首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we report the co-factor requirements for DNA fragmentation factor (DFF) endonuclease and characterize its cleavage sites on naked DNA and chromatin substrates. The endonuclease exhibits a pH optimum of 7.5, requires Mg(2+), not Ca(2+), and is inhibited by Zn(2+). The enzyme generates blunt ends or ends with 1-base 5'-overhangs possessing 5'-phosphate and 3'-hydroxyl groups and is specific for double- and not single-stranded DNA or RNA. DFF endonuclease has a moderately greater sequence preference than micrococcal nuclease or DNase I, and the sites attacked possess a dyad axis of symmetry with respect to purine and pyrimidine content. Using HeLa cell nuclei or chromatin reconstituted on a 5 S rRNA gene tandem array, we prove that the enzyme attacks chromatin in the internucleosomal linker, generating oligonucleosomal DNA ladders sharper than those created by micrococcal nuclease. Histone H1, high mobility group-1, and topoisomerase II activate DFF endonuclease activity on naked DNA substrates but much less so on chromatin substrates. We conclude that DFF is a useful reagent for chromatin research.  相似文献   

2.
Several authors, including ourselves, have reported the existence of chromatosomes with DNA size larger than 166 bp in bird erythrocyte chromatin. It was tempting to correlate this increased DNA size with the presence of histone H5. In order to substantiate this hypothesis, we performed a micrococcal nuclease digestion kinetic on: chicken erythrocyte chromatin, either native, selectively depleted from H1, or from H1 and H5; and rat liver chromatin, either native or partially H1 depleted. The comparative analysis of the lengths of DNA in the chromatosome size region led to the following conclusions: - denaturing gels clearly reveal a first discrete pause at 178 nucleotides in H1 depleted chicken erythrocyte chromatin as well as in partially H1-depleted rat liver chromatin, before the material accumulates at the next intermediate 166 nucleotide chromatosome pause. - the generation of all discrete chromatosome bands is critically dependent on low ionic strength conditions and low Ca++ concentrations during the digestion, suggesting it may result from the protection of DNA cleavage sites by histone H5 or H1, C or N terminal domains.  相似文献   

3.
DNA isolated from (a) liver chromatin digested in situ with endogenous Ca2+, Mg2+-dependent endonuclease, (b) prostate chromatin digested in situ with micrococcal nuclease or pancreatic DNAase I, and (c) isolated liver chromatin digested with micrococcal nuclease or pancreatic DNAase I has been analyzed electrophoretically on polyacrylamide gels. The electrophoretic patterns of DNA prepared from chromatin digested in situ with either endogenous endonuclease (liver nuclei) or micrococcal nuclease (prostate nuclei) are virtually identical. Each pattern consists of a series of discrete bands representing multiples of the smallest fragment of DNA 200 +/- 20 base pairs in length. The smallest DNA fragment (monomer) accumulates during prolonged digestion of chromatin in situ until it accounts for nearly all of the DNA on the gel; approx. 20% of the DNA of chromatin is rendered acid soluble during this period. Digestion of liver chromatin in situ in the presence of micrococcal nuclease results initially in the reduction of the size of the monomer from 200 to 170 base pairs of DNA and subsequently results in its conversion to as many as eight smaller fragments. The electrophoretic pattern obtained with DNA prepared from micrococcal nuclease digests of isolated liver chromatin is similar, but not identical, to that obtained with liver chromatin in situ. These preparations are more heterogeneous and contain DNA fragments smaller than 200 base pairs in length. These results suggest that not all of the chromatin isolated from liver nuclei retains its native structure. In contrast to endogenous endonuclease and micrococcal nuclease digests of chromatin, pancreatic DNAase I digests of isolated chromatin and of chromatin in situ consist of an extremely heterogeneous population of DNA fragments which migrates as a continuum on gels. A similar electrophoretic pattern is obtained with purified DNA digested by micrococcal nuclease. The presence of spermine (0.15 mM) and spermidine (0.5 mM) in preparative and incubation buffers decreases the rate of digestion of chromatin by endogenous endonuclease in situ approx. 10-fold, without affecting the size of the resulting DNA fragments. The rates of production of the smallest DNA fragments, monomer, dimer, and trimer, are nearly identical when high molecular weight DNA is present in excess, indicating that all of the chromatin multimers are equally susceptible to endogenous endonuclease. These observations points out the effects of various experimental conditions on the digestion of chromatin by nucleases.  相似文献   

