首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The purpose of this investigation was to examine the effects of the Ca2+ agonist BAY K 8644 and the Ca2+ antagonist nifedipine on halothane- and caffeine-induced twitch potentiation of mammalian skeletal muscle. Muscle fiber bundles were taken from normal Landrace pigs and exposed to BAY K 8644 (10 microM), nifedipine (1 microM), and low Ca2+ media administered alone and in combination with halothane (3%) or with increasing concentrations of caffeine (0.5-8.0 mM). Both BAY K 8644 and halothane potentiated twitches by approximately 80%; when they were administered in combination, twitch potentiation was nearly double that caused by either drug alone. In the presence of nifedipine, halothane increased twitches by less than 30%. Low Ca2+ significantly depressed twitches by approximately 25% but also inhibited halothane's inotropic effect. BAY K 8644 augmented caffeine potentiation but only at low caffeine concentrations (0.5-2.0 mM). Nifedipine and low Ca2+ failed to inhibit caffeine's inotropic effects. These results suggest that halothane potentiates twitches via a mechanism that involves or is influenced by extracellular Ca2+.  相似文献   

2.
Biphasic contractions were obtained in guinea-pig papillary muscle by inducing partial depolarization in K+-rich solution (17 mM) in the presence of 0.3 microM isoproterenol. Mn2+ ions inhibited the two components of contraction in a similar way. Nifedipine and particularly Cd2+ ions specifically inhibited the second component of contraction. Isoproterenol and BAY K 8644 markedly increased the amplitude of the second component (P2) of contraction. Nevertheless, a moderate positive inotropic effect of isoproterenol was found on the first component (P1) of contraction when excitability was restored by 0.2 mM Ba instead of isoproterenol. Acetylcholine and hypoxia decreased the amplitude of the second component of contraction to a greater extent. In the presence of digoxin or Na+-free solution, P1 was strongly increased. When sarcoplasmic reticular function was hindered by 1mM caffeine or in the presence of Ca2+-free Sr2+ solution, digoxin always induced a negative inotropic effect on P2. Inversely in these conditions the transient positive inotropic effect of Na+-free solution was strongly reduced. These results are consistent with the hypothesis that the late component of contraction is triggered by the slow inward Ca2+ current and that the early component is due to Ca2+ release from the sarcoplasmic reticulum.  相似文献   

