首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 434 毫秒
1.
Several samples of microbial mat obtained from soda lakes of the Kunkurskaya steppe (Chita region) abundantly populated by purple bacteria were screened for the presence of heterotrophic alkaliphiles capable of oxidizing sulfur compounds to sulfate. This capacity was found in only one pigmented strain, ALG 1, isolated on medium with acetate and thiosulfate at pH 10. The strain was found to be a strictly aerobic and obligately heterotrophic alkaliphile. Growth on medium with acetate was possible within a narrow pH range from 8.5 to 10.4. The strain formed a reddish orange carotenoid and bacteriochlorophylla. Pigments were synthesized only at high concentrations of nitrogen-containing organic compounds (peptone or yeast extract). The production of bacteriochlorophylla was maximal under microaerobic conditions in darkness. Strain ALG 1 could oxidize sulfide, thiosulfate, sulfite, and elemental sulfur to sulfate. In heterotrophically growing culture (pH 10), thiosulfate was not oxidized until the late logarithmic phase. The sulfur-oxidizing activity was maximal at the most alkaline pH values. The notable increase in the efficiency of organic carbon utilization observed in the presence of thiosulfate suggested that the bacterium was a sulfur-oxidizing lithoheterotroph. The phylogenetic analysis of the 16S rRNA gene showed strain ALG 1 to be a member of the α-3 subgroup of Proteobacteria and to constitute a distinct branch located between nonsulfur purple bacteriaRhodobacter andRhodovulum. Based on the unique phenotypic properties and the results of phylogenetic analysis, the alkaliphilic isolate ALG 1 was assigned to a new genus and speciesRoseinatronobacter thiooxidans with the type strain DSM-13087  相似文献   

2.
A new purple sulfur bacterium (strain M9) was isolated from the steppe soda Lake Dzun Uldziin Nur (pH 9.4; mineralization, 3.3%) situated in southeastern Mongolia. Individual cells appear as vibrios 0.3-0.5 x 0.7-1 micron in size. The dividing cells often do not separate from each other, forming an almost closed ring. The internal photosynthetic membranes are represented by concentric lamellae lining the cell wall. Photosynthetic pigments are bacteriochlorophyll a and carotenoids of the spirilloxanthin series. The main carotenoid (> 96%) is spirilloxanthin. Two typical light-harvesting complexes (LH1 and LH2) are present in the membranes in a 1:1 ratio. The bacterium is an anaerobe and facultative photoorganoheterotroph. Photolithoautotrophic growth on sulfide is scarce. Thiosulfate is utilized as an electron donor only in the presence of organic matter. Globules of elemental sulfur are formed as an intermediary product of sulfide and thiosulfate oxidation and are deposited outside the cells. The end product of oxidation is sulfate. In the presence of sulfide and carbonates, acetate, lactate, malate, pyruvate, propionate, succinate, and fumarate are used as the additional sources of carbon in anoxygenic photosynthesis. Vitamin are not required. The bacterium is an alkaliphile the pH optimum is at 8.3-9.1, the pH range is 7.6-10.1. The optimum NaCl concentration in the medium is 1 to 7%; the range is 0.5 to 0.9%. The optimum carbonate content in the medium is 2%; the range is 1 to 10%. The best growth occurs at 30-35 degrees C. The DNA G + C content is 57.5 mol%. According to the results of analysis of the 16S rRNA gene sequences, the new isolate M9 belongs to the phylogenetic cluster containing representatives of the family Ectothiorhodospiraceae within the class "Gammaproteobacteria." In this class, the new isolate forms a new branch, which occupies an intermediate position between the representatives of the genera Ectothiorhodospira and Thiorhodospira. Based on the phenotypic and genetic characteristics, the new purple sulfurbacterium was assigned to a new species of a new genus of the family Ectothiorhodospiraceae, Ectothiorhodosinus mongolicum gen. nov., sp. nov.  相似文献   

