首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Evolution of mouthparts in adult dung beetles (Scarabaeidae: Scarabaeinae) for eating moist, fresh dung was linked with a loss of the ability to chew. However, the desert‐living genus Pachysoma, probably evolved from a wet‐dung feeding, Scarabaeus‐like ancestor, has switched to a diet of dry fecal pellets (of rodents or small ruminants) and plant litter that requires re‐establishment of chewing. Indeed, gut contents of a litter‐feeding Pachysoma species indicate efficient food comminution. Based on scanning electron microscopy, cutting and grinding mouthpart structures in six Pachysoma species, of two lineages and with different food preferences, are described and compared with homologous structures in wet‐dung feeding Scarabaeus species. In Pachysoma, cutting and breaking of large food items is probably performed by a clypeal scraper, a prominent epipharyngeal tooth and large maxillary galeal hooks. Further comminution is achieved by a large, grinding area evolved on the mandibular molae. Interspecific differences and the probable function and evolution of these structures are discussed. Particularly, the unique tools for cutting/breaking are completely novel structures and not results of some reacquisition of normal biting mouthparts. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

2.
Most adult dung beetles (Scarabaeidae: Scarabaeinae) feed on fresh, wet dung of larger herbivorous or omnivorous mammals. As refractory plant fragments are selected out before ingestion, the food is presumed easily digestible. However, members of the desert‐living scarabaeine genus Pachysoma (probably evolved from an ancestor closely related to the wet‐dung feeding genus Scarabaeus) select dry dung pellets and/or plant litter. Thus, they ingest a much higher proportion of structural plant material, which nevertheless appears to be digested rather efficiently. This study investigates morphological modifications of the gut for this digestion in adults of eight Pachysoma species, both pellet and litter feeders. To ascertain hypothesized ancestral conditions, four fresh‐dung feeding Scarabaeus species were also examined. The latter have the usual dung beetle gut consisting of a long, simple midgut, followed by an equally simple, much shorter hindgut of the same width. Lengths of midguts (M) and hindguts (H) divided by body length (B) for comparison between species of different size are: 4.9–6.3 (M/B) and 0.7–0.8 (H/B), which is normal for dung feeders. In Pachysoma, lengths are 6.3–6.5 (M/B) and 1.0–1.4 (H/B) in pellet feeders, and 4.4–5.0 (M/B) and 2.0–2.5 (H/B) for litter feeders. Hindguts are still morphologically undifferentiated and of midgut width, but clearly longer, particularly in litter feeders. Presumably, plant fragments in the food are digested, at least partly, in the hindgut. If so, the morphological adaptation is unusual: simple elongation rather than the expansion of part of the hindgut, as found in several other plant‐ or detritus‐feeding scarabaeids. J. Morphol. 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The Scarabaeini is an old world tribe of ball-rolling dung beetles that have origins dating back to at least the mid-upper Miocene (19-8 million years ago). The tribe has received little to no attention in morphological or molecular phylogenetics. We obtained sequence data from the mitochondrial cytochrome oxidase subunit I (1,197 bp) and 16S ribosomal RNA (461 bp) genes for 25 species of the Scarabaeini in an attempt to further resolve broad phylogenetic relationships within this tribe. Sequence data from both markers along with 216 morphological and 3 biological characters were analysed separately and combined. Independent analyses showed poorly resolved trees with many of the intermediate and basal nodes collapsed by low bootstrap values. Many sites in both genes exhibited strong A+T nucleotide bias and high interlineage divergences. The combined analysis revealed a number of well supported relationships such as the monophyly of the nocturnal species Scarabaeus satyrus, S. [Neateuchus] proboscideus, and S. zambesianus. Furthermore, the total evidence tree suggested to elevate S. (Pachysoma) to the status of an independent genus, Pachysoma, as a sister taxon to a clade containing Pachylomerus femoralis and Scarabaeus sensu lato. Within the latter, the following subgenera were maintained by the combination of data sets: S. (Scarabaeolus), S. (Sceliages), and S. (Kheper). Both, feeding specialisation and food relocation behaviour, were inferred to be polyphyletic in the Scarabaeini. Total evidence analysis found no support for common ancestry of Scarabaeini and Eucraniini.  相似文献   

