首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ether-extractable product formed from 5′-methylthioadenosine by extracts of malignant murine lymphocytic cells is shown to be 2-keto-4-methylthiobutyric acid. When 5′-methylthio [U-14C]adenosine was used as substrate, the product was labelled, confirming earlier reports that carbons of the keto acid are derived from carbons of the ribose. When hydroxylamine was added to the reaction mixture, the ketomethylthiobutyric acid was trapped as the oxime. When glutamine was added, the main product was methionine.  相似文献   

2.
Methionine synthesis from 3-methylthioribose in apple tissue   总被引:6,自引:0,他引:6  
The primary fate of 5-methylthioribose in apple tissue is the formation of methionine. Using dual labeled 5-methylthioribose, it was shown that both the CH3S- group and the ribose portion of 5-methylthioribose were equally incorporated into methionine. Thus, the pathway involves modification of the ribose portion of 5-methylthioribose into the 2-aminobutyrate portion of methionine. This pathway functions to recycle methionine for continued synthesis of ethylene in fruit tissues. The methionine cycle in relation to ethylene biosynthesis is presented.  相似文献   

3.
The ribose moiety of 5′-methylthioadenosine (MTA) is metabolized to form the four-carbon unit (2-aminobutyrate) of methionine in tomato tissue (Lycopersicon esculentum Mill., cv. Pik Red). When [U-14C-adenosine] MTA was administered to tomato tissue slices, label was recovered in 5-methylthioribose (MTR), methionine, 1-aminocyclopropane-1-carboxylic acid (ACC), C2H4 and other unidentified compounds. However, when [U-14C-ribose]MTR was administered, radioactivities were recovered in methionine, ACC and C2H4, but not MTA. This suggests that C2H4 formed in tomato pericarp tissue may be derived from the ribose portion of MTA via MTR, methionine and ACC. The conversion of MTR to methionine is not inhibited by aminoethoxyvinylglycine (AVG), but is O2 dependent. These data present a new salvage pathway for methionine biosynthesis which may be important in relation to polyamine and ethylene biosynthesis in tomato tissue.  相似文献   

4.
Metabolism of 5-methylthioribose to methionine   总被引:1,自引:0,他引:1  
During ethylene biosynthesis, the H3CS- group of S-adenosylmethionine is released as 5′-methylthioadenosine, which is recycled to methionine via 5-methylthioribose (MTR). In mungbean hypocotyls and cell-free extracts of avocado, [14C]MTR was converted into labeled methionine via 2-keto-4-methylthiobutyric acid (KMB) and 2-hydroxy-4-methylthiobutyric acid (HMB), as intermediates. Incubation of [ribose-U-14C]MTR with avocado extract resulted in the production of [14C]formate, indicating the conversion of MTR to KMB involves a loss of formate, presumably from C-1 of MTR. Tracer studies showed that KMB was converted readily in vivo and in vitro to methionine, while HMB was converted much more slowly. The conversion of KMB to methionine by dialyzed avocado extract requires an amino donor. Among several potential donors examined, l-glutamine was the most efficient. Anaerobiosis inhibited only partially the oxidation of MTR to formate, KMB/HMB, and methionine by avocado extract. The role of O2 in the conversion of MTR to methionine is discussed.  相似文献   

5.
In partially fractionated rat liver homogenate, 1-phospho-5-methylthioribose is oxidatively converted to 2-keto, 4-methylthiobutyric acid, 2-hydroxy, 4-methylthiobutyric acid and formate. The amount of formate formed is equal to the amount of 2-keto, 4-methylthiobutyric acid plus 2-hydroxy, 4-methylthiobutyric acid formed. The data suggest that the keto acid is the precursor of the hydroxy acid. No readily dissociable cofactors are involved in the reaction. A mechanism is proposed for the conversion of 1-phospho-4-methylthiobutyric acid to formate and 2-keto, 4-methylthiobutyric acid.  相似文献   

6.
The enzymatic conversion of 5-methylthioribose to methionine and its deaminated derivatives, 2-keto-4-methylmercaptobutyric acid and 2-hydroxy-4-methylmercaptobutyric acid by cell-free extracts of Enterobacteraerogenes has been demonstrated. 14C-Labeled methionine was isolated from incubation mixtures with 5-methylthio[U-14C]ribose. The carbohydrate part of this compound furnishes at least part, if not all, of the four carbon chain of methionine.  相似文献   