3.
Sorokin DIu 《Mikrobiologiia》2003,72(6):725-739
New data obtained by the author and other researchers on two different groups of obligately heterotrophic bacteria capable of inorganic sulfur oxidation are reviewed. Among culturable marine and (halo)alkaliphilic heterotrophs oxidizing sulfur compounds (thiosulfate and, much less actively, elemental sulfur and sulfide) incompletely to tetrathionate, representatives of the gammaproteobacteria, especially from the Halomonas group, dominate. Some of denitrifying species from this group are able to carry out anaerobic oxidation of thiosulfate and sulfide using nitrogen oxides as electron acceptors. Despite the low energy output of the reaction of thiosulfate oxidation to tetrathionate, it can be utilized for ATP synthesis by some tetrathionate-producing heterotrophs; however, this potential is not always realized during their growth. Another group of marine and (halo)alkaliphilic heterotrophic bacteria capable of complete oxidation of sulfur compounds to sulfate mostly includes representatives of the alphaproteobacteria most closely related to nonsulfur purple bacteria. They can oxidize sulfide (polysulfide), thiosulfate, and elemental sulfur via sulfite to sulfate but neither produce nor oxidize tetrathionate. All of the investigated sulfate-forming heterotrophic bacteria belong to lithoheterotrophs, being able to gain additional energy from the oxidation of sulfur compounds during heterotrophic growth on organic substrates. Some doubtful cases of heterotrophic sulfur oxidation described in the literature are also discussed.  相似文献   

4.
New data obtained by the author and other researchers on two different groups of obligately heterotrophic bacteria capable of inorganic sulfur oxidation are reviewed. Among culturable marine and (halo)alkaliphilic heterotrophs oxidizing sulfur compounds (thiosulfate and, much less actively, elemental sulfur and sulfide) incompletely to tetrathionate, representatives of the gammaproteobacteria, especially from the Halomonas group, dominate. Some denitrifying species from this group are able to carry out anaerobic oxidation of thiosulfate and sulfide using nitrogen oxides as electron acceptors. Despite the low energy output of the reaction of thiosulfate oxidation to tetrathionate, it can be utilized for ATP synthesis by some tetrathionate-producing heterotrophs; however, this potential is not always realized during their growth. Another group of marine and (halo)alkaliphilic heterotrophic bacteria capable of complete oxidation of sulfur compounds to sulfate mostly includes representatives of the alphaproteobacteria which are most closely related to nonsulfur purple bacteria. They can oxidize sulfide (polysulfide), thiosulfate, and elemental sulfur via sulfite to sulfate but neither produce nor oxidize tetrathionate. All of the investigated sulfate-forming heterotrophic bacteria belong to lithoheterotrophs, being able to gain additional energy from the oxidation of sulfur compounds during heterotrophic growth on organic substrates. Some doubtful cases of heterotrophic sulfur oxidation described in the literature are also discussed.  相似文献   

5.
Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS-) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase activity which converted cyanate (CNO-) to ammonia and CO2. On the other hand, cyanase activity either was absent or was present at very low levels in the autotrophic strains grown on thiocyanate as the sole energy and N source. As a result, large amounts of cyanate were found to accumulate in the media during utilization of thiocyanate at pH 10 in batch and thiocyanate-limited continuous cultures. This is a first direct proof of a "cyanate pathway" in pure cultures of thiocyanate-degrading bacteria. Since it is relatively stable under alkaline conditions, cyanate is likely to play a role as an N buffer that keeps the alkaliphilic bacteria safe from inhibition by free ammonia, which otherwise would reach toxic levels during dissimilatory degradation of thiocyanate.  相似文献   

6.
A new type of phototrophic purple bacterium, strain 930I, was isolated from a microbial mat covering intertidal sandy sediments of Great Sippewissett Salt Marsh (Woods Hole, Mass., USA). The bacterium could only be enriched at a wavelength of 932 (± 10) nm. Cells were vibrioid- to spirilloid-shaped and motile by means of bipolar monotrichous flagellation. The intracytoplasmic membranes were of the lamellar type. Photosynthetic pigments comprised bacteriochlorophyll a and the carotenoids spirilloxanthin and lycopenal. The isolated strain exhibited an unusual, long-wavelength absorption maximum at 911 nm. Sulfide or thiosulfate served as electron donor for anoxygenic phototrophic growth. During growth on sulfide, elemental sulfur globules formed outside the cells. Elemental sulfur could not be further oxidized to sulfate. In the presence of sulfide plus bicarbonate, fructose, acetate, propionate, butyrate, valerate, 2-oxoglutarate, pyruvate, lactate, malate, succinate, fumarate, malonate, casamino acids, yeast extract, L(+)-alanine, and L(+)-glutamate were assimilated. Sulfide, thiosulfate, or elemental sulfur served as a reduced sulfur source for photosynthetic growth. Maximum growth rates were obtained at pH 7.9, 30 °C, 50 μmol quanta m–2 s–1 of daylight fluorescent tubes, and a salinity of 1–2% NaCl. The strain grew microaerophilically in the dark at a partial pressure of 1 kPa O2. The DNA base composition was 71.2 mol% G + C. Sequence comparison of 16S rRNA genes indicated that the isolate is a member of the α-Proteobacteria and is most closely related to Rhodobium orientis at a similarity level of 93.5%. Because of the large phylogenetic distance to known phototrophic species of the α-Proteobacteria and of its unique absorption spectrum, strain 930I is described as a new genus and species, Roseospirillum parvum gen. nov. and sp. nov. Received: 29 December 1998 / Accepted: 17 March 1999  相似文献   

