首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
NEMO (NF-kappaB essential modulator) plays a key role in the canonical NF-kappaB pathway as the scaffold/regulatory component of the IkappaB kinase (IKK) complex. The self-association of NEMO involves the C-terminal halves of the polypeptide chains containing two putative coiled-coil motifs (a CC2 and a LZ leucine zipper), a proline-rich region, and a ZF zinc finger motif. Using purified truncation mutants, we showed that the minimal oligomerization domain of NEMO is the CC2-LZ segment and that both CC2 and LZ subdomains are necessary to restore the LPS-dependent activation of the NF-kappaB pathway in a NEMO-deficient cell line. We confirmed the association of the oligomerization domain in a trimer and investigated the specific role of CC2 and LZ subdomains in the building of the oligomer. Whereas a recombinant CC2-LZ polypeptide self-associated into a trimer with an association constant close to that of the wild-type protein, the isolated CC2 and LZ peptides, respectively, formed trimers and dimers with weaker association constants. Upon mixing, isolated CC2 and LZ peptides associated to form a stable hetero-hexamer as shown by gel filtration and fluorescence anisotropy experiments. We propose a structural model for the organization of the oligomerization domain of activated NEMO in which three C-terminal domains associate into a pseudo-hexamer forming a six-helix bundle. This model is discussed in relation to the mechanism of activation of the IKK complex by upstream activators.  相似文献   

2.
3.
The IkappaB kinase (IKK) complex includes the catalytic components IKKalpha and IKKbeta in addition to the scaffold protein IKKgamma/NEMO. Increases in the activity of the IKK complex result in the phosphorylation and subsequent degradation of IkappaB and the activation of the NF-kappaB pathway. Recent data indicate that the constitutive activation of the NF-kappaB pathway by the human T-cell lymphotrophic virus, type I, Tax protein leads to enhanced phosphorylation of IKKgamma/NEMO by IKKbeta. To address further the significance of IKKbeta-mediated phosphorylation of IKKgamma/NEMO, we determined the sites in IKKgamma/NEMO that were phosphorylated by IKKbeta, and we assayed whether IKKgamma/NEMO phosphorylation was involved in modulating IKKbeta activity. IKKgamma/NEMO is rapidly phosphorylated following treatment of cells with stimuli such as tumor necrosis factor-alpha and interleukin-1 that activate the NF-kappaB pathway. By using both in vitro and in vivo assays, IKKbeta was found to phosphorylate IKKgamma/NEMO predominantly in its carboxyl terminus on serine residue 369 in addition to sites in the central region of this protein. Surprisingly, mutation of these carboxyl-terminal serine residues increased the ability of IKKgamma/NEMO to stimulate IKKbeta kinase activity. These results indicate that the differential phosphorylation of IKKgamma/NEMO by IKKbeta and perhaps other kinases may be important in regulating IKK activity.  相似文献   

4.
5.
Wu X  Sun SC 《EMBO reports》2007,8(5):510-515
The Tax oncoprotein of human T-cell leukaemia virus type I (HTLV-I) persistently activates nuclear factor-kappaB (NF-kappaB), which is required for HTLV-I-mediated T-cell transformation. Tax activates NF-kappaB by stimulating the activity of IkappaB kinase (IKK), but the underlying mechanism remains elusive. Here, we show that Tax functions as an intracellular stimulator of an IKK-activating kinase, Tak1 (TGF-beta-activating kinase 1). In addition, Tax physically interacts with Tak1 and mediates the recruitment of IKK to Tak1. In HTLV-I-infected T cells, Tak1 is constitutively activated and complexed with both Tax and IKK. We provide genetic evidence that Tak1 is essential for Tax-induced IKK activation. Furthermore, unlike cellular stimuli, the Tax-specific NF-kappaB signalling does not require the ubiquitin-binding function of IKKgamma. These findings show a pathological mechanism of IKK activation by Tax and provide an example for how IKK is persistently activated in cancer cells.  相似文献   

6.
7.
8.
9.
IKKgamma/NEMO is an essential regulatory component of the IkappaB kinase complex that is required for NF-kappaB activation in response to various stimuli including tumor necrosis factor-alpha and interleukin-1beta. To investigate the mechanism by which IKKgamma/NEMO regulates the IKK complex, we examined the ability of IKKgamma/NEMO to recruit the IkappaB proteins into this complex. IKKgamma/NEMO binding to wild-type, but not to a kinase-deficient IKKbeta protein, facilitated the association of IkappaBalpha and IkappaBbeta with the high molecular weight IKK complex. Following tumor necrosis factor-alpha treatment of HeLa cells, the majority of the phosphorylated form of endogenous IkappaBalpha was associated with the high molecular weight IKK complex in HeLa cells and parental mouse embryo fibroblasts but not in IKKgamma/NEMO-deficient cells. Finally, we demonstrate that IKKgamma/NEMO facilitates the association of the IkappaB proteins and IKKbeta and leads to increases in IKKbeta kinase activity. These results suggest that an important function of IKKgamma/NEMO is to facilitate the association of both IKKbeta and IkappaB in the high molecular weight IKK complex to increase IkappaB phosphorylation.  相似文献   