4.
Chromatin fragmentation of bovine peripheral blood lymphocytes from normal animals and the ones suffering from chronic lympholeucosis (CLL) by DNase I, micrococcal nuclease and purified Ca/Mg-dependent endonuclease from nuclei of human splenocytes was studied. The lymphocytes chromatin from CLL animals was shown to be more resistant to nucleases, than the one from normal animals. It was found that difference between fragmentation of chromatin samples from normal and CLL bovines was more dramatic when Ca/Mg- dependent endonuclease was used versus traditionally exploited DNase I and micrococcal nuclease. The data suggest that purified Ca/Mg-dependent endonuclease can be a useful enzymatic probe for detection of lymphocytes chromatin changes during CLL.  相似文献   

5.
The susceptibility of the DNA in chromatin to single strand-specific nucleases was examined using nuclease P1, mung bean nuclease, and venom phosphodiesterase. A stage in the reaction exists where the size range of the solubilized products is similar for each of the three nucleases and is nearly independent of incubation time. During this stage, the chromatin fragments sediment in the range of 30 to 100 S and contain duplex DNA ranging from 1 to 10 million daltons. Starting with chromatin depleted of histones H1 and H5 similar fragments are generated. In both cases these nucleoprotein fragments are reduced to nucleosomes and their multimers by micrococcal nuclease. Thus, chromatin contains a limited number of DNA sites which are susceptible to single strand-specific nucleases. These sites occur at intervals of 8 to 80 nucleosomes and are distributed throughout the chromatin. Nucleosome monomers, dimers, or trimers were not observed at any stage of single strand-specific nuclease digestion of nuclei, H1- and H5-depleted chromatin, or micrococcal nuclease-generated oligonucleosomes. Each of the three nucleases converted mononucleosomes (approximately 160 base pairs) to nucleosome cores (approximately 140 base pairs) probably by exonucleolytic action that was facilitated by the prior removal of H1 and H5. The minichromosome of SV40 is highly resistant to digestion by nuclease P1.  相似文献   

6.
Native rat liver chromatin fragments exposed to 600 mM NaCl at 37 degrees C for 45 min exhibit substantial modification of their original (approximately 200 base pairs) repeating subunit structure: a new repeat of 140 base pairs, superimposed on a high background, is observed after micrococcal nuclease digestion. The same material appears, in the electron microscope, as clusters of tightly packed beads connected by stretches of 'free' DNA. These modifications are not observed when the native chromatin is incubated at 37 degrees C at NaCl concentrations up to 400 mM. When native rat liver chromatin depleted of histone H1 by tRNA extraction is exposed to ionic strengths up to 600 mM NaCl at 4 degrees C, almost no modifications of the original native repeating structure are observed. However, when the incubation is carried out at 37 degrees C in 150, 300 or 400 mM NaCl, rearrangements of the native structure occur as indicated by micrococcal nuclease digestion and electron microscopic studies. Incubation of H1-depleted chromatin at 600 mM NaCl for 45 min at 37 degrees C induces, as for the native chromatin, a complete rearrangement characterized by the appearance of a 140-base-pair repeat superimposed on a high background upon digestion by micrococcal nuclease. It is suggested that these rearrangements are mediated by hydrophobic interactions between the histone cores and are prevented at ionic strengths lower than 500 mM by the presence of histone H1.  相似文献   

7.
8.
The chromatin of the lepidopteran Ephestia kuehniella was digested by micrococcal nuclease, DNase I and S1-nuclease combined with DNase I pretreatment. The resulting DNA fragments were analyzed by gel electrophoresis and compared with the DNA fragments of rat liver nuclei obtained by the same process. Extensive homology was revealed between insect and mammalian chromatin structure. The combined DNase I- S1-nuclease digestion yields double-stranded DNA fragments of lengths from 30 to 110 base-pairs. These DNA fragments are not obtained from nuclei predigested extensively with micrococcal nuclease. The results are discussed with respect to the internal structure of the chromatin subunit.  相似文献   

