首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
We studied the possibility of integrating flowering dates in phenology and pollen counts in aerobiology in Germany. Data were analyzed for three pollen types (Betula, Poaceae, Artemisia) at 51 stations with pollen traps, and corresponding phenological flowering dates for 400 adjacent stations (< 25 km) for the years 1992–1993 and 1997–1999. The spatial and temporal coherence of these data sets was investigated by comparing start and peak of the pollen season with local minima and means of plant flowering. Our study revealed that start of birch pollen season occurred on average 5.7 days earlier than local birch flowering. For mugwort and grass, the pollen season started on average after local flowering was observed; mugwort pollen was found 4.8 days later and grass pollen season started almost on the same day (0.6 days later) as local flowering. Whereas the peak of the birch pollen season coincided with the mean flowering dates (0.4 days later), the pollen peaks of the other two species took place much later. On average, the peak of mugwort pollen occurred 15.4 days later than mean local flowering, the peak of grass pollen catches followed 22.6 days after local flowering. The study revealed a great temporal divergence between pollen and flowering dates with an irregular spatial pattern across Germany. Not all pollen catches could be explained by local vegetation flowering. Possible reasons include long-distance transport, pollen contributions of other than phenologically observed species and methodological constraints. The results suggest that further research is needed before using flowering dates in phenology to extrapolate pollen counts.  相似文献   

2.
For the first time in Belgium, fluctuations in airborne pollen quantities over a 34 years period have been analyzed. Seven pollen types have been selected comprising the most clinically relevant in Belgium nowadays (birch, alder, hazel and grasses) and others that are known to be allergenic in other European countries and frequently found in Belgium (plane, ash and mugwort). Pollen monitoring was performed with a seven-day recording volumetric spore trap placed in Brussels. We measured increasing airborne pollen for four trees, namely alder, hazel, ash and plane. Although the total pollen index for birch has not increased significantly, an increasing trend in the annual amount of days above the concentration threshold of 80 pollen grains/m3 was clearly observed. Concerning temporal variations, the pollen season has tended to end earlier for birch, ash and plane and the peak concentration of the pollen of plane has been appearing earlier in the year. In the investigated period, the pollen seasons of grasses and mugwort have tended to become less severe. Furthermore, we reported a temporal shift of the grass pollen season, beginning and ending earlier, together with an advance of the annual peak date.  相似文献   

3.
Summary Pollen and spore concentrations were compared in Tartu, Estonia and in three sites in Finland (Turku, Kuopio and Oulu) during May–September 1989. The onset ofQuercus, Pinus, Poaceae,Urtica andRumex flowering started earlier in Tartu than at any site in Finland. The flowering ofJuniperus andArtemisia, on the other hand, began earlier in Turku and Kuopio than in Tartu.Pinus andJuniperus showed a significant correlation (number of pollen grains at the same date) between Tartu and Turku and between Turku and Kuopio. Poaceae andUrtica were correlated between all the sites, as wasRumex except between Tartu and Turku.Artemisia was correlated between Tartu and Turku, Turku and Oulu, and Kuopio and Oulu.Cladosporium correlated between Tartu and Turku. The pollen seasons of Poaceae,Urtica andRumex are prolonged towards the south.  相似文献   

4.
Large spatial differences in the distribution of three allergologically relevant pollen types for Central Europe—birch, grass, and mugwort—are revealed within a large metropolitan area—Berlin, Germany. The purpose of the study is an examination of the hypothesis that these different pollen exposure conditions can cause different degrees of pollen-induced symptoms within the city. Pollen data from 14 gravimetric traps and one volumetric trap in Berlin and anonymously reported pollen-induced symptom data from the online-based self-documentation tool “Patient’s Hayfever Diary” (PHD) are used for the analysis of temporal and spatial variations of the severity of the overall total symptoms. Geographically localised symptom data are linked to the nearest pollen trap. Statistical analysis is performed using Kendall’s Tau-b. Higher amounts of monitored birch and grass pollen in the peripheral areas of Berlin induce stronger symptoms in PHD users located within suburbs than those located in the city centre. There is no statistical relationship between the varying presence of mugwort pollen in the air and the severity of symptoms. Spatial differences in the pollen-induced symptom severity within a large city coinciding with spatial differences in birch and grass pollen depositions are shown for the first time. Therefore, pollen data from a single trap may not provide an appropriate explanation for differences in pollen-induced symptoms across the city. More detailed and reliable information about the exposure to allergenic pollen can be addressed by installing further traps in order to improve the knowledge about pollen exposure within cities.  相似文献   