7.
Evidence is presented that Lemna converts 5′-methylthioadenosine (MTA) to methionine. The methylthio moiety and four of the ribose carbons of the nucleoside contribute the methylthio and the four-carbon moieties of methionine. Plants grown in the presence of inhibitors which block methionine biosynthesis convert MTA to methionine at a rate sufficient to sustain normal growth (at least 4.4 nanomoles per colony per doubling with a molar yield of at least 65%). The pathway for conversion is shown to be constitutive in plants grown in standard medium and to function at a rate sufficient to dispose of MTA arising as a result of polyamine synthesis, and to explain the observed rate (1.4 nanomoles per colony per doubling) of preferential recycling of methionine sulfur (Giovanelli, Mudd, Datko 1981 Biochem Biophys Res Commun 100: 831-839). Rapid entry of methionine methyl into S-adenosylmethionine and phosphorylcholine was observed for plants grown in standard medium. Adenine generated during this cycle is efficiently salvaged into ADP and ATP.

Conversion of MTA to methionine completes the steps in methionine thiomethyl recycling (Giovanelli, Mudd, Datko 1981 Biochem Biophys Res Commun 100: 831-839) in which the sulfur of methionine is retained while the four-carbon moiety is not. The findings further show that the four-carbon moiety of methionine can be derived via the ribose moiety of MTA in addition to the established route from O-phosphohomoserine via transsulfuration. Previous observations (Giovanelli, Mudd, Datko 1980 Biochemistry of Plants pp 453-505) can now be interpreted as establishing that exogenous methionine down-regulates its own net synthesis via the transsulfuration pathway.

  相似文献   

8.
Evidence of enzymatic formation of ethylene from methionine by rat liver extracts is presented. The ethylene production is closely associated with growth of the animal. The conversion of l-methionine to ethylene is oxygen dependent. Substrate analogue studies show that the ethylene-forming system is structurally specific and requires in the center of the molecule α-CH2-CH2- with one end attached to an unencumbered sulfur atom from a thioether moiety and the other end attached to a carboxyl group. Sylfhydryl agents are found to be very effective inhibitors of the ethylene-forming system. The finding of α-keto-4-methylthiobutyric acid to be a more efficient precursor of ethylene production suggests the possibility that α-keto-4-methylthiobutyric acid may be an intermediate in the biosynthesis of ethylene from methionine in mammalian tissues.  相似文献   

9.
The presence of a previously unidentified enzyme, tentatively designated 5-methylthioribose kinase, has been demonstrated in cell-free extracts of Enterobacter aerogenes. The enzyme catalyzes the ATP-dependent phosphorylation of 5-methylthioribose. ADP is one of the products of the reaction and, based on functional group analyses, the other product is 5-methylthioribose 1-phosphate. A 40-fold purified enzyme preparation has been obtained from a cell-free extract of E. aerogenes. Activity of the partially purified enzyme is totally dependent on the presence of a divalent cation and a sulfhydryl reagent. The substrate specificity of the enzyme is quite narrow, and the Km values for ATP and 5-methylthioribose are 7.4 X 10(-5) M and 8.1 X 10(-6) M, respectively. These results suggest that 5-methylthioribose kinase may be a primary enzyme involved in the recycling of the methylthio group of 5-methylthioribose back into methionine.  相似文献   

10.
Experiments in which 5′-methylthioadenosine was used as a culture supplement for methionine-requiring mutants of Aspergillus nidulans with various enzymatic lesions indicated that the methylthio group derived from the nucleoside can be recycled to methionine. The results strongly suggest that methionine may be synthesized in the reaction catalyzed by homocysteine synthase (EC 4.2.99.10) in which O-acetylhomoserine is an acceptor of the methylthio group. The first step on the salvage pathway of the methylthio group is, in Aspergillus nidulans, phosphorolytic cleavage of 5′-methylthioadenosine to adenine and 5-methylthioribose 1-phosphate catalyzed by a specific phosphorylase.  相似文献   