7.
Various cultures (previously described), which oxidize thiosulfate in mineral media have been studied in an attempt to determine the products of oxidation. The transformation of sodium thiosulfate by Cultures B, T, and K yields sodium tetrathionate and sodium hydroxide; secondary chemical reactions result in the accumulation of some tri- and pentathionates, sulfate, and elemental sulfur. As a result of the initial reaction, the pH increases; the secondary reactions cause a drop in pH after this initial rise. The primary reaction yields much less energy than the reactions effected by autotrophic bacteria. No significant amounts of assimilated organic carbon were detected in media supporting representatives of these cultures. It is concluded that they are heterotrophic bacteria. Th. novellus oxidizes sodium thiosulfate to sodium sulfate and sulfuric acid; the pH drops progressively with growth and oxidation. Carbon assimilation typical of autotrophic bacteria was detected; the ratio of sulfate-sulfur formed to carbon assimilated was 56:1. It is calculated that 5.1 per cent of the energy yielded by the oxidation of thiosulfate is accounted for in the organic cell substance synthesized from inorganic materials. This organism is a facultative autotroph. The products of oxidation of sodium thiosulfate by Th. thioparus are sodium sulfate, sulfuric acid, and elemental sulfur; the ratio of sulfate sulfur to elemental sulfur is 3 to 2. The pH decreases during growth and oxidation. The elemental sulfur is produced by the primary reaction and is not a product of secondary chemical changes. The bacterium synthesizes organic compounds from mineral substances during growth. The ratio of thiosulfate-sulfur oxidized to carbon assimilated was 125:1, with 4.7 per cent of the energy of oxidation recovered as organic cell substance. This bacterium is a strict autotroph.  相似文献   

8.
The dominant purple sulfur bacterium of a reddish-colored waste water pond near Taichung, Taiwan, was isolated in pure culture, strain CML2. Individual cells were nearly spherical, nonmotile, and contained in their peripheral parts was vacuoles that appeared like elongated, curved tubes. Four to sixteen cells formed platelet-like aggregates reminiscent of Thiopedia rosea. The intracellular photosynthetic membrane system of the cells was of vesicular type; the photosynthetic pigments consisted of bacteriochlorophyll a and spirilloxanthin as the major carotenoid. The color of cell suspensions was pink to rosered. Under anaerobic conditions photolithoautotrophic growth occurred with sulfide, elemental sulfur or thiosulfate; sulfur globules were stored as an intermediary oxidation product. In the presence of sulfide, acetate, lactate and pyruvate were photoassimilated; strain CML2 lacked assimilatory sulfate reduction. Fastest photoautotrophic growth (11 h doubling time) was obtained at pH 7.5, 35°C and a light intensity of about 1000 lux (tungsten lamp). Chemolithoautotrophic growth in the dark was possible under reduced oxygen partial pressure with reduced sulfur compounds as respiratory substrates. The DNA base composition of strain CML2 was 65.5 mol% G+C. Strain CML2 is described as type strain of a new species, Amoebobacter pedioformis sp. nov., in the family Chromatiaceae.  相似文献   