5.
Quantification of airborne pollen is an important tool in scientific research and patient care in allergy. The currently available method relies on microscopic examination of pollen slides, performed by qualified researchers. Although highly reliable, the method is labor intensive and requires extensive training of the researchers involved. In an approach to develop alternative detection methods, we performed a feasibility study on the automated recognition of the allergenic relevant pollen, grass, birch, and mugwort, by utilizing digital image analysis and pattern recognition tools. Of a total of 254 pollen samples (including 79 of grass, 79 of birch and 96 of mugwort), 97.2% were recognized correctly. This encouraging result provides a promising prospect for future developments.  相似文献   

6.
Constructing accurate predictive models for grass and birch pollen in the air, the two most important aeroallergens, for areas with variable climate conditions such as the United Kingdom, require better understanding of the relationships between pollen count in the air and meteorological variables. Variations in daily birch and grass pollen counts and their relationship with daily meteorological variables were investigated for nine pollen monitoring sites for the period 2000–2010 in the United Kingdom. An active pollen count sampling method was employed at each of the monitoring stations to sample pollen from the atmosphere. The mechanism of this method is based on the volumetric spore traps of Hirst design (Hirst in Ann Appl Biol 39(2):257–265, 1952). The pollen season (start date, finish date) for grass and birch were determined using a first derivative method. Meteorological variables such as daily rainfall; maximum, minimum and average temperatures; cumulative sum of Sunshine duration; wind speed; and relative humidity were related to the grass and birch pollen counts for the pre-peak, post peak and the entire pollen season. The meteorological variables were correlated with the pollen count data for the following temporal supports: same-day, 1-day prior, 1-day mean prior, 3-day mean prior, 7-day mean prior. The direction of influence (positive/negative) of meteorological variables on pollen count varied for birch and grass, and also varied when the pollen season was treated as a whole season, or was segmented into the pre-peak and post-peak seasons. Maximum temperature, sunshine duration and rainfall were the most important variables influencing the count of grass pollen in the atmosphere. Both maximum temperature (pre-peak) and sunshine produced a strong positive correlation, and rain produced a strong negative correlation with grass pollen count in the air. Similarly, average temperature, wind speed and rainfall were the most important variables influencing the count of birch pollen in the air. Both wind speed and rain produced a negative correlation with birch pollen count in the air and average temperature produced a positive correlation.  相似文献   

7.
To describe the season of airborne pollen ofbirch and grass in the city of Nuuk, Greenland,pollen concentrations were measured dailythroughout the pollen seasons in 1997 to 1999.The study was part of a large epidemiologicalcross-sectional study of allergy and riskfactors for allergy in Greenlander Inuit livingin Greenland and Denmark.For the three years the mean birch pollenseason started around 8 June, lasted in average16 days and the mean annual total pollen countwas 46. The highest daily concentration of 23birch pollen pr. m3 was measured in 1999.The mean grass pollen season began around 22July, it lasted 53 days and the mean annualtotal pollen count was 81. The highest grasspollen number registered for one day reached 12in 1998. Several other types of pollen werealso measured, generally in smallconcentrations, but for Cyperaceae and Alderthe mean annual total pollen count were 43 and19 respectively. Though the measuredconcentrations are small, it is concluded thatairborne pollen occur in the arctic climate ofNuuk in potentially clinically relevantamounts.For the three years large variations wereobserved for the start, duration and amountsfor both birch and grass. Models forestimation of the starting date based onGrowing Degree Hours (GDHs) predicted the startof the birch and grass pollen with greataccuracy – within one day. Analysis of themeteorological conditions show that themeasured pollen in general originated from thearea around Nuuk, but there are indicationsthat pollen might have been long-transportedfrom Canada.  相似文献   

8.
The pollen spectra of air and surface soil samples from a rooftop (at 14 m) and from ground level (at 1.6 m) in the suburbs of Vienna (Austria) were compared. Two soil samples and two air samples were taken on four different days to account for possible differences: in winter when no pollination occurred (reference day), in spring during the main flowering of Betula (birch day), in spring/summer during the main flowering of Poaceae (grass day), and in autumn during the main flowering of Ambrosia (ragweed day). Thirty-five different pollen types were used to describe the pollen spectra. Frequencies of certain pollen types reflect a seasonal impact on both the surface soil and air samples and show a similarity between air and soil samples on most of the days. However, the seasonal impact is higher in the air samples and shows a high consistency for ground and rooftop level. Kendall’s tau correlation coefficients further substantiate the similarities of the samples especially for the pollen season days. Exceptions include the winter day when pollination was low and the air samples recorded nearly no pollen at all, and the ragweed day when Ambrosia pollen was abundant in three of four samples but not in the ground surface soil sample. Thus, (1) air and surface pollen samples record similar signals during the pollen season but not during the ragweed and winter season and (2) air and surface pollen samples show the impact of local vegetation also in pollen traps located at different heights.  相似文献   