11.
Escherichia coli 5'-methylthioadenosine/S-adenosyl-homocysteine nucleosidase (MTAN) hydrolyzes its substrates to form adenine and 5-methylthioribose (MTR) or S-ribosylhomocysteine (SRH). 5'-Methylthioadenosine (MTA) is a by-product of polyamine synthesis and SRH is a precursor to the biosynthesis of one or more quorum sensing autoinducer molecules. MTAN is therefore involved in quorum sensing, recycling MTA from the polyamine pathway via adenine phosphoribosyltransferase and recycling MTR to methionine. Hydrolysis of MTA by E. coli MTAN involves a highly dissociative transition state with ribooxacarbenium ion character. Iminoribitol mimics of MTA at the transition state of MTAN were synthesized and tested as inhibitors. 5'-Methylthio-Immucillin-A (MT-ImmA) is a slow-onset tight-binding inhibitor giving a dissociation constant (K(i)(*)) of 77 pm. Substitution of the methylthio group with a p-Cl-phenylthio group gives a more powerful inhibitor with a dissociation constant of 2 pm. DADMe-Immucillins are better inhibitors of E. coli MTAN, since they are more closely related to the highly dissociative nature of the transition state. MT-DADMe-Immucillin-A binds with a K(i)(*) value of 2 pm. Replacing the 5'-methyl group with other hydrophobic groups gave 17 transition state analogue inhibitors with dissociation constants from 10(-12) to 10(-14) m. The most powerful inhibitor was 5'-p-Cl-phenylthio-DADMe-Immucillin-A (pClPhT-DADMe-ImmA) with a K(i)(*) value of 47 fm (47 x 10(-15) m). These are among the most powerful non-covalent inhibitors reported for any enzyme, binding 9-91 million times tighter than the MTA and SAH substrates, respectively. The inhibitory potential of these transition state analogue inhibitors supports a transition state structure closely resembling a fully dissociated ribooxacarbenium ion. Powerful inhibitors of MTAN are candidates to disrupt key bacterial pathways including methylation, polyamine synthesis, methionine salvage, and quorum sensing. The accompanying article reports crystal structures of MTAN with these analogues.  相似文献   

12.
The recycling of 5-methylthioribose (MTR) to methionine in avocado (Persea americana Mill, cv Hass) and tomato (Lycopersicum esculentum Mill, cv unknown) was examined. [14CH3]MTR was not metabolized in cell free extract from avocado fruit. Either [14CH3]MTR plus ATP or [14CH3]5-methylthioribose-1-phosphate (MTR-1-P) alone, however, were metabolized to two new products by these extracts. MTR kinase activity has previously been detected in these fruit extracts. These data indicate that MTR must be converted to MTR-1-P by MTR kinase before further metabolism can occur. The products of MTR-1-P metabolism were tentatively identified as α-keto-γ-methylthiobutyric acid (α-KMB) and α-hydroxy-γ-methylthiobutyric acid (α-HMB) by chromatography in several solvent systems. [35S]α-KMB was found to be further metabolized to methionine and α-HMB by these extracts, whereas α-HMB was not. However, α-HMB inhibited the conversion of α-KMB to methionine. Both [U-14C]α-KMB and [U-14C]methionine, but not [U-14C]α-HMB, were converted to ethylene in tomato pericarp tissue. In addition, aminoethoxyvinylglycine inhibited the conversion of α-KMB to ethylene. These data suggest that the recycling pathway leading to ethylene is MTR → MTR-1-P → α-KMB → methionine → S-adenosylmethionine → 1-aminocyclopropane-1-carboxylic acid → ethylene.  相似文献   