4.
5.
The tribe Trigonoderini (Hymenoptera: Pteromalidae) contains six genera (Gastracanthus Westwood, Janssoniella Kerrich, Miscogasteriella Girault, Platygerrhus Thomson, Plutothrix Förster and Trigonoderus Westwood). This tribe is recorded from South Korea for the first time. Two new species, Janssoniella albiclava Tselikh & Lee sp. nov. from South Korea and J. magna Tselikh & Lee sp. nov. from South Korea and the South Far East of Russia, are described. Eight species (Gastracanthus acutus (Kamijo), G. nigrescens Kamijo, Janssoniella intermedia Hedqvist, Miscogasteriella sulcate (Kamijo), Plutothrix scrobicula Kamijo, P. trifasciata (Thomson), Trigonoderus fraxini Yang and T. nigrocephalus Kamijo) are recorded from South Korea for the first time. The keys for identification of the Eastern–Palearctic species of Janssoniella and Gastracanthus are given and photos of diagnostic characters of the new species are provided.  相似文献   

6.
A phylogeny of the genus Aphis Linnaeus, 1 758 was built primarily from specimens collected in the Midwest of the United States. A data matrix was constructed with 68 species and 41 morphological characters with respective character states of alate and apterous viviparous females. Dendrogram topologies of analyses performed using UPGMA (Unweighted Pair Group Method with Arithmetic Mean), Maximum Parsimony and Bayesian analysis of Cytochrome Oxidase I, Elongation Factor 1‐α and primary endosymbiont Buchnera aphidicola 16S sequences were not congruent. Bayesian analysis strongly supported most terminal nodes of the phylogenetic trees. The phylogeny was strongly supported by EF1‐α, and analysis of COI and EF1‐α molecular data combined with morphological characters. It was not supported by single analysis of COI or Buchnera aphidicola 16S. Results from the Bayesian phylogeny show 4 main species groups: asclepiadis, fabae, gossypii, and middletonii. Results place Aphis and species of the genera Protaphis Börner, 1952, Toxoptera Koch, 1856 and Xerobion Nevsky, 1928 in a monophyletic clade. Morphological characters support this monophyly as well. The phylogeny shows that the monophyletic clade of the North American middletonii species group belong to the genus Protaphis: P. debilicornis (Gillette & Palmer, 1929 ), comb. nov., P. echinaceae (Lagos and Voegtlin, 2009 ), comb. nov., and P. middletonii (Thomas, 1879 ). The genus Toxoptera should be considered a subgenus of Aphis (stat. nov.). The analysis also indicates that the current genus Iowana Frison, 1954 should be considered a subgenus of Aphis (stat. nov.).  相似文献   