10.
I-kappa B kinase (IKK) is a serine/threonine kinase that phosphorylates I-kappa B alpha and I-kappa B beta and targets them for polyubiquitination and proteasome-mediated degradation. IKK consists of two highly related catalytic subunits, alpha and beta, and a regulatory gamma subunit, which becomes activated after serine phosphorylation of the activation loops of the catalytic domains. The human T-lymphotropic retrovirus type-I trans-activator, Tax, has been shown to interact directly with IKK gamma and activates IKK via a mechanism not fully understood. Here we demonstrate that IKK binds serine/threonine protein phosphatase 2A (PP2A), and via a tripartite protein-protein interaction, Tax, IKK gamma, and PP2A form a stable ternary complex. In vitro, PP2A down-regulates active IKK prepared from Tax-producing MT4 cells. In the presence of Tax, however, the ability of PP2A to inactivate IKK is diminished. Despite their interaction with IKK gamma, PP2A-interaction-defective Tax mutants failed to activate NF-kappa B. Our data support the notion that IKK gamma-associated PP2A is responsible for the rapid deactivation of IKK, and inhibition of PP2A by Tax in the context of IKK x PP2A x Tax ternary complex leads to constitutive IKK and NF-kappa B activation.  相似文献   

11.
12.
13.
The NF-kappaB pathway is important in the control of the immune and inflammatory response. One of the critical events in the activation of this pathway is the stimulation of the IkappaB kinases (IKKs) by cytokines such as tumor necrosis factor-alpha and interleukin-1. Although the mechanisms that modulate IKK activation have been studied in detail, much less is known about the processes that down-regulate its activity following cytokine treatment. In this study, we utilized biochemical fractionation and mass spectrometry to demonstrate that protein phosphatase 2Cbeta (PP2Cbeta) can associate with the IKK complex. PP2Cbeta association with the IKK complex led to the dephosphorylation of IKKbeta and decreased its kinase activity. The binding of PP2Cbeta to IKKbeta was decreased at early times post-tumor necrosis factor-alpha treatment and was restored at later times following treatment with this cytokine. Experiments utilizing siRNA directed against PP2Cbeta demonstrated an in vivo role for this phosphatase in decreasing IKK activity at late times following cytokine treatment. These studies are consistent with the ability of PP2Cbeta to down-regulate cytokine-induced NF-kappaB activation by altering IKK activity.  相似文献   

14.
15.
Nuclear factor kappaB (NF-kappaB) plays a pivotal role in inflammation, immunity, stress responses, and protection from apoptosis. Canonical activation of NF-kappaB is dependent on the phosphorylation of the inhibitory subunit IkappaBalpha that is mediated by a multimeric, high molecular weight complex, called IkappaB kinase (IKK) complex. This is composed of two catalytic subunits, IKKalpha and IKKbeta, and a regulatory subunit, NEMO/IKKgamma. The latter protein is essential for the activation of IKKs and NF-kappaB, but its mechanism of action is not well understood. Here we identified ABIN-1 (A20 binding inhibitor of NF-kappaB) as a NEMO/IKKgamma-interacting protein. ABIN-1 has been previously identified as an A20-binding protein and it has been proposed to mediate the NF-kappaB inhibiting effects of A20. We find that both ABIN-1 and A20 inhibit NF-kappaB at the level of the IKK complex and that A20 inhibits activation of NF-kappaB by de-ubiquitination of NEMO/IKKgamma. Importantly, small interfering RNA targeting ABIN-1 abrogates A20-dependent de-ubiquitination of NEMO/IKKgamma and RNA interference of A20 impairs the ability of ABIN-1 to inhibit NF-kappaB activation. Altogether our data indicate that ABIN-1 physically links A20 to NEMO/IKKgamma and facilitates A20-mediated de-ubiquitination of NEMO/IKKgamma, thus resulting in inhibition of NF-kappaB.  相似文献   