13.
1. Ribose 5-phosphate was non-oxidatively synthesized from glucose 6-phosphate and triose phosphate by an enzyme extract prepared from rat liver (RLEP). Analysis of the intermediates by GLC, ion-exchange chromatography and specific enzymatic analysis, revealed the presence of the following intermediates of the L-type pentose pathway: altro-heptulose 1,7-bisphosphate, arabinose 5-phosphate and D-glycero D-ido octulose 8-phosphate. 2. With either [1-14C] or [2-14C]glucose 6-phosphate as diagnostic substrates, the distribution of 14C in ribose 5-phosphate was determined. At early time intervals (0.5-8 hr), [1-14C]glucose 6-phosphate introduced 14C into C-1, C-3 and C-5 of ribose 5-phosphate, at 17 hr 14C was confined to C-1. With [2-14C]glucose 6-phosphate as substrate, 14C was confined to C-2, C-3 and C-5 of ribose 5-phosphate during early times (0.5-8 hr), while at 17 hr 14C was located in C-2. 3. The transketolase exchange reaction, [14C]ribose 5-phosphate + altro-heptulose 7-phosphate in equilibrium ribose 5-phosphate + [14C]altro-heptulose 7-phosphate, was demonstrated for the first time using purified transketolase, its activity was measured and it is proposed to play a major role in the relocation of 14C into C-3 and C-5 or ribose 5-phosphate during the prediction labelling experiments. 4. The coupled transketolase-transaldolase reactions, 2 fructose 6-phosphate in equilibrium altro-heptulose 7-phosphate + xylulose 5-phosphate and 2 altro-heptulose 7-phosphate in equilibrium fructose 6-phosphate + D-glycero D-altro octulose 8-phosphate were demonstrated with purified enzymes, but are concluded to play a minor role in the non-oxidative synthesis of pentose 5-phosphate and octulose phosphate by (RLEP). 5. The formation of gem diol and dimers of erythrose 4-phosphate is proposed to account in part for the failure to detect monomeric erythrose 4-phosphate in the carbon balance studies. 6. The equilibrium value for the pentose pathway acting by the reverse mode in vitro was measured and contrasted with the value for the pathway acting in the forward direction. The initial specific rates of the pentose pathway reactions in vitro for the reverse and forward directions are measured. 7. The study which includes carbon balance, time course changes and 14C prediction labelling experiments reports a comprehensive investigation of the mechanism of the pentose pathway acting reversibly.  相似文献   

14.
The pathway leading to the formation of ethylene as a secondary metabolite from methionine by Escherichia coli strain B SPAO has been investigated. Methionine was converted to 2-oxo-4-methylthiobutyric acid (KMBA) by a soluble transaminase enzyme. 2-Hydroxy-4-methylthiobutyric acid (HMBA) was also a product, but is probably not an intermediate in the ethylene-forming pathway. KMBA was converted to ethylene, methanethiol and probably carbon dioxide by a soluble enzyme system requiring the presence of NAD(P)H, Fe3+ chelated to EDTA, and oxygen. In the absence of added NAD(P)H, ethylene formation by cell-free extracts from KMBA was stimulated by glucose. The transaminase enzyme may allow the amino group to be salvaged from methionine as a source of nitrogen for growth. As in the plant system, ethylene produced by E. coli was derived from the C-3 and C-4 atoms of methionine, but the pathway of formation was different. It seems possible that ethylene production by bacteria might generally occur via the route seen in E. coli.Abbreviations EDTA ethylenediaminetetraacetic acid - HMBA 2-hydroxy-4-methylthiobutyric acid (methionine hydroxy analogue) - HSS high speed supernatant - KMBA 2-oxo-4-methylthiobutyric acid - PCS phase combining system  相似文献   

15.
The methionine salvage pathway (MSP) plays a crucial role in recycling a sulphahydryl derivative of the nucleoside. Recently, the genes and reactions in MSP from Bacillus subtilis have been identified, where 5-methylthioribose 1-phosphate isomerase (M1Pi) catalyzes a conversion of 5-methylthioribose 1-phosphate (MTR-1-P) to 5-methylthioribulose 1-phosphate (MTRu-1-P). Herein, we report the crystal structures of B. subtilis M1Pi (Bs-M1Pi) in complex with its product MTRu-1-P, and a sulfate at 2.4 and 2.7 A resolution, respectively. The electron density clearly shows the presence of each compound in the active site. The structural comparison with other homologous proteins explains how the substrate uptake of Bs-M1Pi may be induced by an open/closed transition of the active site. The highly conserved residues at the active site, namely, Cys160 and Asp240 are most likely to be involved in catalysis. The structural analysis sheds light on its catalytic mechanism of M1Pi.  相似文献   