3.
Contraction of canine ventricular trabeculae were recorded stimulation at a frequency of 0.5 Hz and after rest periods of 2 and 8 min to analyze the effect of the Ca channel agonist BAY k 8644, on sarcoplasmic reticular function. Short periods of rest interposed between steady trains of stimuli caused a potentiation of the postrest beat. This is believed to be due to the mobilization of activator Ca from the sarcoplasmic reticulum (SR). Racemic BAY k 8644 and its Ca channel agonist enantiomer, (-) BAY k 8644, both produced an increase in contraction in response to a steady train of stimuli but converted rest potentiation into rest depression. This has been interpreted as increased loss of Ca from the SR during diastole. Addition of Ca channel antagonists, (+) BAY k 8644, nitrendipine, or nifedipine, to reverse the agonistic effect of (-) and racemic BAY k 8644 on the Ca channel did not convert the rest depression into rest potentiation. In the presence of stimuli but converted rest potentiation into rest depression. This has been interpreted as increased loss of Ca from the SR during diastole.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of AHN 086 and its reversibly acting structural analogue Ro 5-4864 were studied in the spontaneously beating guinea-pig atria and field-stimulated guinea-pig ileal longitudinal smooth muscle in the presence and absence of dihydropyridine calcium channel modulators. The treatment of guinea-pig atria with AHN 086 followed by extensive washing did not alter contraction. However, AHN 086 (0.5 microM) potentiated (88%) the positive inotropic responses by BAY K 8644, an effect that was not reversed by extensive washing of the tissue. Higher concentrations of AHN 086 (greater than 2 microM) irreversibly inhibited the intropic, but not the chronotropic responses to BAY K 8644, nifedipine, and isoproterenol. Ro 5-4864 (10 microM) produced a reversible enhancement of the inotropic responses and block of the chronotropic responses to BAY K 8644. In guinea-pig ileal longitudinal smooth muscle, both AHN 086 and Ro 5-4864 reversibly inhibited field-stimulated contractions. Neither Ro 5-4864 nor AHN 086 affected the ability of nifedipine to inhibit field-stimulated contractions of ileal longitudinal smooth muscle. Treatment of intact atrial with 5 microM AHN 086 followed by extensive washing resulted in a significant inhibition (30-50%) of [3H]Ro 5-4864 binding to peripheral benzodiazepine receptors and of [3H]nitrendipine binding to voltage-operated calcium channels, but did not affect [3H]dihydroalprenolol binding to beta-adrenergic receptors on atrial membranes. The same treatment applied to intact ileal longitudinal smooth muscle affected neither [3H] (-)-quinuclidinyl benzilate binding to muscarine receptors nor [3H]nitrendipine binding, but did result in a significant inhibition (30-50%) of [3H]Ro 5-4864 binding to ileal longitudinal smooth muscle membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The muscarinic agonist carbachol has previously been shown to reverse positive inotropic responses of rabbit left atrial strips to equiactive doses of the beta-adrenoceptor agonist isoproterenol and to the alpha-adrenoceptor agonist phenylephrine. Responses to phenylephrine were measured in the presence of the beta-blocker timolol. However, carbachol was not able to reverse the increase in tension produced by elevating the extracellular Ca2+ concentration. To gain more information about the nature of the functional interaction of carbachol with alpha- and beta-receptor stimulants in left atria, the interaction of carbachol with these agonists, as well as with elevated Ca2+ and the Ca2+ activator compound BAY K 8644, was compared with that of the Ca2+ antagonists D-600 and nifedipine. The results demonstrate that the Ca2+ antagonists exhibit a selectivity similar to that of carbachol, in that responses to both isoproterenol and phenylephrine plus timolol were blocked by low concentrations of D-600 and nifedipine, which had no effect on positive inotropic responses to elevated Ca2+. Higher concentrations of these antagonists shifted the Ca2+ dose-response curve to the right. In addition, although phenylephrine and BAY K 8644 increased tension to a similar extent, responses to phenylephrine were more sensitive than responses to BAY K 8644 to inhibition by both carbachol and D-600. These similarities between the effects of low concentrations of D-600 and nifedipine and those of carbachol are consistent with the hypothesis that carbachol antagonizes responses to alpha- and beta-receptor stimulation in left atria primarily by blocking increases in Ca2+ influx produced by these agonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
P Vigne  M Lazdunski  C Frelin 《FEBS letters》1989,249(2):143-146
Endothelin-1 induces a positive inotropic response in isolated left atria of the rat with an IC50 value of 20 nM. The contractile effect of endothelin is larger than that of other inotropic hormones such as phenylephrine and epinephrine and smaller than that of Bay K8644. In the spontaneously active right atria, endothelin induces a positive inotropic effect with no chronotropic effect. Endothelin does not modify intracellular levels of cAMP under basal conditions or after stimulation with isoproterenol but stimulates the formation of inositol phosphates. Mobilization of inositol phospholipids is observed in the same range of concentrations as for the contractile action of endothelin. The contractile action of endothelin is not mediated by protein kinase C. It is antagonized by blockers of L-type Ca2+ channels, low external Ca2+ concentrations and drugs such as caffeine and ryanodine that interfere with Ca2+ release by the sarcoplasmic reticulum.  相似文献   

7.
Enzymatically isolated ventricular cells from rats, dogs, and rabbits were electrically stimulated and their membrane potentials were recorded simultaneously with their contractions. Specific pharmacological interventions were used to assess the relative roles of transsarcolemmal Ca2+ entry and the Ca2+ release by the sarcoplasmic reticulum in activating contractions, in these myocytes. We used ryanodine and caffeine to influence Ca2+ release by the sarcoplasmic reticulum, BAY K 8644 and epinephrine to increase Ca2+ entry through Ca2+ channels, and veratridine, ouabain, and monensin to increase Ca2+ entry through Na+-Ca2+ exchange. Ryanodine (1 microM) completely inhibited the shortenings in rat and dog myocytes, but the contractions in rabbit myocytes were much less sensitive to this alkaloid. Similar inhibitory effects of ryanodine were observed in the presence of various inotropic agents with two exceptions: caffeine's effect on the dog myocytes was relatively insensitive to ryanodine and the long-lasting tonic contractions that veratridine triggered in the myocytes of all three species remained completely unaffected by ryanodine. The data indicate that contractile activation in rat and dog ventricular cells is strongly dependent on Ca2+ release from the sarcoplasmic reticulum, while contractility in rabbit myocytes seems to be more dependent on Ca2+ entry through the sarcolemma. The ryanodine-resistant tonic contractions triggered in the myocytes of all three species in the presence of veratridine may be activated by an increased Ca2+ entry via Na+-Ca2+ exchange.  相似文献   