7.
The phylogeny and classification of tribe Aedini are delineated based on a cladistic analysis of 336 characters from eggs, fourth‐instar larvae, pupae, adult females and males, and immature stage habitat coded for 270 exemplar species, including an outgroup of four species from different non‐aedine genera. Analyses of the data set with all multistate characters treated as unordered under implied weights, implemented by TNT version 1.1, with values of the concavity constant K ranging from 7 to 12 each produced a single most parsimonious cladogram (MPC). The MPCs obtained with K values of 7–9 were identical, and that for K = 10 differed only in small changes in the relationships within one subclade. Because values of K < 7 and > 10 produced large changes in the relationships among the taxa, the stability of relationships exemplified by the MPC obtained from the K = 9 analysis is used to interpret the phylogeny and classification of Aedini. Clade support was assessed using parsimony jackknife and symmetric resampling. Overall, the results reinforce the patterns of relationships obtained previously despite differences in the taxa and characters included in the analyses. With two exceptions, all of the groups represented by two or more species were once again recovered as monophyletic taxa. Thus, the monophyly of the following genera and subgenera is corroborated: Aedes, Albuginosus, Armigeres (and its two subgenera), Ayurakitia, Bothaella, Bruceharrisonius, Christophersiomyia, Collessius (and its two subgenera), Dahliana, Danielsia, Dobrotworskyius, Downsiomyia, Edwardsaedes, Finlaya, Georgecraigius (and its two subgenera), Eretmapodites, Geoskusea, Gilesius, Haemagogus (and its two subgenera), Heizmannia (and subgenus Heizmannia), Hopkinsius (and its two subgenera), Howardina, Hulecoeteomyia, Jarnellius, Kenknightia, Lorrainea, Macleaya, Mucidus (and its two subgenera), Neomelaniconion, Ochlerotatus (subgenera Chrysoconops, Culicelsa, Gilesia, Pholeomyia, Protoculex, Rusticoidus and Pseudoskusea), Opifex, Paraedes, Patmarksia, Phagomyia, Pseudarmigeres, Rhinoskusea, Psorophora (and its three subgenera), Rampamyia, Scutomyia, Stegomyia, Tanakaius, Udaya, Vansomerenis, Verrallina (and subgenera Harbachius and Neomacleaya), Zavortinkius and Zeugnomyia. In addition, the monophyly of Tewarius, newly added to the data set, is confirmed. Heizmannia (Mattinglyia) and Verrallina (Verrallina) were found to be paraphyletic with respect to Heizmannia (Heizmannia) and Verrallina (Neomacleaya), respectively. The analyses were repeated with the 14 characters derived from length measurements treated as ordered. Although somewhat different patterns of relationships among the genera and subgenera were found, all were recovered as monophyletic taxa with the sole exception of Dendroskusea stat. nov. Fifteen additional genera, three of which are new, and 12 additional subgenera, 11 of which are new, are proposed for monophyletic clades, and a few lineages represented by a single species, based on tree topology, the principle of equivalent rank, branch support and the number and nature of the characters that support the branches. Acartomyia stat. nov. , Aedimorphus stat. nov. , Cancraedes stat. nov. , Cornetius stat. nov. , Geoskusea stat. nov. , Levua stat. nov. , Lewnielsenius stat. nov. , Rhinoskusea stat. nov. and Sallumia stat. nov., which were previously recognized as subgenera of various genera, are elevated to generic status. Catageiomyia stat. nov. and Polyleptiomyia stat. nov. are resurrected from synonymy with Aedimorphus, and Catatassomyia stat. nov. and Dendroskusea stat. nov. are resurrected from synonymy with Diceromyia. Bifidistylus gen. nov. (type species: Aedes lamborni Edwards) and Elpeytonius gen. nov. (type species: Ochlerotatus apicoannulatus Edwards) are described as new for species previously included in Aedes (Aedimorphus), and Petermattinglyius gen. nov. (type species: Aedes iyengari Edwards) and Pe. (Aglaonotus) subgen. nov. (type species: Aedes whartoni Mattingly) are described as new for species previously included in Aedes (Diceromyia). Four additional subgenera are recognized for species of Ochlerotatus, including Oc. (Culicada) stat. nov. (type species: Culex canadensis Theobald), Oc. (Juppius) subgen. nov. (type species: Grabhamia caballa Theobald), Oc. (Lepidokeneon) subgen. nov. (type species: Aedes spilotus Marks) and Oc. (Woodius) subgen. nov. (type species: Aedes intrudens Dyar), and seven are proposed for species of Stegomyia: St. (Actinothrix) subgen. nov. (type species: Stegomyia edwardsi Barraud), St. (Bohartius) subgen. nov. (type species: Aedes pandani Stone), St. (Heteraspidion) subgen. nov. (type species: Stegomyia annandalei Theobald), St. (Huangmyia) subgen. nov. (type species: Stegomyia mediopunctata Theobald), St. (Mukwaya) subgen. nov. (type species: Stegomyia simpsoni Theobald), St. (Xyele) subgen. nov. (type species: Stegomyia desmotes Giles) and St. (Zoromorphus) subgen. nov. (type species: Aedes futunae Belkin). Due to the unavailability of specimens for study, many species of Stegomyia are without subgeneric placement. As is usual with generic‐level groups of Aedini, the newly recognized genera and subgenera are polythetic taxa that are diagnosed by unique combinations of characters. The analysis corroborates the previous observation that ‘Oc. (Protomacleaya)’ is a polyphyletic assemblage of species.  相似文献   