9.
A new nonmotile purple sulfur bacterium (strain M9) was isolated from the steppe soda lake Lake Dzun Uldziin Nur (pH 9.4; mineralization, 3.3%) situated in southeastern Mongolia. Individual cells appear as vibrios 0.3–0.5 × 0.7–1 m in size. The dividing cells often do not separate from each other, forming an almost closed ring. The internal photosynthetic membranes are represented by concentric lamellae lining the cell wall. Photosynthetic pigments are bacteriochlorophyll a and carotenoids of the spirilloxanthin series. The main carotenoid (>96%) is spirilloxanthin. Two typical light-harvesting complexes (LH1 and LH2) are present in the membranes in a 1 : 1 ratio. The bacterium is an anaerobe and facultative photoorganoheterotroph. Photolithoautotrophic growth on sulfide is scarce. Thiosulfate is utilized as an electron donor only in the presence of organic matter. Globules of elemental sulfur are formed as an intermediary product of sulfide and thiosulfate oxidation and are deposited outside the cells. The end product of oxidation is sulfate. In the presence of sulfide and carbonates, acetate, lactate, malate, pyruvate, propionate, succinate, and fumarate are used as additional sources of carbon in anoxygenic photosynthesis. Vitamins are not required. The bacterium is an alkaliphile, the pH optimum is at 8.3–9.1, the pH range is 7.6–10.1. The optimum NaCl concentration in the medium is 1 to 7%; the range is 0.5 to 0.9%. The optimum carbonate content in the medium is 2%; the range is 1 to 10%. The best growth occurs at 30–35°C. The DNA G+C content is 57.5 mol %. According to the results of analysis of the 16S rRNA gene sequences, the new isolate M9 belongs to the phylogenetic cluster containing representatives of the family Ectothiorhodospiraceae within the class Gammaproteobacteria. In this class, the new isolate forms a new branch, which occupies an intermediate position between the representatives of the genera Ectothiorhodospira and Thiorhodospira. Based on the phenotypic and genetic characteristics, the new purple sulfur bacterium was assigned to a new species of a new genus of the family Ectothiorhodospiraceae, Ectothiorhodosinus mongolicum gen. nov., sp. nov.  相似文献   

10.
Abstract The purple photosynthetic bacterium Chromatium vinosum , strain D, catalyzes several oxidations of reduced sulfur compounds under anaerobic conditions in the light: e.g., sulfide → sulfur → sulfate, sulfite → sulfate, and thiosulfate → sulfur + sulfate. Here it is shown that no sulfur isotope effect is associated with the last of these processes; isotopic compositions of the sulfur and sulfate produced can differ, however, if the sulfane and sulfonate positions within the thiosulfate have different isotopic compositions. In the second process, an observed change from an inverse to a normal isotope effect during oxidation of sulfite may indicate the operation of 2 enzymatic pathways. In contrast to heterotrophic anaerobic reduction of oxidized sulfur compounds, anaerobic oxidations of inorganic sulfur compounds by photosynthetic bacteria are characterized by relatively small isotope effects.  相似文献   

11.
Occurrence of Purple Sulfur Bacteria in a Sewage Treatment Lagoon   总被引:5,自引:4,他引:1       下载免费PDF全文
The ecology of purple sulfur bacteria in a sewage oxidation lagoon was investigated. Chemical changes in the lagoon were investigated by monitoring biochemical oxygen demand (BOD(5)), sulfide, sulfate, phosphate, total carbohydrates, volatile acids, alkalinity, and pH. Lagoon water temperatures were observed daily. Microbial ecological relationships were deduced by enumerating coliforms, total bacteria other than anaerobes [Tryptone Glucose Extract (TGE) agar], methane formers such as Methanobacterium formicicum, sulfate reducers, purple sulfur bacteria, and algae. Finally, two strains of purple sulfur bacteria were characterized. Two populations, purple sulfur bacteria and total bacteria (TGE agar), reached maximal concentrations in the warmest part of the 1967 summer. Purple sulfur bacteria reached maximal numbers as concentrations of sulfide and volatile acids were depleted, whereas carbohydrates and alkalinity remained unchanged. Low sulfate levels, which were not limiting for sulfate reducers, may be attributable to storage of sulfur within purple sulfur bacteria. No biological, chemical, or physical agent was linked to the removal of coliforms. The increase of algae in the late summer of 1967 may have been related to the low organic content of the lagoon during this period. Although lagoon pH (7.7 to 8.2) was favorable for purple sulfur bacterial growth, temperatures and sulfides were not optimal in the lagoon for these organisms. Chromatium vinosum and Thiocapsa floridana (the predominant lagoon purple sulfur organism in 1967 and 1968) utilized certain carbohydrates, amino acids, volatile acids, and Krebs cycle intermediates. Also purple sulfur bacteria lowered BOD levels as demonstrated by the growth of T. floridana in sterilized sewage.  相似文献   