8.
Y X Ye  T Akera  Y C Ng 《Life sciences》1989,45(20):1853-1861
Gossypol is an orally active male contraceptive with cardio-depressant side effects. To understand the mechanism of its cardiac actions, the interaction of gossypol with positive inotropic drugs was examined in isolated atrial muscle preparations obtained from guinea-pig heart. Gossypol delayed the onset of arrhythmias caused by digoxin. In the presence of gossypol, the positive inotropic effect of isoproterenol declined rapidly, and the effect of isoproterenol to increase tissue cyclic AMP concentrations was smaller. Pretreatment of atrial muscle with the combination of gossypol and isoproterenol markedly reduced effects of isoproterenol on developed tension and cyclic AMP concentrations when these effects were tested after the washout of the first dose of isoproterenol. These effects, however, were not specific to isoproterenol. The gossypol-isoproterenol pretreatment reduced the positive inotropic effect of ouabain or extracellular Ca2+. These results indicate that gossypol has pharmacodynamic interactions with several positive inotropic agents that are known to enhance developed tension by increasing intracellular Ca2+ transients.  相似文献   

9.
The action of isoproterenol and BAY K 8644 on voltage-dependent Ca2+ currents in isolated ground squirrel cardiac myocytes was studied in two (active and hibernating) states of the animal. In cardiac myocytes of active animals the effect of both drugs was shown to depend on the holding potential. At Vh of about -50 mV both isoproterenol and BAY K 8644 increased the Ca2+ current and their action was additive. At Vh of about -20 mV, both drugs inhibited the Ca2+ current. In cardiac myocytes from hibernating animals, isoproterenol increased the Ca2+ current at any holding potentials, while the effect of BAY K 8644 did not differ significantly from its effect on active animals. The combined action of the two drugs caused the inhibition of the Ca2+ current at high holding potentials. In terms of the two-site Ca2+ channel model, this means that one of the two pathways of channel phosphorylation is blocked in hibernating animal cardiac cells, and BAY K 8644 restores this pathway.  相似文献   

10.
Developmental changes in functions of myocardial sodium channels were examined from inotropic effects of several neurotoxins in ventricular muscle preparations obtained from prenatal (20-22 day gestation) or adult (3-4 months old) rat hearts. Tetrodotoxin caused a negative inotropic effect in low concentrations and a loss of muscle responsiveness to electrical stimulation in high concentrations in preparations obtained from either prenatal or adult rat heart. The tetrodotoxin concentration that caused a 50% decrease in developed tension was higher in prenatal rats. Anemonia sulcata toxin, Androctonus australis toxin, veratridine, and Centruroides sculpturatus toxin all produced positive inotropic effects in adult rat heart. The effects were largest with A. sulcata and A. australis toxins, intermediate with veratridine, and smallest with C. sculpturatus toxin. Prenatal heart required higher concentrations of either veratridine, or A. sulcata or A. australis toxins to produce comparable positive inotropic effects. With C. sculpturatus toxin, no significant positive inotropic effect was observed in prenatal heart muscle preparations. These results indicate that cardiac sodium channels undergo significant functional changes during development and that negative and positive inotropic effects of neurotoxins resulting from inhibition and enhancement of fast Na+ channels reflect developmental changes in the cardiac sodium channels.  相似文献   