9.
Recent studies describe interactions of pollen surfaces with aerosol particles; pollen surfaces undergo morphological changes and the release of allergens and allergenic fragments from the pollen can be enhanced. Thus allergens from pollen can be found in particle size fractions much smaller than undamaged pollen (<5 μm). This may explain allergic reactions in parts of the lungs which cannot be reached by undamaged pollen. In Switzerland the birch tree (betula verrucosa) major allergen Bet v 1 and the grass (phleum pratense) pollen major allergen Phl p 5 are of particular relevance for inducing pollinosis. In this study aerosols of different aerodynamic diameters were sampled by Andersen-Impactors over 18 months. Sampling areas are subjected to different levels of air pollution (Zürich, Switzerland, urban; Payerne, Switzerland, rural; Davos, Switzerland, alpine). Samples were scanned by electron microscopy and submitted to specific allergen assays (ELISA) for birch pollen major allergen Bet v 1 and grass pollen major allergen Phl p 5 respectively. Particle and major allergen concentrations were highest in Zürich, followed by Payerne and, significantly lower, Davos. Scanning electron microscopy investigations showed interactions of aerosols with pollen surfaces in Zürich and Payerne. The presence of Bet v 1 in smaller aerosol fractions was demonstrated in Zürich and Payerne some weeks before and after birch pollen was counted. An erratum to this article is available at .  相似文献   

10.
Birch pollen is highly allergenic. Knowledge of daily variations, atmospheric transport and source areas of birch pollen is important for exposure studies and for warnings to the public, especially for large cities such as London. Our results show that broad-leaved forests with high birch tree densities are located to the south and west of London. Bi-hourly Betula pollen concentrations for all the days included in the study, and for all available days with high birch pollen counts (daily average birch pollen counts >80 grains/m3), show that, on average, there is a peak between 1400 hours and 1600 hours. Back-trajectory analysis showed that, on days with high birch pollen counts (n = 60), 80% of air masses arriving at the time of peak diurnal birch pollen count approached North London from the south in a 180 degree arc from due east to due west. Detailed investigations of three Betula pollen episodes, with distinctly different diurnal patterns compared to the mean daily cycle, were used to illustrate how night-time maxima (2200–0400 hours) in Betula pollen counts could be the result of transport from distant sources or long transport times caused by slow moving air masses. We conclude that the Betula pollen recorded in North London could originate from sources found to the west and south of the city and not just trees within London itself. Possible sources outside the city include Continental Europe and the Betula trees within the broad-leaved forests of Southern England.  相似文献   

11.
Group 4 grass pollen allergens represent 60 kDa glycoproteins recognized by 70% of patients sensitive to these pollens. An antiserum against purified Phl p 4 from timothy grass pollen was used to investigate various pollens, fruits, and vegetables for Phl p 4-related allergens by immunogold electron microscopy. In timothy grass, mugwort, and birch pollens, allergens were located in the wall, and in timothy grass and birch pollens additionally in the cytoplasm. In peanut, apple, celery root, and carrot root, only cytoplasmic areas were labeled. Group 4-related allergens thus occur in pollens of unrelated plants and in plant food and may therefore contribute to crossreactivities in patients allergic to various pollens and plant food.  相似文献   

12.
Recent studies describe interactions of pollen surfaces with aerosol particles; pollen surfaces undergo morphological changes and the release of allergens and allergenic fragments from the pollen can be enhanced. Thus allergens from pollen can be found in particle size fractions much smaller than undamaged pollen (<5m). This may explain allergic reactions in parts of the lungs which cannot be reached by undamaged pollen. In Switzerland the birch tree (betula verrucosa) major allergen Bet v 1 and the grass (phleum pratense) pollen major allergen Phl p 5 are of particular relevance for inducing pollinosis. In this study aerosols of different aerodynamic diameters were sampled by Andersen-Impactors over 18 months. Sampling areas are subjected to different levels of air pollution (Zürich, Switzerland, urban; Payerne, Switzerland, rural: Davos, Switzerland, alpine). Samples were scanned by electron microscopy and submitted to specific allergen assays (ELISA) for birch pollen major allergen Bet v 1 and grass pollen major allergen Phl p 5 respectively. Particle and major allergen concentrations were highest in Zürich, followed by Payerne and, significantly lower, Davos. Scanning electron microscopy investigations showed interactions of aerosols with pollen surfaces in Zürich and Payerne. The presence of Bet v 1 in smaller aerosol fractions was demonstrated in Zürich and Payerne some weeks before and after birch pollen was counted.  相似文献   