12.
Thermophilic, faculatatively mixotrophic sulfur-oxidizing bacteria were isolated from a sulfide-rich, neutral hot spring in Iceland. The strain, IT-7254, used thiosulfate and elemental sulfur as electron donors, oxygen and nitrate as electron acceptors, and acetate and other organic compounds as carbon sources. After a few days of growth in the presence of thiosulfate, this strain formed sulfur globules. Comparison of intracellular enzymes and heme proteins of heterotrophically and mixotrophically grown cells showed some differences. The new isolate belonged to Thermus scotoductus because the small subunit (SSU) rRNA gene sequence analysis showed 98.6% sequence similarity and 84% DNA:DNA reassociation to Thermus scotoductus NMX2 A. 1. It is also close to Thermus antranikianii HN3-7, with 98.3% and 79% SSU rRNA sequence similarity and DNA:DNA reassociation, respectively. It was also found that both Thermus NMX2 A.1 and T. antranikianii HN3-7 were able to oxidize thiosulfate but that the T. scotoductus type strain SE-1 was not. This is the first report of Thermus strains that are capable of mixotrophic growth with sulfur oxidation.  相似文献   

13.
Four strains of obligately heterotrophic bacteria isolated from the oxygen-sulfide interface of the Black Sea are characterized. The bacteria are aerobic, Gram-negative, with lemon-like, nonmotile cells. Bacteriochlorophyll a is not detected. They are mesophilic and neutrophilic with a temperature range of 8–35 °C (optimum 25) and pH range of 6.5–8.5 (optimum 7.8). Their growth is NaCl dependent within a range of 5 and 60 (optimum 20) g l−1. They are able to oxidize thiosulfate, sulfide and elemental sulfur to sulfate and to use metabolic energy from these reactions (lithoheterotrophy). According to the level of DNA reassociation of more than 40%, all isolates represent a single generic group. The G+C content of the DNA was in the range of 67.5–69.2 mol%. According to phylogenetic analysis, the new isolates form a separate branch in the alpha-3 subdivision of the Proteobacteria together with two undescribed marine bacterial strains. On the basis of phenotypical and genomic properties, the new isolates are described as a new genus and species Citreicella thiooxidans gen. nov., sp. nov. The type strain is CHLG 1T (=DSM 10146, UNIQEM U 228).  相似文献   

14.
A novel, extremely halophilic, neutrophilic archaeon was isolated from a mixed sediment sample from different hypersaline lakes in Kulunda steppe (Altai, Russia) at 4 M NaCl with acetate and thiosulfate as substrates. The enrichment culture developed in two phases. During the first phase, a rapid growth of heterotrophic, red-colored, polymorphic rods occurred with the concomitant oxidation of thiosulfate to tetrathionate. The latter was subsequently oxidized to sulfate during a second, slower phase by extremely halophilic, chemolithoautotrophic bacteria belonging to the gamma subdivision of the Proteobacteria. The archaeal strain HG 1 was isolated from the first phase of the enrichment culture using acetate as substrate. It was able to oxidize thiosulfate to tetrathionate during heterotrophic growth with acetate—a property not yet demonstrated for any of the known haloarchaea. The presence of tetrathionate synthase, the enzyme responsible for thiosulfate oxidation, was detected in strain HG 1. The activity was associated with membranes and depended specifically on Cl, in contrast to the similar activity in extremely halophilic sulfur-oxidizing Gammaproteobacteria from the same enrichment, which was soluble and demanded both Na+ and Cl . Strain HG 1 was identified as a member of the genus Natronorubrum.  相似文献   