11.
Scattered light intensity fluctuation (SLIF) of coherent light by a strip of ventricular muscle during diastole is believed to be due to asynchronous cellular motion within the myocyte as a result of spontaneous release of Ca from the sacoplamic reticulum. Previous studies have shown a correlation between inotropic agents, such as ouabain and elevated extracellular Ca or decreased extracellular Na, and SLIF. The purpose of this study was to see if this correlation could be extended to other inotropic agents. The digitalis genin, ouabagenin, produces inotropy by increasing intracellular free Ca. In toxic concentrations the drug produces abnormal aftercontractions by spontaneous Ca release from the sarcoplasmic reticulum. On the other hand, the Ca channel agonist BAY k 8644 is also positively inotropic, but its effect is associated with a decrease in Ca release from the sarcoplasmic reticulum, manifested by conversion of "rest potentiation" to "rest depression." The effects of these inotropic agents on the power spectra of SLIF were dissimilar. Both frequency and amplitude of SLIF were increased after ouabagenin (1 microM), but these changes were most marked after the onset of toxicity, at which time contractility was decreased, rather than during the positive inotropic response. In contrast, BAY k 8644 (1 microM) decreased SLIF at all levels of inotropic response. The beta-adrenoceptor stimulant drug, dobutamine, and the adenylate cyclase activator, forskolin, produced minimal increase in SLIF at inotropic concentrations but caused a large increase in SLIF only after the onset of toxicity. These results suggest that SLIF is a better indicator of intracellular Ca overload and toxic oscillatory contractions in the presence of an inotrope and not of increased inotropy, per se.  相似文献   

12.
The contractile effects of a peptide isolated from rat erythrocytes were further studied in rat aortic rings. Previous data showed that preincubation of aortic tissue with the peptide had no effect on resting tension, but significantly enhanced K+ and norepinephrine (NE) induced contraction. The calcium channel antagonist verapamil noncompetitively blocked the effect of the peptide, whereas nifedipine blockage appeared to be competitive. In the present study the peptide enhanced K+, NE, and phenylephrine (PE) induced contraction in a concentration-dependent manner, with a maximum enhancement at peptide concentrations of 10(-7)-10(-6) M. At a concentration as low as 10(-9) M, the peptide significantly enhanced K(+)-induced, but not NE- or PE-induced, contraction. The magnitude of maximal enhancement was greater for K(+)-induced contraction than that for NE- or PE-induced contraction. Preincubation of the tissues with the peptide caused a leftward shift of cumulative concentration-response curves to K+ and NE. The peptide enhancement of contraction increased with increasing K+ and NE concentration. The peptide potentiated the contractile response to Ca2+ in K(+)-depolarizing medium. It also enhanced the contractile response to NE in intracellular Ca2(+)-pool-depleted tissue following the replenishment of extracellular Ca2+, but had no apparent effect on the mobilization of intracellular calcium. Addition of nifedipine caused a rightward shift of both the peptide and Bay K 8644 concentration-response curves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
P Stemmer  T Akera  T M Brody  E Hosoya 《Life sciences》1986,39(16):1411-1416
Berberine has been shown to increase developed tension in cardiac muscle but its derivatives have been reported to inhibit the catalytic subunit of adenylate cyclase. In the present study, the cardiac actions of the most potent derivative, 13-propylberberine, were examined. It produced a transient increase followed by a sustained decrease in developed tension in paced left atrial muscle preparations isolated from guinea-pig heart. In the presence of 13-propylberberine, isoproterenol caused only a transient increase in developed tension; marked desensitization to the positive inotropic effect of isoproterenol occurred within 20 min. After washout of isoproterenol and an additional 15-min incubation in the presence of 13-propylberberine, the muscle lost its sensitivity to isoproterenol. Moreover, the positive inotropic effect of ouabain or effects of decrease or increase in extracellular Ca2+ concentration on the force of muscle contraction were markedly attenuated. Isoproterenol-induced elevation of tissue cyclic AMP concentration was inhibited by 13-propylberberine; however, 13-propylberberine did not alter the basal cyclic AMP concentration and its effects on inotropic actions of ouabain or extracellular Ca2+ appear unrelated to tissue cyclic AMP concentration.  相似文献   

14.
The mechanism of Ba2+-induced contraction has been examined in helical strips of Ca2+-depleted, 60 mM K+-depolarized rat aortae. The concentration-response curves to Ca2+ or Ba2+ were significantly potentiated by exposure to 3 X 10(-8) M Bay K 8644 (a Ca2+ channel agonist) in the order Ca2+ greater than Ba2+, suggesting an action of Ba2+ ions through potential-sensitive membrane Ca2+ channels. Exposure of strips to background concentration of Ca2+ (0.05 mM) enhanced the contractile responses to Ba2+, whereas background exposure to Ba2+ (0.1 mM) attenuated Ca2+ responses. Repeated stimulation with Ba2+ resulted in tachyphylaxis, contrary to the result when Ca2+ was used. The results suggest that Ba2+ ions enter rat aortic smooth muscle cells through Ca2+ channels and mobilize a noradrenaline-insensitive intracellular Ca2+ pool. Ba2+ may also cause a desensitization of some intracellular process.  相似文献   