9.
Conformational changes in the chromatin of the cerebral hemisphere of 3-, 14- and 30-day old developing rats were studied before and after its ADP-ribosylation using DNase I and micrococcal nuclease (MNase). The rate and extent of digestion of chromatin by DNase I are the highest at 3-day and decline progressively thereafter. The rate and extent of digestion by MNase do not change during development. ADP-ribosylation of chromosomal proteins was carried out by incubating nuclei with NAD+ for 30 min and was followed by endonuclease digestion. Both the rate and extent of digestion by DNase I and MNase were enhanced after ADP-ribosylation which was the maximum for 3-day rats.  相似文献   

10.
A sensitive method for measuring nuclear volumes with a Coulter counter is described. It has been applied to the digestion of chicken erythrocyte nuclei by micrococcal nuclease and DNase I. Early in digestion, micrococcal nuclease induced a 20% increase in the effective spherical volume of the nuclei, followed by a gradual reduction. At the peak of nuclear swelling, about 17% of the chromatin was soluble after lysis and its average chain length was about 18 kilobase pairs (kb). DNase I digestion did not give rise to a corresponding expansion of the nuclei. Several preparation conditions, including the treatment of nuclei with 0.2% Triton X-100, led to a loss of the expansion effect upon subsequent micrococcal nuclease digestion. The results support the domain theory of higher order chromatin structure. In the context of this model, the observed maximum nuclear expansion correlates with an average of one nuclease scission per domain.  相似文献   

11.
12.
We have examined the effects of histone hyperacetylation upon nuclease digestion of nuclei and subsequent fractionation of chromosomal material in the presence of MgCl2. DNase I shows a maximum sensitivity towards hyperacetylated nuclei at somewhat elevated ionic strengths (150-200 mM NaCl), whereas micrococcal nuclease exhibits no specificity for acetylated nuclei over a broad range of ionic strengths. Fractionation in the presence of MgCl2 of hyperacetylated nuclei digested with micrococcal nuclease results in a substantial increase in the amount of soluble chromatin relative to that obtained with control nuclei. This increased yield of Mg2+-soluble chromatin results from the recruitment into this fraction of oligonucleosomes containing extremely hyperacetylated histones. These results suggest that contiguous nucleosomes containing highly acetylated histones may be altered in their ability to interact with themselves and with other nucleosomes.  相似文献   

13.
14.
Micrococcal nuclease digestion and light scattering are used to compare native chromatins with various histone H1[0] contents. The experimental data show that the higher the H1[0] content, the greater the ability to form compact structures with increasing ionic strength, and the lower the DNA accessibility to micrococcal nuclease. On the contrary, reconstituted samples from H1-depleted chromatin and pure individual H1 fractions behave in such a way that samples reconstituted with pure H1 degree give rise to a looser structure, more accessible to nuclease than samples reconstituted with H1-1. This contradiction suggests that the effect of H1o on chromatin structure must originate from the interaction of this histone with other components in native chromatin among which other histone H1 subfractions are good candidates.  相似文献   

15.
The chromatin structure of morphologically-similar, but increasingly-malignant erythroleukemia cells was investigated using milk micrococcal nuclease digestion of isolated nuclei. The maximum solubilization of chromatin was unique for each of the three cell types: the least malignant (our Stage II) released 61% of its chromatin DNA, the most malignant (Stage IV), 46%, and the intermediate (Stage III) released 36%. An analysis of the nucleosome oligomers liberated by digestion also demonstrated differences. After 15 minutes of digestion when release was reaching its maximum, a greater proportion of large nucleosomal oligomers (sizes > trinucleosome) was released from Stage II nuclei than from Stage III or IV nuclei. The cell types also differed in the relative amount of H1-depleted mononucleosomes released. Analysis of the size of the double-stranded DNA associated with mononucleosomal particles showed that Stage III mononucleosomes were smaller (148 bp) than Stage IV (167 bp) or Stage II (190 bp). In addition, while the DNA of mononucleosomes depleted in H1 was smaller than that in the H1-containing species, relative size differences among the different cell types were retained. These data suggested that the difference in the mononuocleosome particle size resistant to nuclease digestion was independent of histone H1. Differences in nucleosome repeat length were also noted among the cell types. These studies have demonstrated dramatic differences in chromatin structure associated with malignant potential of an otherwise morphologically identical cell type. These findings may reflect changes in the relative amounts of H2a variants which we have previously described among the different malignant cell types.  相似文献   