16.
Activity of 5-methylthioribose kinase, the enzyme which catalyzes the ATP-dependent formation of 1-phospho-5-methylthioribose, has been revealed in the extracts from various higher plant species. Almost 2,000-fold-purified enzyme has been obtained from yellow lupin (Lupinus luteus L. cv Topaz) seed extract. Molecular weight of the native enzyme is 70,000 as judged by gel filtration. The lupin 5-methylthioribose kinase exhibits a strict requirement for divalent metal ions. Among the ions tested, only Mg2+ and Mn2+ acted as cofactors. The curve of kinase initial velocity versus pH reaches plateau at pH 10 to 10.5. The Km values calculated for 5-methylthioribose and ATP are 4.3 and 8.3 micromolar, respectively.

Among nucleoside triphosphates tested as potential phosphate donors, only dATP could substitute in the reaction for ATP. 5-Isobutylthioribose, an analog of 5-methylthioribose, proved to be the γ-ATP-phosphate acceptor, too. The compound inhibits competitively synthesis of 1-phospho-5-methylthioribose (Ki = 1.4 micromolar). Lupin 5-methylthioribose kinase is completely and irreversibly inhibited by the antisulfhydryl reagent, p-hydroxymercuribenzoate. As in bacteria (Ferro, Barrett, Shapiro 1978 J Biol Chem 253: 6021-6025), the enzyme may be involved in a new, alternative pathway of methionine synthesis in plant tissues.

  相似文献   

17.
The methionine salvage pathway is widely distributed among some eubacteria, yeast, plants and animals and recycles the sulfur-containing metabolite 5-methylthioadenosine (MTA) to methionine. In eukaryotic cells, the methionine salvage pathway takes place in the cytosol and usually involves six enzymatic activities: MTA phosphorylase (MTAP, EC 2.4.2.28), 5′-methylthioribose-1-phosphate isomerase (mtnA, EC 5.3.1.23), 5′-methylthioribulose-1-phosphate dehydratase (mtnB, EC: 4.2.1.109), 2,3-dioxomethiopentane-1-phosphate enolase/phosphatase (mtnC, EC 3.1.3.77), aci-reductone dioxygenase (mtnD, EC 1.13.11.54) and 4-methylthio-2-oxo-butanoate (MTOB) transaminase (EC 2.6.1.-). The aim of this study was to complete the available information on the methionine salvage pathway in human by identifying the enzyme responsible for the dehydratase step. Using a bioinformatics approach, we propose that a protein called APIP could perform this role. The involvement of this protein in the methionine salvage pathway was investigated directly in HeLa cells by transient and stable short hairpin RNA interference. We show that APIP depletion specifically impaired the capacity of cells to grow in media where methionine is replaced by MTA. Using a Shigella mutant auxotroph for methionine, we confirm that the knockdown of APIP specifically affects the recycling of methionine. We also show that mutation of three potential phosphorylation sites does not affect APIP activity whereas mutation of the potential zinc binding site completely abrogates it. Finally, we show that the N-terminal region of APIP that is missing in the short isoform is required for activity. Together, these results confirm the involvement of APIP in the methionine salvage pathway, which plays a key role in many biological functions like cancer, apoptosis, microbial proliferation and inflammation.  相似文献   

18.
The role of 5'-methylthioadenosine (MTA), formed during the process of polyamine biosynthesis, on differentiation of osteoprogenitor cells was assessed by its effects on alkaline phosphatase (ALP) activity, bone nodule formation and osteopontin contents of cultured rat calvaria (RC) cells. These three markers were stimulated by exogenous MTA and were depressed by 5'-difluoromethylthioadenosine (DFMTA), a synthetic inhibitor of MTA phosphorylase, which cleaves MTA to adenine and 5-methylthioribose-1-phosphate. 5-Methylthioribose and 2-keto-4-methylthiobutyrate, metabolites of 5-methylthioribose-1-phosphate, had no effects on ALP activity and bone nodule formation in the presence or absence of DFMTA. On the other hand, adenine enhanced ALP activity, bone nodule formation and osteopontin contents in mineralized nodules and also partially reversed DFMTA-induced inhibition of these three markers. MTA, its metabolites and DFMTA did not affect the growth of RC cells under these culture conditions. These results suggest that adenine formed from MTA is important in the differentiation of RC cells.  相似文献   