8.
A new combined molecular and morphological phylogeny of the Eulophidae is presented with special reference to the subfamily Entedoninae. We examined 28S D2–D5 and CO1 gene regions with parsimony and partitioned Bayesian analyses, and examined the impact of a small set of historically recognized morphological characters on combined analyses. Eulophidae was strongly supported as monophyletic only after exclusion of the enigmatic genus Trisecodes. The subfamilies Eulophinae, Entiinae (=Euderinae) and Tetrastichinae were consistently supported as monophyletic, but Entedoninae was monophyletic only in combined analyses. Six contiguous bases in the 3e′ subregion of the 28S D2 rDNA contributed to placement of nominal subgenus of Closterocerus outside Entedoninae. In all cases, Euderomphalini was excluded from Entiinae, and we suggest that it be retained in Entedoninae. Opheliminae n. stat. is raised from tribe to subfamily status. Trisecodes is removed from Entedoninae but retained as incertae sedis in Eulophidae until its family placement can be determined new placement . The genera Neochrysocharis stat. rev. and Asecodes stat. rev. are removed from synonymy with Closterocerus because strong molecular differences corroborate their morphological differences. Closterocerus (Achrysocharis) germanicus is transferred to the genus Chrysonotomyia n. comb. based on molecular and morphological characters.  相似文献   

9.
The phylogenetic relationships and generic assignments of ‘Ochlerotatus’ and related taxa of uncertain taxonomic position in the classification of Aedini previously proposed by the authors in 2004 and 2006 are explored using 297 characters from eggs, fourth‐instar larvae, pupae, adults and immature habitat coded for 158 exemplar species. The ingroup comprises 54 species and the outgroup includes four non‐aedine species and 100 aedine species, 21 of which were previously classified as incertae sedis. Data are analysed in a total‐evidence approach using implied weighting. The analysis produced 158 most parsimonious cladograms. The strict consensus tree (SCT) corroborates the monophyly of the 30 generic‐level taxa recognized previously that are included in the analysis. Overall, the results show remarkable congruence with those obtained previously despite differences in the taxa and morphological characters analysed in this and the two previous studies. All species of Ochlerotatus s.s., subgenus ‘Ochlerotatussensu auctorum, Geoskusea, Levua, Pseudoskusea and Rhinoskusea included in the analysis fall within a single clade that is treated as genus Ochlerotatus; thus, the last four taxa are restored to their previous subgeneric rank within this genus. Nine additional subgenera, of which four are new, are proposed for monophyletic clades of Ochlerotatus species based on the strength of character support and application of the principle of equivalent rank. Acartomyia stat. nov. , Culicelsa stat. nov. , Gilesia stat. nov. , Protoculex stat. nov. and Chrysoconops stat. nov. are resurrected from synonymy with Ochlerotatus; and Empihals subgen. nov. (type species: Culex vigilax Skuse), Pholeomyia subgen. nov. (type species: Aedes calcariae Marks), Buvirilia subgen. nov. (type species: Aedes edgari Stone & Rosen) and Sallumia subgen. nov. (type species: Aedes hortator Dyar & Knab) are described as new. The sister group of Ochlerotatus includes a number of species that were previously regarded as incertae sedis in ‘Oc. (Finlaya)’ and ‘Oc. (Protomacleaya)’. Based on previous observations, refined relationships and new character support, three additional genera are recognized for species previously included in ‘Finlaya’, i.e. Danielsia stat. nov . (type species: Danielsia albotaeniata Leicester), Luius gen. nov. (type species: Aedes fengi Edwards) and Hopkinsius gen. nov. (type species: Aedes ingrami Edwards). Additionally, Alloeomyia subgen. nov. (type species: Culex pseudotaeniatus Giles) and Yamada subgen. nov. (type species: Aedes seoulensis Yamada) are introduced as subgenera of Collessius and Hopkinsius, respectively. As is usual with generic‐level groups of Aedini, the newly recognized genera and subgenera are polythetic taxa that are diagnosed by unique combinations of characters. The analysis corroborates the previous observation that ‘Oc. (Protomacleaya)’ is a polyphyletic assemblage of species. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 153 , 29–114.  相似文献   