16.
It was show11 that nuclear reassembly was induced by small pieces of DNA fragments in cell-free extracts ofXenopus. In an attempt to learn the relationship between the nuclear reassembly and nucleosome/chromatin assembly, limited amounts of CM-Cellulose are used to eliminate the capacity of the egg extract S-150 to assemble chromatin. while the forming of nucleosomes is checked with DNA supercoiling by plasmid DNA pBR322 incubated in the extract, and further analysed by micrococcal nuclease digestion. This depleted extract is then used to induce nuclear reassembly around demembraned sperms with membrane vesicles. It is found that CM-Cellulose depletes histones H2A and H2B efficiently and blocks the assembly of nucleosomes, the demembraned sperms are yet reconstituted into nuclei in the treated S-150, although the chromatin in reassembled nuclei does not produce protected DNA fragments when digested with micrococcal nuclease. It suggests that in the cell-free system ofXenopus, DNA can be formed into nuclei without assembly of nucleosomes or chromatin. Projrrt supported by the National Natural Science Foundation of China (Grant No. 39730240)  相似文献   

17.
The cation-dependent solubilization of rat thymocyte chromatin has been compared with decondensation of the nuclei as a function of sodium phosphate-mediated changes in the concentration of Mg2+ and Na+. After digestion of the nuclei with DNase I or Micrococcus nuclease for a time just sufficient to permit extraction of a maximal amount of chromatin (minimum digestion), solubilization of most of the chromatin was found to occur with the same cation dependency as decondensation of untreated nuclei, while further digestion changed the ionic requirements for solubilization. The cation-dependency of the chromatin solubility and of the nuclear decondensation also exhibited the same variations with temperature. The chromatin in the nuclei became up to 4-times more sensitive to DNase I by decondensation, which also induced a shift in the DNase I cleavage mode from a 200 bp to a 100 bp repeat pattern. In contrast, the sensitivity to Micrococcus nuclease appeared to be nearly unchanged. These results suggest that solubilization of chromatin prepared by a mild endonuclease treatment occurs as a direct consequence of structural changes in the chromatin which take place during decondensation of the nuclei.  相似文献   

18.
Chromatin assembly in isolated mammalian nuclei.   总被引:4,自引:1,他引:3       下载免费PDF全文
Cellular DNA replication was stimulated in confluent monolayers of CV-1 monkey kidney cells following infection with SV40. Nuclei were isolated from CV-1 cells labeled with [3H]thymidine and then incubated in the presence of [alpha-32P]deoxyribonucleoside triphosphates under conditions that support DNA replication. To determine whether or not the cellular DNA synthesized in vitro was assembled into nucleosomes the DNA was digested in situ with either micrococcal nuclease or pancreatic DNase I, and the products were examined by electrophoretic and sedimentation analysis. The distribution of DNA fragment lengths on agarose gels following micrococcal nuclease digestion was more heterogeneous for newly replicated than for the bulk of the DNA. Nonetheless, the state of cellular DNA synthesized in vitro (32P-labeled) was found to be identical with that of the DNA in the bulk of the chromatin (3H-labeled) by the following criteria: (i) The extent of protection against digestion by micrococcal nuclease of DNase I. (ii) The size of the nucleosomes (180 base pairs) and core particles (145 base pairs). (iii) The number and sizes of DNA fragments produced by micrococcal nuclease in a limit digest. (iv) The sedimentation behavior on neutral sucrose gradients of nucleoprotein particles released by micrococcal nuclease. (v) The number and sizes of DNA fragments produced by DNase I digestion. These results demonstrate that cellular DNA replicated in isolated nuclei is organized into typical nucleosomes. Consequently, subcellular systems can be used to study the relationship between DNA replication and the assembly of chromatin under physiological conditions.  相似文献   

19.
The endogenous endonuclease activity of chromatin in isolated rat liver nuclei in the presence of Mn2+, Mg2+ and Ca2+ + Mg2+ was studied. The existence of a Mn2+-dependent endonuclease activity not coupled with the Ca2+, Mg2+-dependent endonuclease was demonstrated, which was weaker than the former one in isolated cell nuclei but higher than in the preparation of Ca2+, Mg2+-dependent nuclease obtained by gel filtration through Toyopearl HW 60F. The Mn2+-dependent splitting of chromatin predominantly occurs at linker DNA of distal parts of chromatin loops. A split-off of purified DNA was more universal than in the presence of Ca2+, Mg2+-dependent endonuclease; the hydrolysis rate of native and denaturated DNA appeared to be the same.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号