterns are general, then tick identities and abundances serve as useful bioindicators of ecosystem health, with low tick diversity reflecting low wildlife diversity and a potentially elevated risk of interspecific disease transmission via remaining host species and generalist ticks.  相似文献   

12.
Understanding the factors determining the distribution of parasites and pathogens in natural systems is essential for making predictions about the spread of emerging infectious disease. Here, we report the distribution of the fungal anther‐smut disease, caused by Microbotryum spp., on populations of the European wildflower Silene vulgaris over a range of elevations. A survey of several geographically distinct mountains in the southern French alps found that anther‐smut disease was restricted to high elevations, rarely observed below 1300 m despite availability of hosts below this elevation. Anther smut causes host‐sterility, and is recognized as a model system for natural host–pathogen interactions, sharing common features with vector‐borne and sexually‐transmitted disease in animals. In such systems, many biotic and abiotic factors likely to change over ecological gradients can influence disease epidemiology, including host spatial structure, pathogen infectivity, host resistance, and vector behavior. Here, we tested whether host population size, density, or connectivity also declined across elevation, and whether these epidemiologically relevant factors explained the observed disease distribution. We found that while none of these factor means changed across elevation, disease was significantly more likely to occur at both higher elevations and in larger populations, the majority of which were found above 1300 m. The break in disease incidence was also associated with an apparent scarcity of these larger host populations between 1000 and 1300 m in elevation. Examining variation in climatic factors among host populations, we also showed that the probability of disease was higher in areas with historically colder, wetter, and more stable conditions. The restricted distribution of anther‐smut disease in high‐elevation S. vulgaris provides an opportunity for empirical study on range limits and disease distribution in natural alpine communities that are considered particularly sensitive to the effects of climate change.  相似文献   

13.
Swei A  Ostfeld RS  Lane RS  Briggs CJ 《Oecologia》2011,166(1):91-100
Invasive species, including pathogens, can have important effects on local ecosystems, including indirect consequences on native species. This study focuses on the effects of an invasive plant pathogen on a vertebrate community and Ixodes pacificus, the vector of the Lyme disease pathogen (Borrelia burgdorferi) in California. Phytophthora ramorum, the causative agent of sudden oak death, is a non-native pathogen killing trees in California and Oregon. We conducted a multi-year study using a gradient of SOD-caused disturbance to assess the impact on the dusky-footed woodrat (Neotoma fuscipes) and the deer mouse (Peromyscus maniculatus), two reservoir hosts of B. burgdorferi, as well as the impact on the Columbian black-tailed deer (Odocoileus hemionus columbianus) and the western fence lizard (Sceloporus occidentalis), both of which are important hosts for I. pacificus but are not pathogen reservoirs. Abundances of P. maniculatus and S. occidentalis were positively correlated with greater SOD disturbance, whereas N. fuscipes abundance was negatively correlated. We did not find a change in space use by O. hemionus. Our data show that SOD has a positive impact on the density of nymphal ticks, which is expected to increase the risk of human exposure to Lyme disease all else being equal. A positive correlation between SOD disturbance and the density of nymphal ticks was expected given increased abundances of two important hosts: deer mice and western fence lizards. However, further research is needed to integrate the direct effects of SOD on ticks, for example via altered abiotic conditions with host-mediated indirect effects.  相似文献   

14.
Ticks are obligate blood‐sucking ectoparasites, which not only directly damage through bites but also transmit many pathogens. China has a high diversity of tick species, 125 species have been reported, including 111 hard tick and 14 soft tick species. Many of the ticks are important vectors of pathogens, resulting in zoonoses. The dynamics of ticks are affected by both the host and habitat environment. However, systematic studies on the geographical distribution, host diversity, and specificity of ticks are limited in China. To achieve this goal, the relevant available data were summarized and analyzed in this study. Ticks are distributed in all parts of China and Xinjiang has the most records of ticks. The distribution of ticks in adjacent areas is similar, indicating that the habitat environment affects their distribution. Most ticks are widely distributed, whereas some species are endemic to their distributed regions. Ticks are parasitic on mammals, birds, and reptiles, of which mammals are the main host species. Overall, most ticks parasitize different hosts, only a few ticks have strict host specificity, such as ticks that are specifically parasitic on reptiles and bats. In addition, environmental changes and control efforts also influence the dynamics of ticks. These results can better reveal tick biological traits and are valuable for tick control.  相似文献   