10.
A cladistic analysis of the tribe Bryocorini based on 68 morphological characters is conducted. Bryocorini are supported as a monophyletic group with Eccritotarsini as their sister taxon. Based on the phylogenetic analysis, we redefine the tribe Bryocorini to contain the following seven genera: Bryocorella Carvalho, 1956, Bryocoris Fallén, 1829, Bryophilocapsus Yasunaga, 2000, Cobalorrhynchus Reuter, 1906 gen. dist., D iplazicoris gen. nov. , Hekista Kirkaldy, 1902, and Monalocoris Dahlbom, 1851. The genus Bryocorella is transferred to Bryocorini from the tribe Eccritotarsini. The subgenus Cobalorrhynchus is treated as a separate genus. Diplazicoris is described as monotypic to accommodate D iplazicoris lombokianus sp. nov. An updated diagnosis of the tribe, a key to genera, and a diagnosis of each recognized genus are presented. Selected photomicrographs, scanning micrographs, and illustrations of the pretarsus, metepisternal scent efferent system, metafemoral trichobothria, and morphology of head, pronotum, and male and female genitalia are provided. Mapping of the host data on the revealed tree shows that Bryocorini represent one of the very few currently known examples of the adaptive radiation of a fairly large insect group on ferns. © 2015 The Linnean Society of London  相似文献   

11.
Abstract. We investigated genetic divergence and phylogenetic relationships amongst all known species of Palaearctic butterflies of the genus Melanargia using sequence information from three genes [mitochondrial cox1 barcode region (658 bp), ribosomal 16S rRNA (c. 518 bp), and nuclear wg (404 bp)]. Results show a lack of DNA divergence among several poorly characterized taxa, as well as deep divergences within and between others. We corroborated the molecular information with morphological and genitalic characters as well as with geographic data. We revise the taxonomy of Melanargia, and propose a new systematic scheme for the group. We revive some previous synonymies (M. lucasi meadwaldoi stat. rev. , M. ines fathme stat. rev. , M. ines jahandiezi stat. rev. , M. meridionalis tapaishanensis stat. rev. ), revise the status of some subspecies into species (M. transcaspica stat. nov. , M. lucida stat. nov. , M. wiskotti stat. nov. ) and of several species into subspecies of other taxa (M. evartianae sadjadii stat. nov. , M. larissa hylata stat. nov. , M. larissa grumi stat. nov. , M. larissa syriaca stat. nov. , M. larissa titea stat. nov. , M. lugens montana stat. nov. , M. epimede ganymedes stat. nov. ), revise the status of subspecies and transfer them to other species (M. larissa lorestanensis stat. nov. , M. larissa iranica stat. nov. , M. larissa karabagi stat. rev. , M. larissa kocaki stat. nov. , M. transcaspica eberti stat. nov. ), and propose new synonymies (M. larissa titea = M. titea standfussi syn. nov. = M. titea titania syn. nov. , M. leda leda = M. leda yunnana syn. nov. , M. lugens lugens = M. lugens ahyoui syn. nov. , M. lugens hengshanensis = M. lugens hoenei syn. nov. , M. halimede halimede = M. halimede gratiani syn. nov. , M. asiatica asiatica = M. asiatica dejeani syn. nov. , = M. asiatica elisa syn. nov. , = M. asiatica sigberti syn. nov. ).  相似文献   

12.
The phylogenetic relationships of Peniocereus (Cactaceae) species were studied using parsimony analyses of DNA sequence data. The plastid rpl16 and trnL-F regions were sequenced for 98 taxa including 17 species of Peniocereus, representatives from all genera of tribe Pachycereeae, four genera of tribe Hylocereeae, as well as from three additional outgroup genera of tribes Calymmantheae, Notocacteae, and Trichocereeae. Phylogenetic analyses support neither the monophyly of Peniocereus as currently circumscribed, nor the monophyly of tribe Pachycereeae since species of Peniocereus subgenus Pseudoacanthocereus are embedded within tribe Hylocereeae. Furthermore, these results show that the eight species of Peniocereus subgenus Peniocereus (Peniocereus sensu stricto) form a well-supported clade within subtribe Pachycereinae; P. serpentinus is also a member of this subtribe, but is sister to Bergerocactus. Moreover, Nyctocereus should be resurrected as a monotypic genus. Species of Peniocereus subgenus Pseudoacanthocereus are positioned among species of Acanthocereus within tribe Hylocereeae, indicating that they may be better classified within that genus. A number of morphological and anatomical characters, especially related to the presence or absence of dimorphic branches, are discussed to support these relationships.  相似文献   