19.
During growth of Escherichia coli strain SPA O in the presence of methionine, an intermediate accumulates in the medium. This intermediate reacts with 2,4-dinitrophenylhydrazine, and can be degraded to ethylene either enzymically or photochemically, the latter being stimulated by the addition of a flavin. The pH optimum for the photochemical degradation of this intermediate and 2-keto-4-methylthiobutyric acid (KMBA) is pH 3 whereas the optimum for methional is pH 6. The enzyme which converts the intermediate to ethylene also converts KMBA to ethylene and has many of the properties of a peroxidase including inhibition by catalase, cyanide, azide and anaerobiosis. The enzyme which synthesizes the intermediate is not known but requires oxygen and pyridoxal phosphate. A pathway for ethylene biosynthesis is proposed in which methionine is converted to KMBA which can be degraded either by peroxidase or in a flavin-mediated photochemical reaction. Its relevance to the properties of other ethylene-producing bacteria and to the proposed pathway of ethylene release by higher plants is discussed.  相似文献   

20.
d-Arabinose is a major sugar in the cell wall polysaccharides of Mycobacterium tuberculosis and other mycobacterial species. The reactions involved in the biosynthesis and activation of d-arabinose represent excellent potential sites for drug intervention since d-arabinose is not found in mammalian cells, and the cell wall arabinomannan and/or arabinogalactan appear to be essential for cell survival. Since the pathway involved in conversion of d-glucose to d-arabinose is unknown, we incubated cells of Mycobacterium smegmatis individually with [1-(14)C]glucose, [3,4-(14)C]glucose, and [6-(14)C]glucose and compared the specific activities of the cell wall-bound arabinose. Although the specific activity of the arabinose was about 25% lower with [6-(14)C]glucose than with other labels, there did not appear to be selective loss of either carbon 1 or carbon 6, suggesting that arabinose was not formed by loss of carbon 1 of glucose via the oxidative step of the pentose phosphate pathway, or by loss of carbon 6 in the uronic acid pathway. Similar labeling patterns were observed with ribose isolated from the nucleic acid fraction. Since these results suggested an unusual pathway of pentose formation, labeling studies were also done with [1-(13)C]glucose, [2-(13)C]glucose, and [6-(13)C]glucose and the cell wall arabinose was examined by NMR analysis. This method allows one to determine the relative (13)C content in each carbon of the arabinose. The labeling patterns suggested that the most likely pathway was condensation of carbons 1 and 2 of fructose 6-phosphate produced by the transaldolase reaction with carbons 4, 5, and 6 (i.e., glyceraldehyde 3-phosphate) formed by fructose-1,6 bisphosphate aldolase. Cell-free enzyme extracts of M. smegmatis were incubated with ribose 5-phosphate, xylulose 5-phosphate, and d-arabinose 5-phosphate under a variety of experimental conditions. Although the ribose 5-phosphate and xylulose 5-phosphate were converted to other pentoses and hexoses, no arabinose 5-phosphate (or free arabinose) was detected in any of these reactions. In addition, these enzyme extracts did not convert arabinose 5-phosphate to any other pentose or hexose. In addition, incubation of [(14)C]glucose 6-phosphate and various nucleoside triphosphates (ATP, CTP, GTP, TTP, and UTP) with cytosolic or membrane fractions from the mycobacterial cells did not result in formation of a nucleotide form of arabinose, although other radioactive sugars including rhamnose and galactose were found in the nucleotide fraction. Furthermore, no radioactive arabinose was found in the nucleotide fraction isolated from M. smegmatis cells grown in [(3)H]glucose, nor was arabinose detected in a large-scale extraction of the sugar nucleotide fraction from 300 g of cells. The logical conclusion from these studies is that d-arabinose is probably produced from d-ribose by epimerization of carbon 2 of the ribose moiety of polyprenylphosphate-ribose to form polyprenylphosphate-arabinose, which is then used as the precursor for formation of arabinosyl polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号