16.
17.
IKKgamma inhibits activation of NF-kappaB by NIK   总被引:1,自引:0,他引:1  
Kwon WJ  Kim SH  Park YO  Cho M  Kang CD  Lee G  An WG  Joo WH  Kim DW 《Molecules and cells》2004,18(2):200-206
IKKgamma is a component of the IKK complex, which regulates NF-kappaB activity. To investigate the role of IKKgamma, we expressed wild type IKKgamma containing 412 amino acids, and deletion mutants containing residues 1-312 and 101-412, using murine IKKgamma cDNA. In a co-transfection assay with a CAT reporter plasmid, NIK activated NF-kappaB-dependent gene expression approximately two fold and this expression was inhibited by co-transfection of a wild type IKKgamma expression plasmid. In binding assays IKKgamma inhibited the association of IkappaBalpha with IKKbeta and the subsequent phosphorylation of IkappaBalpha that is activated by NIK. Inhibition by IKKgamma also occurred in an assay with a dominant negative mutant of NIK but not with a C-terminal deletion mutant of IKKgamma, indicating that the C-terminal 100 amino acids of IKKgamma are important for negative regulation of NF-kappaB activation. In addition, the interaction of IKKbeta with IKKgamma was inhibited by co-transfection with a NIK expression plasmid. Our results suggest that overexpression of IKKgamma inhibits activation of NF-kappaB by NIK by competing with NIK for interaction with IKKbeta.  相似文献   

18.
The Tax oncoprotein encoded by human T-cell leukemia virus induces both T-cell activation and apoptosis. The mechanism by which Tax induces apoptosis has remained unclear. Using genetically manipulated T-cell lines, we demonstrate that Tax-induced T-cell death is dependent on NF-kappaB signaling. Tax fails to induce apoptosis in T cells lacking IkappaB kinase gamma (IKKgamma), an essential component of the NF-kappaB signaling pathway. This defect was rescued when the mutant cells were reconstituted with exogenous IKKgamma. We further demonstrate that the Tax-induced T-cell death is mediated by TNF (tumor necrosis factor)-related apoptosis-inducing ligand (TRAIL), because this event can be effectively inhibited by a TRAIL-blocking antibody. Consistent with this functional aspect, Tax stimulates the expression of TRAIL mRNA. Finally, we provide genetic evidence demonstrating that the NF-kappaB signaling pathway is essential for TRAIL gene induction by both Tax and T-cell activation signals. These studies reveal a novel function of the NF-kappaB signaling pathway and suggest a key mechanism by which Tax induces T-cell death.  相似文献   

19.
The anti-inflammatory action of most terpenes has been explained in terms of the inhibition of nuclear factor kappaB (NF-kappaB) activity. Ent-kaurene diterpenes are intermediates of the synthesis of gibberellins and inhibit the expression of NO synthase-2 and the release of tumor necrosis factor-alpha in J774 macrophages challenged with lipopolysaccharide. These diterpenes inhibit NF-kappaB and IkappaB kinase (IKK) activation in vivo but failed to affect in vitro the function of NF-kappaB, the phosphorylation and targeting of IkappaBalpha, and the activity of IKK-2. Transient expression of NF-kappaB-inducing kinase (NIK) activated the IKK complex and NF-kappaB, a process that was inhibited by kaurenes, indicating that the inhibition of NIK was one of the targets of these diterpenes. These results show that kaurenes impair the inflammatory signaling by inhibiting NIK, a member of the MAPK kinase superfamily that interacts with tumor necrosis factor receptor-associated factors, and mediate the activation of NF-kappaB by these receptors. Moreover, kaurenes delayed the phosphorylation of p38, ERK1, and ERK2 MAPKs, but not that of JNK, in response to lipopolysaccharide treatment of J774 cells. The absence of a coordinate activation of MAPK and IKK might contribute to a deficient activation of NF-kappaB that is involved in the anti-inflammatory activity of these molecules.  相似文献   

20.
To understand the mechanism of activation of the IkappaB kinase (IKK) complex in the tumor necrosis factor (TNF) receptor 1 pathway, we examined the possibility that oligomerization of the IKK complex triggered by ligand-induced trimerization of the TNF receptor 1 complex is responsible for activation of the IKKs. Gel filtration analysis of the IKK complex revealed that TNFalpha stimulation induces a large increase in the size of this complex, suggesting oligomerization. Substitution of the C-terminal region of IKKgamma, which interacts with RIP, with a truncated DR4 lacking its cytoplasmic death domain, produced a molecule that could induce IKK and NF-kappaB activation in cells in response to TRAIL. Enforced oligomerization of the N terminus of IKKgamma or truncated IKKalpha or IKKbeta lacking their serine-cluster domains can also induce IKK and NF-kappaB activation. These data suggest that IKKgamma functions as a signaling adaptor between the upstream regulators such as RIP and the IKKs and that oligomerization of the IKK complex by upstream regulators is a critical step in activation of this complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号