13.
分别基于波茎赤叉脉叶蝉Rakta sinuata sp. nov. 为模式种建立了赤叉脉叶蝉属Rakta gen. nov.,基于双突白叉脉叶蝉Albodikra bifida sp. nov. 为模式种建立了白叉脉叶蝉属Albodikra gen. nov.,进行了描记和绘图。虽然这两个属的后翅翅脉近似于小绿叶蝉族的特征,但此处将它们置于小叶蝉中的叉脉叶蝉族,并讨论了归族所依据的形态特征。  相似文献   

14.
The Mediterranean region as a whole has the highest dung beetle species richness within Europe. Natural coastal habitats in this region are among those which have suffered severe human disturbance. We studied dung beetle diversity and distinctiveness within one of the most important coastal protected areas in the west Euro‐Mediterranean region (the regional Park of Camargue, southern France) and made comparisons of dung beetle assemblages with other nearby Mediterranean localities, as well as with other coastal protected area (Doñana National Park, Spain). Our finding showed that: (1) The species richness of coastal habitats in the Camargue is low and only grasslands showed a similar level of species richness and abundance to inland habitats of other Mediterranean localities. The unique habitats of the coastal area (beaches, dunes and marshes) are largely colonized by species widely distributed in the hinterland. (2) In spite of their low general distinctiveness, dune and marsh edges are characterized by the occurrence of two rare, vulnerable, specialized and large roller dung beetle species of the genus Scarabaeus. As with other Mediterranean localities, current findings suggest a recent decline of Scarabaeus populations and the general loss of coastal dung beetle communities in Camargue. (3) The comparison of dung beetle assemblages between the Camargue and Doñana shows that, in spite of the low local dung beetle species richness in the Camargue, the regional dung beetle diversity is similar between both protected areas. Unique historical and geographical factors can explain the convergence in regional diversity as well as the striking divergence in the composition of dung beetle assemblages between both territories.  相似文献   

15.
The dictyopharid planthopper tribe Aluntiini s.l. is revised and reclassified into two tribes: Aluntiini s.s. and Arjunini Song & Szwedo trib. nov. The tribe Aluntiini s.s. includes five genera: Aluntia Stål, 1866; D endrophora Melichar, 1903 stat. rev. ; Dictyomorpha Melichar, 1912; Indodictyophara Liang & Song, 2012; and Madagascaritia Song & Liang gen. nov. The new tribe Arjunini comprises two genera – Arjuna Muir, 1934 and Pippax Emeljanov, 2008 – both moved from Aluntiini s.l. Four new species – A luntia longicephalica Song & Szwedo sp. nov. , Madagascaritia angusta Song & Liang sp. nov. , Arjuna maai Song & Wang sp. nov. , and Arjuna muiri Song & Wang sp. nov. – are described. A morphologically based phylogenetic analysis is undertaken for Aluntiini, Arjunini, and the representatives of Dictyopharini, Hastini, Orthopagini, and the fossil Worskaitini within Dictyopharinae, all distributed in the Old World. A matrix of 129 characters of the habitus, coloration, head, thorax, and male and female genitalia of the adults was used for the cladistic analysis. The phylogenetic results show that Aluntiini s.l. as placed in Dictyopharidae is well supported, but it is distinctly paraphyletic and should be separated into two unambiguous tribes. A palaeotropical distribution pattern displayed by Aluntiini is suggested. The origin and diversification of Aluntiini are discussed preliminarily. © 2015 The Linnean Society of London  相似文献   