13.
Determining the start of the birch pollen season requires the reliable separation of non‐local from locally produced birch pollen. The research was undertaken close to the latitudinal birch tree line at the Kevo Subarctic Research Institute (69°45′N 27°01′E) in northern Finland. By comparing phenological and aerobiological observations, the proportion of birch pollen present in the air before local anthesis commences can be delimited. We coupled this with data of pollen deposition monitored by means of a modified Tauber trap. The dominant birch species at Kevo is the mountain birch Betula pubescens ssp. czerepanovii, whereas B. pubescens ssp. pubescens is very rare, hence we consider the proportion of the southerly B. pubescens‐type pollen deposited in the pollen trap to be non‐local in origin.

We did not observe any trend towards an earlier start of the phenologically observed mountain birch anthesis at Kevo as predicted from work elsewhere. Moreover, the fixed 2.5% threshold method for determining the birch pollen season proved not to be applicable since in many years this threshold was reached before the end of continuous snow cover. The results indicate that in some years non‐local birch pollen contributes considerably to the allergen load in Lapland with up to 57% of the total birch pollen sum being recorded before the day on which local anthesis commenced, and up to 70% of the annual birch pollen deposited being of the southerly birch type.  相似文献   

14.
The male flowering and leaf bud burst of birch take place almost simultaneously, suggesting that the observations of leaf bud burst could be used to determine the timing of birch pollen release. However, long‐distance transport of birch pollen before the onset of local flowering may complicate the utilization of phenological observations in pollen forecasting.

We compared the timing of leaf bud burst of silver birch with the timing of the stages of birch pollen season during an eight year period (1997–2004) at five sites in Finland. The stages of the birch pollen season were defined using four different thresholds: 1) the first date of the earliest three‐day period with airborne birch pollen counts exceeding 10 grains m?3 air; and the dates when the accumulated pollen sum reaches 2) 5%; 3) 50% and 4) 95% of the annual total. Atmospheric modelling was used to determine the source areas for the observed long‐distance transported pollen, and the exploitability of phenological observations in pollen forecasting was evaluated.

Pair‐wise comparisons of means indicate that the timing of leaf bud burst fell closest to the date when the accumulated pollen sum reached 5% of the annual total, and did not differ significantly from it at any site (p<0.05; Student‐Newman‐Keuls test). It was found that the timing of leaf bud burst of silver birch overlaps with the first half of the main birch pollen season. However, phenological observations alone do not suffice to determine the timing of the main birch pollen season because of long‐distance transport of birch pollen.  相似文献   

15.
To determine the best date for patients in the southern part of the Netherlands to begin treatment for pollinosis, an attempt was made to predict the start of the grass pollen season at Helmond as accurately as possible, as was previously done at Leiden. The start of the grass pollen season was defined as the date when at a given location the accumulated total (from 1 Jan.) of 24 h average grass pollen concentrations (No./m3) reaches 100 (the so-called Σ100-method). Using the phenological method over the years 1981 through 1985, with the birch (Σ125=x) as the indicator plant, the start of the grass pollen period (Σ100=z) could be predicted much more accurately than would have been possible solely on the basis of the mean starting dates in the preceding years. The predicted starting date (z) can be calculated with the equation z=0.44x+95.46 (x and z as day-of-year numbers), SD=3.6 days, r=0.83, n=5). The SD of the Σ100-method of grasses being 5.6 days, the effectivity of the prediction is 35.7%. The difference in results between Helmond and Leiden is discussed.  相似文献   

16.
The author has found that 42% of patients with pollinosis had positive skin reactions with mugwort (Artemisia vulgaris) pollen allergens. The majority of tested patients (139 out of 187) were also allergic to grass pollens. However, hypersensitivity to mugwort pollen allergens was isolated and did not accompany grass pollen allergy. The symptoms of pollinosis appeared in this group later than in patients sensitive to grass pollen allergens only (over 21 years of age in 71%). Bronchial asthma was diagnosed in 40% of these patients and allergic skin reactions in 25%. Sensitivity to mugwort pollen allergens was accompanied by the sensitivity to pollen allergens of Graminae family of plants in 80% of cases. The author suggests that sensitivity to mugwort pollen allergens is the second most frequent cause of the pollinosis and is diagnosed too rarely. Failures of desensitization in patients sensitive to pollen allergens of Graminae family of plants may often result from coexisting sensitivity to mugwort pollen allergens as this sensitivity produces not only season but perennial clinical symptoms in nearly 50% of patients. The author discusses also botanical relations and cross-reactions in allergy to mugwort and ragweed pollen allergens.  相似文献   