15.
Human bladder contraction mainly depends on Ca2+ influx via L-type voltage-gated Ca2+ channels and on RhoA/Rho kinase contractile signaling, which is upregulated in overactive bladder (OAB). Elocalcitol is a vitamin D receptor agonist inhibiting RhoA/Rho kinase signaling in rat and human bladder. Since in the normal bladder from Sprague-Dawley rats elocalcitol treatment delayed the carbachol-induced contraction without changing maximal responsiveness and increased sensitivity to the L-type Ca2+ channel antagonist isradipine, we investigated whether elocalcitol upregulated L-type Ca2+ channels in human bladder smooth muscle cells (hBCs). In hBCs, elocalcitol induced a rapid increase in intracellular [Ca2+], which was abrogated by the L-type Ca2+ channel antagonist verapamil. Moreover, hBCs exhibited L-type voltage-activated Ca2+ currents (I Ca), which were selectively blocked by isradipine and verapamil and enhanced by the selective L-type agonist BAY K 8644. Addition of elocalcitol (10(-7) M) increased L-type I Ca size and specific conductance by inducing faster activation and inactivation kinetics than control and BAY K 8644, while determining a significant negative shift of the activation and inactivation curves, comparable to BAY K 8644. These effects were strengthened in long-term treated hBCs with elocalcitol (10(-8) M, 48 h), which also showed increased mRNA and protein expression of pore-forming L-type alpha(1C)-subunit. In the bladder from Sprague-Dawley rats, BAY K 8644 induced a dose-dependent increase in tension, which was significantly enhanced by elocalcitol treatment (30 microg.kg(-1).day(-1), 2 wk). In conclusion, elocalcitol upregulated Ca2+ entry through L-type Ca2+ channels in hBCs, thus balancing its inhibitory effect on RhoA/Rho kinase signaling and suggesting its possible efficacy for the modulation of bladder contractile mechanisms.  相似文献   

16.
Caffeine has been reported to have a positive and (or) a negative inotropic effect on cardiac muscle. In this study, the force-frequency and postrest characteristics of rat atrium were studied in the presence of caffeine (1.0-10 mM) to see if the interval between beats affected the response of cardiac muscle to caffeine. When stimulation frequency was 0.5 or 2.0 Hz, there was a positive followed by a negative inotropic response with 1, 5, or 10 mM caffeine. Incomplete relaxation occurred under these circumstances, giving rise to contracture. At low frequency of stimulation (0.1 Hz) caffeine had only a negative inotropic effect, and this effect was greater with 1 mM caffeine than with 5 mM caffeine. In the absence of caffeine, when stimulation at 0.5 or 3 Hz was interrupted, a pause of 2-20 s resulted in potentiation. When caffeine was present (2.0 mM), postrest potentiation was severely attenuated, but the steady-state contraction amplitude within the range 0.5-3.0 Hz was not different. These results are consistent with the hypothesis that caffeine induces a leak of Ca2+ from the sarcoplasmic reticulum, and this Ca2+ is extruded from the cell, possibly by Na+/Ca2+ exchange. Sarcoplasmic reticular uptake of Ca2+ and the translocation to release sites appear not to be affected by caffeine within 1-5 mM concentrations.  相似文献   

17.
The regulation of L-type Ca2+ current in isolated rat cardiac cells was studied using the perforated patch-clamp technique. A dual effect of the cAMP-dependent phosphorylation activator, isoproterenol, at different holding potentials (V(h)) was shown. The currents increased at V(h) = -50 mV and decreased at V(h) = -30 mV. A dihydropyridine agonist, BAY K 8644, and isoproterenol had an additive effect on the activation of Ca2+ channels at holding potentials close to the resting potential. The additivity was disturbed at more positive V(h). The activating effect of BAY K 8644 did not virtually change in the presence of a protein kinase blocker, H8, and a phosphatase activator, acetylcholine. The results were interpreted within the framework of a two-site phosphorylation model with two independent pathways of Ca2+ current regulation.  相似文献   