16.
17.
18.
All global genera of the fly family Conopidae are revised here. A cladistic analysis of 117 morphological characters recorded from 154 species, including representatives of 59 genera and subgenera, recovers a phylogenetic hypothesis for the family. This hypothesis is used as the basis of a new classification for the family. Both Sicini and Zodionini are removed from Myopinae and elevated to subfamilial status. A new tribe, Thecophorini, is proposed within Myopinae to accommodate Thecophora, Scatoccemyia, and Pseudoconops. Two genera, Pseudomyopa and Parazodion, are removed from Dalmanniinae and placed in Myopinae and Zodioninae, respectively. Conopinae is divided into 11 tribes, seven of which are newly described (Asiconopini, Caenoconopini, Gyroconopini, Microconopini, Neoconopini, and Siniconopini). Some examined species are transferred to different or new genera and subgenera. A new genus, Schedophysoconops gen. nov. , and subgenus Asiconops (Aegloconops) subgen. nov. within Conopinae are described. A review of character evolution and phylogeography is included in light of the new classification. A catalogue of all genus‐group names is included with new emendations noted.  相似文献   

19.
Aim Namib biogeography in many instances remains reliant on advanced and detailed systematic studies. This study attempts to combine molecular phylogenetic data, geology and palaeo‐climatic data to (i) resolve the relationships of the 13 morphological species of Scarabaeus (Pachysoma) and (ii) relate their evolution to past climatic and geological events. Location South Africa and Namibia. Methods Sequencing of a 1197 bp segment of the mitochondrial cytochrome oxidase I (COI) gene of the 13 species within Scarabaeus (Pachysoma) was undertaken. Analyses performed included Parsimony and Maximum Likelihood as well as imposing a molecular clock. Results The molecular phylogeny showed strong support for 11 of the 13 morphological species. The remaining two species, S. (P.) glentoni and S. (P.) hippocrates, formed a complex and could not be assigned specific status on the basis of the COI gene phylogeny. Strong support for the three species formerly classified within the genus Neopachysoma was consistently obtained. The subgenus appears to have arisen c. 2.9 Ma. Species within the subgenus arose at different times, with the common ancestor to Neopachysoma and the hippocrates complex having evolved 2.65 and 2.4 Ma, respectively. Scarabaeus (P.) denticollis, S. (P.) rotundigenus, S. (P.) rodriguesi and S. (P.) schinzi are some of the youngest species, having diverged between 2 million and 600,000 years ago. Main conclusions Scarabaeus (Pachysoma) is a derived monophyletic clade within the Scarabaeini. The subgenus appears to be young in comparison with the age of the Namib Desert, which dates back to the Miocene (c. 15 Ma). The psammophilous taxa are shown to disperse with their substratum and habitat, barchan dunes. Clear south/north evolutionary gradients can be seen within the species of this subgenus, which are consistent with the unidirectional wind regime. Species with a suite of mostly plesiomorphic characters have a southerly distribution while their derived psammophilous relatives have central to northern Namib distributions. Major rivers such as the Orange, Buffels and Holgat appear to be gene barriers to certain species as well as areas of origin of speciation events.  相似文献   

20.
Abstract.  1. The maximum size of ingested particles was determined in 11 species of ball-rolling, adult dung beetle (Scarabaeidae: Scarabaeinae) by mixing small latex or glass balls of known diameter into their food. The tribes Scarabaeini, Gymnopleurini, and Sisyphini (four, four, and three species respectively) were represented, with mean body sizes ranging from 0.33 to 4.0 g fresh weight.
2. Only particles with maximum diameters of 4–85 µm were ingested. Hence rollers, like other known beetles feeding on fresh dung, filter out larger, indigestible plant fragments and confine ingestion to small particles of higher nutritional value.
3. The maximum diameter of ingested particles increased significantly with body weight, whereas taxon (tribe) had no additional effect. Because big rollers accept larger particles than do tunnellers (which make dung stores for feeding and breeding in the soil immediately below the pat) of similar weight, the slope of the diameter-against-weight regression for rollers was significantly higher than that found earlier for tunnellers.
4. An explanation could be that a typical food ball made by a roller is considerably smaller than the amount of dung available to a feeding tunneller of the same size. If the roller were as choosy about particle size as the tunneller, it might not get enough food. This applies to large rollers in particular because their food balls contain a higher proportion of coarse fibres than those made by small species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号