首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Platelet-derived growth factor (PDGF)-, epidermal growth factor (EGF)- and insulin-like growth factor I (IGF-I)-stimulated cell proliferation in 3T3 cells was accompanied by increased abundance of labile intracellular pool of zinc (LIPZ). However, the origin and regulation of this cell proliferation-associated increase in the abundance of LIPZ are unknown. Cellular zinc homeostasis involves zinc transporters and metallothionein. The objectives of this study were to determine whether cell proliferation-associated increase in the abundance of LIPZ was a result of an increased zinc uptake and to assess the involvement of zinc transporters and metallothionein in this cell proliferation-associated increase in the abundance of LIPZ in 3T3 fibroblasts. Zinc transporters assessed included both zinc importer (Zip1) and zinc exporters (ZnT1, ZnT2 and ZnT4). Growth factors increased the abundance of LIPZ while total cellular zinc concentration remained unaffected, demonstrating that LIPZ was responsive to the increased needs for zinc during growth factor-stimulated cell proliferation. Growth factors also increased net zinc retention as indicated by higher 65zinc radioactivity and elevated mRNA levels of Zip1, ZnT1 and ZnT4. Although zinc is essential to cell proliferation, excessive cellular zinc accumulation causes cytotoxicity. Collectively, these observations suggest that increase in the abundance of LIPZ during growth factor-stimulated cell proliferation was due to increased net retention of extracellular zinc, which was apparently achieved through a coordinated up-regulation of the expression of transporters involved in both zinc influx and efflux to ensure adequate supply of zinc to sustain cell proliferation, yet to prevent potential zinc cytotoxicity in 3T3 cells.  相似文献   

3.
4.
The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2′-deoxycytidine (AZA) increased intracellular (after 24 and 48 h) and total cellular zinc levels (after 48 h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48 h. MT mRNA was significantly enhanced after 24 h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells.  相似文献   

5.
Zinc is an essential micronutrient, so it is important to elucidate the molecular mechanisms of zinc homeostasis, including the functional properties of zinc transporters. Mammalian zinc transporters are classified in two major families: the SLC30 (ZnT) family and the SLC39 family. The prevailing view is that SLC30 family transporters function to reduce cytosolic zinc concentration, either through efflux across the plasma membrane or through sequestration in intracellular compartments, and that SLC39 family transporters function in the opposite direction to increase cytosolic zinc concentration. We demonstrated that human ZnT5 variant B (ZnT5B (hZTL1)), an isoform expressed at the plasma membrane, operates in both the uptake and the efflux directions when expressed in Xenopus laevis oocytes. We measured increased activity of the zinc-responsive metallothionein 2a (MT2a) promoter when ZnT5b was co-expressed with an MT2a promoter-reporter plasmid construct in human intestinal Caco-2 cells, indicating increased total intracellular zinc concentration. Increased cytoplasmic zinc concentration mediated by ZnT5B, in the absence of effects on intracellular zinc sequestration by the Golgi apparatus or endoplasmic reticulum, was also confirmed by a dramatically enhanced signal from the zinc fluorophore Rhodzin-3 throughout the cytoplasm of Caco-2 cells overexpressing ZnT5B at the plasma membrane when compared with control cells. Our findings demonstrate clearly that, in addition to mediating zinc efflux, ZnT5B at the plasma membrane can function to increase cytoplasmic zinc concentration, thus indicating a need to reevaluate the current paradigm that SLC30 family zinc transporters operate exclusively to decrease cytosolic zinc concentration.  相似文献   