15.
Antarctic birds are not beyond the effects of parasites or pathogens. However, potential ecological consequences of wide-spread infections for bird populations in Antarctica have received little attention. In this paper, we review the information published about disease and parasites, and their effects on Antarctic birds. The information on host species, parasites and pathogens, and geographic regions is incomplete and data on ecological effects on the populations, including how birds respond to pathogens and parasites, are almost inexistent. We conclude that more research is needed to establish general patterns of spatial and temporal variation in pathogens and parasites, and to determine how such patterns could influence hosts. This information is crucial to limit the spread of outbreaks and may aid in the decision-making process should they occur.  相似文献   

16.
Global environmental change is having profound effects on the ecology of infectious disease systems, which are widely anticipated to become more pronounced under future climate and land use change. Arthropod vectors of disease are particularly sensitive to changes in abiotic conditions such as temperature and moisture availability. Recent research has focused on shifting environmental suitability for, and geographic distribution of, vector species under projected climate change scenarios. However, shifts in seasonal activity patterns, or phenology, may also have dramatic consequences for human exposure risk, local vector abundance and pathogen transmission dynamics. Moreover, changes in land use are likely to alter human–vector contact rates in ways that models of changing climate suitability are unlikely to capture. Here we used climate and land use projections for California coupled with seasonal species distribution models to explore the response of the western blacklegged tick (Ixodes pacificus), the primary Lyme disease vector in western North America, to projected climate and land use change. Specifically, we investigated how environmental suitability for tick host‐seeking changes seasonally, how the magnitude and direction of changing seasonal suitability differs regionally across California, and how land use change shifts human tick‐encounter risk across the state. We found vector responses to changing climate and land use vary regionally within California under different future scenarios. Under a hotter, drier scenario and more extreme land use change, the duration and extent of seasonal host‐seeking activity increases in northern California, but declines in the south. In contrast, under a hotter, wetter scenario seasonal host‐seeking declines in northern California, but increases in the south. Notably, regardless of future scenario, projected increases in developed land adjacent to current human population centers substantially increase potential human–vector encounter risk across the state. These results highlight regional variability and potential nonlinearity in the response of disease vectors to environmental change.  相似文献   

17.
Pathogenesis is strongly dependent on microbial context, but development of probiotic therapies has neglected the impact of ecological interactions. Dynamics among microbial communities, host immune responses, and environmental conditions may alter the effect of probiotics in human and veterinary medicine, agriculture and aquaculture, and the proposed treatment of emerging wildlife and zoonotic diseases such as those occurring on amphibians or vectored by mosquitoes. Here we use a holistic measure of amphibian mucosal defenses to test the effects of probiotic treatments and to assess disease risk under different ecological contexts. We developed a non-invasive assay for antifungal function of the skin mucosal ecosystem (mucosome function) integrating host immune factors and the microbial community as an alternative to pathogen exposure experiments. From approximately 8500 amphibians sampled across Europe, we compared field infection prevalence with mucosome function against the emerging fungal pathogen Batrachochytrium dendrobatidis. Four species were tested with laboratory exposure experiments, and a highly susceptible species, Alytes obstetricans, was treated with a variety of temperature and microbial conditions to test the effects of probiotic therapies and environmental conditions on mucosome function. We found that antifungal function of the amphibian skin mucosome predicts the prevalence of infection with the fungal pathogen in natural populations, and is linked to survival in laboratory exposure experiments. When altered by probiotic therapy, the mucosome increased antifungal capacity, while previous exposure to the pathogen was suppressive. In culture, antifungal properties of probiotics depended strongly on immunological and environmental context including temperature, competition, and pathogen presence. Functional changes in microbiota with shifts in temperature provide an alternative mechanistic explanation for patterns of disease susceptibility related to climate beyond direct impact on host or pathogen. This nonlethal management tool can be used to optimize and quickly assess the relative benefits of probiotic therapies under different climatic, microbial, or host conditions.  相似文献   