15.
An alkaliphilic bacterium, strain AHO 1, was isolated from an enrichment culture with hydrogen at pH 10 inoculated with a composite sample of sediments from five highly alkaline soda lakes (Kenya). This bacterium is a gram-negative, nonmotile, rod-shaped, obligately aerobic, and facultatively autotrophic hydrogen-oxidizing organism. It was able to oxidize reduced sulfur compounds to sulfate during heterotrophic growth. It utilized a wide range of organic compounds as carbon and energy sources and grew mixotrophically with hydrogen and acetate. With sulfur compounds, mixotrophic growth was observed only in acetate-limited continuous culture. The normal pH range for autotrophic growth with hydrogen was pH 8.0–10.25, with a pH optimum at 9–9.5. Growth at pH values lower than 8.0 was extremely slow. Heterotrophic growth with acetate was optimal at pH 10.0. The hydrogen-oxidizing activity of whole cells was maximal at pH 9.0 and still substantial up to pH 11. NAD-dependent hydrogenase activity was found in the soluble fraction of the cell-free extract, but no methylene blue-dependent activity in either the soluble or membrane fractions was observed. On the basis of its pH profile, the soluble hydrogenase of strain AHO 1 was a typical pH-neutral enzyme. Phylogenetic analysis revealed that strain AHO 1 belongs to the α-3 subgroup of the Proteobacteria with a closest relation to a recently described alkaliphilic aerobic bacteriochlorophyll a-containing bacterium "Roseinatronobacter thiooxidans." Received: February 29, 2000 / Accepted: April 3, 2000  相似文献   

16.
Abstract Laminated microbial sediment ecosystems which develop in the upper tidal zone of Scapa Flow beaches, Orkney Islands were investigated with respect to depth profiles of chlorophyll a , bacteriochlorophyll a , pH, redox, oxygen and the following inorganic sulfur compounds: free sulfide, FeS, polysulfides, polythionates, elemental sulfur and thiosulfate. In addition, particle size distribution and light penetration were determined at all sampling locations.
Three main types of laminated sediment ecosystems were recognized, designated the 'classical' type (layer of cyanobacteria underlain by layer of purple sulfur bacteria), the 'single-layer' type (chlorophyll a containing organisms absent, purple sulfur bacteria at sediment surface), and the 'inverted' type (chlorophyll a containing organisms underlying purple sulfur bacteria). The dominant purple sulfur bacterium was Thiocapsa roseopersicina and Chromatium vinosum was observed less commonly. The principal cyanobacterium found in these sulfureta was Oscillatoria sp.
The depth horizon at which maximum populations of purple sulfur bacteria were recorded often did not coincide with the sulfide/oxygen interface but was located closer to the sediment surface where polysulfides, polythionates, elemental sulfur and occasionally thiosulfate were present. The structure of these sulfureta is discussed in relation to the chemolithotrophic growth capacities of Thiocapsa in the presence of oxygen.  相似文献   

17.
Use of reduced sulfur compounds by Beggiatoa sp.   总被引:12,自引:1,他引:11       下载免费PDF全文
A strain of Beggiatoa cf. leptomitiformis (OH-75-B, clone 2a) was isolated which is unique among reported strains in its ability to deposit internal sulfur granules from thiosulfate. It also deposited these characteristic granules (as all BEggiatoa species do) from sulfide. In cultures where growth was limited by exhaustion of organic substrates, these granules generally comprised about 20% of the total cell weight. With medium containing acetate and thiosulfate, no measurable utilization of thiosulfate or deposition of elemental sulfur (S0) took place until after the exponential growth phase. Neither sulfide nor thiosulfate added an increment to heterotrophic growth yield except for the weight of the deposited S0. The deposition of S0 from thiosulfate was probably a disproportionation in which S0 and sulfate were produced in a 1:1 ratio. Some of the S0 was further oxidized to sulfate. No autotrophic or mixotrophic growth was demonstrated for this strain. When inoculated in small, well-dispersed quantities into yeast extract medium, this strain grew only after long lags. Addition of the enzyme catalase eliminated initial lags and increased growth rates slightly. In contrast, catalase had no influence on growth rate when added to mineral medium containing acetate. In yeast extract medium, the inhibition of growth rate was presumably because of peroxides. Addition of thiosulfate was almost as effective as catalase in eliminating this inhibition. The S0 granules which, in this case, were deposited during the exponential growth phase, appeared to be partly responsible for this relief. This strain of Beggiatoa sp. remained active for at least 5 days under strictly anaerobic conditions, and under those conditions, it increased its dry weight by about 2.5-fold. Anaerobic "growth" and maintenance required the presence of an energy source, such as acetate. When cells containing much internal S0 were transferred to an organic anaerobic medium, a substantial portion of the internal S0 was eventually converted to sulfide.  相似文献   