6.
Zinc is abundant in most endocrine cell types, and plays a pivotal role in the synthesis and secretion of many hormones. Recent studies have demonstrated the expression of numerous zinc transporter (ZnT) family members in the pancreas, thyroid, and adrenal glands, suggesting a role for ZnTs in regulating cellular zinc homeostasis in endocrine cells. However, the cellular distribution of ZnTs in the endocrine organs has not been well established. In the present study, the mRNA expression level, cellular distribution of ZnTs as well as liable zinc ions were examined in the mouse pituitary, adrenal glands, thyroid, and pancreas. In general, ZnT1-10 mRNA was expressed to various degrees in the detected endocrine organs, with no detectable ZnT10 mRNA in the pancreas. In the anterior pituitary, both the acidophilic and basophilic cells were immunopositive to ZnT1-5, 7, 8, except for ZnT10. In the adrenal cortex, the immunoreactivity of all the tested ZnTs, including ZnT1-5, 7, 8, 10, was observed in the zona fasciculata, and some ZnTs were detected in the zona glomerulosa, zona reticularis, and the adrenal medulla. Both the follicle epithelial cells and parafollicular cells in the thyroid gland were immunostained with ZnT1-5, 7, 8, but not ZnT10. In the endocrine pancreas, the immunoreactivity of tested ZnTs was observed to various degrees except for ZnT10 in the cytoplasm of islet cells. Furthermore, autometallographic staining showed that liable zinc was observed in the endocrine cells, such as the adrenal cortical cells, thyroid follicle epithelial cells, and the pancreatic islet cells. All together, the wide distribution of liable zinc and the phenomenon that numerous ZnT family members are partially overlapped in a subset of endocrine cells suggest an important role for the ZnT family in controlling cellular zinc levels and subsequently regulating the synthesis and secretion of hormones in the endocrine system.  相似文献   

7.
Zinc plays important roles in numerous cellular activities and physiological functions. Intracellular zinc levels are strictly maintained by zinc homeostatic mechanisms. Zinc concentrations in the prostate are the highest of all soft tissues and could be important for prostate health. However, the mechanisms by which the prostate maintains high zinc levels are still unclear. In addition, the response of the prostate to alterations in dietary zinc is unknown. The current study explored cellular zinc levels and zinc transporter expression profiles in the lobes of the prostate during dietary marginal zinc depletion. Rats were given either zinc-adequate (ZA, 30 mg Zn/kg) or marginal zinc-deficient (MZD, 5 mg Zn/kg) diet for 9 weeks. In addition, a subgroup of the MZD rats was supplemented with phytase (1,500 unit/kg diet) to improve zinc bioavailability. We found that both zinc concentrations and ZnT2 expression in the prostate dorsolateral lobes were substantially higher than in the ventral lobes (P < 0.05). Marginal zinc depletion significantly decreased ZnT2 expression in the dorsolateral lobes (P < 0.05), and phytase supplementation had a trend to increase ZnT2 expression. In addition, of all measured zinc transporters, only ZnT2 mRNA abundance was significantly correlated to the zinc concentrations in the dorsolateral lobe. No correlations were found between zinc transporter expression and zinc concentrations in the ventral lobes. These results indicate that ZnT2 may play a significant role in the maintenance of zinc homeostasis in the prostate.  相似文献   

8.
9.
10.
11.
Abstract

Zinc homeostasis is maintained by 24 tissue-specific zinc transporters which include ZnTs (ZnT1-10), ZIPs (ZIP1-14), in addition to metallothionein (MT). Current study aimed the role of zinc transporters in maintaining the basal levels of zinc in functionally contrasting tissue specific THP-1 (monocyte), RD (muscle), and Saos-2 (bone) cells. Zinc transporters expression was assessed by qRT-PCR. The mRNA levels of ZnTs (ZnT5-7 & ZnT9), ZIPs (ZIP6-10, ZIP13-14), and MT were significantly (p?<?0.05) higher in Saos-2 compared to THP-1 and RD. The present study suggests that distinct expression pattern of zinc transporters and metallothionein might be responsible for the differential zinc assimilation.  相似文献   