17.
Ragweed (genus Ambrosia) and mugwort (Artemisia vulgaris) pollen grains are known to be very potent aeroallergens, often noted to enter into cross reactions. The aim of the study was to analyse ragweed and mugwort pollen release in Szczecin (western Poland) during the period 2000–2003. Measurements were performed by the volumetric and gravimetric method. Pollen seasons were defined as the periods of 90% of the total catch. Of the 4 years studied, the lowest concentration of ragweed pollen was observed in 2000. In 2000, the annual ragweed pollen count was very high, threefold higher than in 2001. There was a high Ambrosia pollen count in 2003, with the highest daily value of 84 grains/m3. The mugwort pollen season started in the third 10-day period of July and lasted to the end of August in all of the years studied. Analysis of pollen deposition from different Szczecin city’s districts showed that the highest exposure to ragweed pollen allergens occurred in the Majowe district, which is related to the presence of numerous plants of Ambrosia in that district. The mugwort pollen deposition was more abundant in the Żelechowa district, which is an area with villas and gardens. Statistically significant correlations were found between the ragweed pollen count in the air and the maximum wind speed, air temperature and relative humidity and between the mugwort pollen count in the air and air temperature and relative humidity.  相似文献   

18.
Birch pollen is a very common cause of pollinosis in Hokkaido, northern Japan. Birch airborne pollen concentrations vary each year; hence, the development of a method for predicting annual airborne pollen concentration is very important in preventing widespread symptoms of pollinosis. In the current study, we investigated airborne pollen counts and male catkin numbers (male flower index) of birch in four cities of Hokkaido between 2002 and 2008. Airborne pollen surveys were conducted using Durham’s sampler, and male catkin numbers determined for three major birch species (Betula platyphylla var. japonica, B. emanii, and B. maximowicziana). We found an annual variation in male flower index for all the three birch species investigated. This variation worked in combination with the amount of precipitation during the pollen season to influence total birch pollen counts. In conclusion, the male catkin numbers of three major birch species reliably predict airborne pollen counts in Hokkaido, but only when the effect of precipitation during pollen season is considered.  相似文献   

19.
Airborne pollen and spore levels were monitored at seven sites in New Zealand using the Intermittent Cycling Rotorod sampler during the summer of 1988/1989. Grasses formed the major component of atmospheric pollen levels during spring and summer at every locality. Peak levels of grass and total pollen occurred during December or late November, with a slight latitudinal lag apparent at the more southern sites. Highest levels were recorded at the smaller rural centres of Gore and Kaikohe and the lowest at the larger urban centres of Auckland, Christchurch and Wellington. We make a first approximation of the likely risk to hayfever and allergic asthma patients at each of the seven centres. For example, significantly higher grass pollen levels were experienced at Kaikohe on 44% and 65% of days during November and December, compared with just 15% and 8% at Auckland. By recording the flowering seasons of the principal allergenic grass species at each locality, we determined the potentially allergenic grasses contributing to peak pollen levels, the most ubiquitous being tall fescue (Festuca arundinacea Schreb.), ryegrass (Lolium perenne L.,L. multiflorum Lam.), cocksfoot (Dactylis glomerata L.), Yorkshire fog (Holcus lanatus L.) and sweet vernal (Anthoxanthum odoratum L.). Corresponding author. Deceased.  相似文献   

20.
Pollen forecasts are a fundamental prerequisite to obtain prophylactic measures for allergic individuals. Mugwort belongs to the most relevant allergenic pollen types after grasses and birch. An approach to modeling of mugwort pollen concentrations has not been attempted previously in Germany. A process-oriented mathematical model for the relative local daily average mugwort airborne pollen concentration was developed on the basis of pollen and weather data measured during a 6-year period. The model depends on the daily minimum and maximum temperature, amount of precipitation and atmospheric pressure, which have to and can be supplied by measurement and prediction. The comparison of modeling results and pollen counting for an additional year confirms the fitness of the model. A computer program was written, which rests upon the model and supplies daily predictions of mugwort pollen flight during the period of the weather forecast. The latter should allow a pollen forecasting period of about 5 days, with an accuracy of about 32–63% explained variance, which in view of the low mugwort pollen counts (nine grains/m3 maximum in the validation year) represents a high relative measurement error. The mathematical model may serve to improve and rationalize of present pollen forecasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号