18.
An alkaliphilic purple sulfur bacterium, strain SC5, was isolated from Soap Lake, a soda lake located in east central Washington state (USA). Cells of strain SC5 were gram-negative, non-motile, and non-gas vesiculate cocci, often observed in pairs or tetrads. In the presence of sulfide, elemental sulfur was deposited internally. Liquid cultures were pink to rose red in color. Cells contained bacteriochlorophyll a and spirilloxanthin as major photosynthetic pigments. Internal photosynthetic membranes were of the vesicular type. Optimal growth of strain SC5 occurred in the absence of NaCl (range 0–4%), pH 8.5 (range pH 7.5–9.5), and 32°C. Photoheterotrophic growth occurred in the presence of sulfide or thiosulfate with only a limited number of organic carbon sources. Growth factors were not required, and cells could fix N2. Dark, microaerobic growth occurred in the presence of both an organic carbon source and thiosulfate. Sulfide and thiosulfate served as electron donors for photoautotrophy, which required elevated levels of CO2. Phylogenetic analysis placed strain SC5 basal to the clade of the genus Thiocapsa in the family Chromatiaceae with a 96.7% sequence similarity to its closest relative, Thiocapsa roseopersicina strain 1711T (DSM217T). The unique assemblage of physiological and phylogenetic properties of strain SC5 defines it as a new species of the genus Thiocapsa, and we describe strain SC5 herein as Tca. imhoffii, sp. nov.  相似文献   

19.
Microbial Thiocyanate Utilization under Highly Alkaline Conditions   总被引:3,自引:1,他引:2       下载免费PDF全文
Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase activity which converted cyanate (CNO) to ammonia and CO2. On the other hand, cyanase activity either was absent or was present at very low levels in the autotrophic strains grown on thiocyanate as the sole energy and N source. As a result, large amounts of cyanate were found to accumulate in the media during utilization of thiocyanate at pH 10 in batch and thiocyanate-limited continuous cultures. This is a first direct proof of a “cyanate pathway” in pure cultures of thiocyanate-degrading bacteria. Since it is relatively stable under alkaline conditions, cyanate is likely to play a role as an N buffer that keeps the alkaliphilic bacteria safe from inhibition by free ammonia, which otherwise would reach toxic levels during dissimilatory degradation of thiocyanate.  相似文献   

20.
Molecular approaches have shown that a group of bacteria (called cluster 1 bacteria) affiliated with the epsilon subclass of the class Proteobacteria constituted major populations in underground crude-oil storage cavities. In order to unveil their physiology and ecological niche, this study isolated bacterial strains (exemplified by strain YK-1) affiliated with the cluster 1 bacteria from an oil storage cavity at Kuji in Iwate, Japan. 16S rRNA gene sequence analysis indicated that its closest relative was Thiomicrospira denitrificans (90% identity). Growth experiments under anaerobic conditions showed that strain YK-1 was a sulfur-oxidizing obligate chemolithotroph utilizing sulfide, elemental sulfur, thiosulfate, and hydrogen as electron donors and nitrate as an electron acceptor. Oxygen also supported its growth only under microaerobic conditions. Strain YK-1 could not grow on nitrite, and nitrite was the final product of nitrate reduction. Neither sugars, organic acids (including acetate), nor hydrocarbons could serve as carbon and energy sources. A typical stoichiometry of its energy metabolism followed an equation: S(2-) + 4NO(3)(-) --> SO(4)(2-) + 4NO(2)(-) (Delta G(0) = -534 kJ mol(-1)). In a difference from other anaerobic sulfur-oxidizing bacteria, this bacterium was sensitive to NaCl; growth in medium containing more than 1% NaCl was negligible. When YK-1 was grown anaerobically in a sulfur-depleted inorganic medium overlaid with crude oil, sulfate was produced, corresponding to its growth. On the contrary, YK-1 could not utilize crude oil as a carbon source. These results suggest that the cluster 1 bacteria yielded energy for growth in oil storage cavities by oxidizing petroleum sulfur compounds. Based on its physiology, ecological interactions with other members of the groundwater community are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号