18.
Despite environmental, social and ecological dependencies, emergence of zoonotic viruses in human populations is clearly also affected by genetic factors which determine cross-species transmission potential. RNA viruses pose an interesting case study given their mutation rates are orders of magnitude higher than any other pathogen – as reflected by the recent emergence of SARS and Influenza for example. Here, we show how feature selection techniques can be used to reliably classify viral sequences by host species, and to identify the crucial minority of host-specific sites in pathogen genomic data. The variability in alleles at those sites can be translated into prediction probabilities that a particular pathogen isolate is adapted to a given host. We illustrate the power of these methods by: 1) identifying the sites explaining SARS coronavirus differences between human, bat and palm civet samples; 2) showing how cross species jumps of rabies virus among bat populations can be readily identified; and 3) de novo identification of likely functional influenza host discriminant markers.  相似文献   

19.
Ticks are important vectors of numerous pathogens causing illness, fatalities, and economic loss worldwide. Infectious disease episodes are increasing, and novel tick-borne pathogens are described frequently. Identification of novel reservoir hosts and vectors of tick-borne pathogens is essential if control measures are to be successful. In South Africa, the eastern rock sengi, Elephantulus myurus , hosts a number of tick species of veterinary importance. Despite this, there remains a paucity of information regarding the tick fauna of this species, the pathogen associations of ticks that it hosts, and its role as a reservoir host of tick-borne pathogens. The current study documents the tick fauna of E. myurus and sympatric small mammal species in Limpopo Province, South Africa. The pathogen associations of ticks hosted by elephant shrews were also investigated by PCR screening of engorged nymphs for a broad range of bacterial and protozoan tick-borne infections, including Borrelia burgdorferi sensu lato and members of Apicomplexa and the order Rickettsiales. There were marked differences in tick species and abundance among host species. Elephantulus myurus was heavily, and predominantly, parasitized by an as-yet undescribed tick species that we identify as Rhipicephalus sp. near warburtoni. PCR and sequence analysis revealed the presence of Anaplasma bovis in this tick species, which may have consequences for livestock production and conservation efforts in the area where this tick species occurs.  相似文献   

20.
The identification of micro-organisms carried by ticks is an important issue for human and animal health. In addition to their role as pathogen vectors, ticks are also the hosts for symbiotic bacteria whose impact on tick biology is poorly known. Among these, the bacterium Wolbachia pipientis has already been reported associated with Ixodes ricinus and other tick species. However, the origins of Wolbachia in ticks and their consequences on tick biology (known to be very diverse in invertebrates, ranging from nutritional symbionts in nematodes to reproductive manipulators in insects) are unknown. Here we report that the endoparasitoid wasp Ixodiphagus hookeri (Hymenoptera, Chalcidoidea, Encyrtidae)--strictly associated with ticks for their development--infested at almost 100% prevalence by a W. pipientis strain belonging to a Wolbachia supergroup that has already been reported as associated with other hymenopteran parasitoids. In a natural population of I. ricinus that suffers high parasitism rates due to I. hookeri, we used specific PCR primers for both hymenopteran and W. pipientis gene fragments to show that all unfed tick nymphs parasitized by I. hookeri also harbored Wolbachia, while unparasitized ticks were Wolbachia-free. We demonstrated experimentally that unfed nymphs obtained from larvae exposed to I. hookeri while gorging on their vertebrate host also harbor Wolbachia. We hypothesize that previous studies that have reported W. pipientis in ticks are due to the cryptic presence of the endoparasitoid wasp I. hookeri. This association has remained hidden until now because parasitoids within ticks cannot be detected until engorgement of the nymphs brings the wasp eggs out of diapause. Finally, we discuss the consequences of this finding for our understanding of the tick microbiome, and their possible role in horizontal gene transfer among pathogenic and symbiotic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号