18.
Nonlinear charge movement (gating current) was studied by the whole-cell patch clamp method using cultured 17-d-old embryonic chick heart cells. Na+ and Ca++ currents were blocked by the addition of 10 microM TTX and 3 mM CoCl2; Cs+ replaced K+ both intra- and extracellularly. Linear capacitive and leakage currents were subtracted by a P/5 procedure. The small size (15 microns in diameter) and the lack of an organized internal membrane system in these myocytes permits a rapid voltage clamp of the surface membrane. Ca++ channel gating currents were activated positive to -60 mV; the rising phase was not distorted due to the system response time. The addition of BAY K 8644 (10(-6) M) caused a shortening of the time to peak of the Ca++ gating current, and a negative shift in the isochronal Qon vs. Vm curve. Qmax was unchanged by BAY K 8644. The voltage-dependent shift produced by BAY K 8644 is similar to that produced by isoproterenol (Josephson, I.R., and N. Sperelakis. 1990. Biophys. J. 57:305a. [Abstr.]). The results suggest that the binding of BAY K 8466 to one or more of the Ca++ channel subunits alters the kinetics and shifts the voltage dependence of gating. These changes in the gating currents can explain the parallel changes in the macroscopic Ca++ currents.  相似文献   

19.
KCl causes smooth muscle contraction by elevating intracellular free Ca2+, whereas receptor stimulation activates an additional mechanism, termed Ca2+ sensitization, that can involve activation of RhoA-associated kinase (ROK) and PKC. However, recent studies support the hypothesis that KCl may also increase Ca2+ sensitivity. Our data showed that the PKC inhibitor GF-109203X did not, whereas the ROK inhibitor Y-27632 did, inhibit KCl-induced tonic (5 min) force and myosin light chain (MLC) phosphorylation in rabbit artery. Y-27632 also inhibited BAY K 8644- and ionomycin-induced MLC phosphorylation and force but did not inhibit KCl-induced Ca2+ entry or peak ( approximately 15 s) force. Moreover, KCl and BAY K 8644 nearly doubled the amount of ROK colocalized to caveolae at 30 s, a time that preceded inhibition of force by Y-27632. Colocalization was not inhibited by Y-27632 but was abolished by nifedipine and the calmodulin blocker trifluoperazine. These data support the hypothesis that KCl caused Ca2+ sensitization via ROK activation. We discuss a novel model for ROK activation involving translocation to caveolae that is dependent on Ca2+ entry and involves Ca2+-calmodulin activation.  相似文献   

20.
Depolarization of differentiated neuroblastoma X glioma (NG108-15) cells with KCl (50 mM) or veratridine (50 microM) stimulated Ca2+ accumulation, was detected by quin 2 fluorescence. Intracellular Ca2+ concentrations ([Ca2+]i) were elevated about threefold from 159 +/- 7 to 595 +/- 52 nM (n = 12). Ca2+ entry evoked by high extracellular K+ concentration ([K+]o) was voltage-dependent and enhanced by the dihydropyridine agonists, BAY K 8644 and CGP 28 392, in a dose-dependent manner. CGP 28 392 was less potent and less efficacious than BAY K 8644. The (+) and (-) stereoisomers of 202-791 showed agonist and antagonist properties, respectively. (+)-202-791 was less potent, but as efficacious as BAY K 8644. In the absence of KCl, BAY K 8644 had no effect on Ca2+ entry. Voltage-sensitive calcium channel (VSCC) activity was blocked by organic Ca2+ channel antagonists (nanomolar range) both before and after KCl treatment and also by divalent metal cations (micromolar range). High [K+]o-induced Ca2+ accumulation was dependent on external Ca2+, but not on external Na+ ions ([Na]o), and was insensitive to both tetrodotoxin (3 microM) and tetraethylammonium (10 microM). In contrast, veratridine-induced Ca2+ accumulation required [Na+]o, and was blocked by tetrodotoxin, but not by nimodipine (1 microM). Veratridine-induced Ca2+ accumulation was slower (approximately 45 s), smaller in magnitude (approximately 30% of [K+]o-induced Ca2+ entry), and also enhanced by BAY K 8644 (approximately 50%). VSCC were identified in neuronal hybrid (NG108-15 and NCB-20) cells, but not in glial (C6BU-1), renal epithelial (MDCK), and human astrocytoma (1321N1) cells. NG108-15 cells differentiated with 1.0 mM dibutyryl cyclic AMP showed greater VSCC activity than undifferentiated cultures. These results suggest that cultured neural cells provide a useful system to study Ca2+ regulation via ion channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号