12.
13.
14.
15.
16.
17.
Functional characterization of a novel mammalian zinc transporter, ZnT6   总被引:15,自引:0,他引:15  
We describe ZnT6, a new member of the CDF (cation diffusion facilitator) family of heavy metal transporters. The human ZNT6 gene was mapped at 2p21-22, while the mouse Znt6 was localized to chromosome 17. Overexpression of ZnT6 in both wild-type yeast and mutants that are deficient in cytoplasmic zinc causes growth inhibition, but this inhibition is abolished in mutant cells with high cytoplasmic zinc. ZnT6 may function in transporting the cytoplasmic zinc into the Golgi apparatus as well as the vesicular compartment, as evidenced by its overlapping intracellular localization with TGN38 and transferrin receptor in the normal rat kidney cells. We also demonstrate that the intracellular distributions of ZnT6 as well as ZnT4 are regulated by zinc in the normal rat kidney cells. The results from this report, combined with those from other studies, suggest that the intracellular zinc homeostasis is mediated by many ZnT proteins, which act in tissue-, cell-, and organelle-specific manners.  相似文献   

18.
19.
Intracellular zinc signaling is important in the control of a number of cellular processes. Hormonal factors that regulate cellular zinc influx and initiate zinc signals are poorly understood. The present study investigates the possibility for cross talk between the glucocorticoid and zinc signaling pathways in cultured rainbow trout gill epithelial cells. The rainbow trout metallothionein A (MTA) gene possesses a putative glucocorticoid response element and multiple metal response elements 1042 base pairs upstream of the start codon, whereas metallothionein B (MTB) and zinc transporter-1 (ZnT1) have multiple metal response elements but no glucocorticoid response elements in this region. Cortisol increased MTA, MTB, and ZnT1 gene expression, and this stimulation was enhanced if cells were treated with cortisol together with zinc. Cells treated with zinc showed increased zinc accumulation, transepithelial zinc influx (apical to basolateral), and intracellular labile zinc concentrations. These responses were also significantly enhanced in cells pretreated with cortisol and zinc. The cortisol-mediated effects were blocked by the glucocorticoid receptor (GR) antagonist RU-486, indicating mediation via a GR. In reporter gene assays, zinc stimulated MTA promoter activity, whereas cortisol did not. Furthermore, cortisol significantly reduced zinc-stimulated MTA promoter activity in cells expressing exogenous rainbow trout GR. These results demonstrate that cortisol enhances cellular zinc uptake, which in turn stimulates expression of MTA, MTB, and ZnT1 genes.  相似文献   

20.
The pathology of type 2 diabetes mellitus (DM) often is associated with underlying states of conditioned zinc deficiency and chronic inflammation. Zinc and omega-3 polyunsaturated fatty acids each exhibit anti-inflammatory effects and may be of therapeutic benefit in the disease. The present randomized, double-blind, placebo-controlled, 12-week trial was designed to investigate the effects of zinc (40 mg/day) and α-linolenic acid (ALA; 2 g/day flaxseed oil) supplementation on markers of inflammation [interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, C-reactive protein (CRP)] and zinc transporter and metallothionein gene expression in 48 postmenopausal women with type 2 DM. No significant effects of zinc or ALA supplementation were observed on inflammatory marker concentrations or fold change in zinc transporter and metallothionein gene expression. Significant increases in plasma zinc concentrations were observed over time in the groups supplemented with zinc alone or combined with ALA (P=.007 and P=.009, respectively). An impact of zinc treatment on zinc transporter gene expression was found; ZnT5 was positively correlated with Zip3 mRNA (P<.001) only in participants receiving zinc, while zinc supplementation abolished the relationship between ZnT5 and Zip10. IL-6 predicted the expression levels and CRP predicted the fold change of the ZnT5, ZnT7, Zip1, Zip7 and Zip10 mRNA cluster (P<.001 and P=.031, respectively). Fold change in the expression of metallothionein mRNA was predicted by TNF-α (P=.022). Associations among inflammatory cytokines and zinc transporter and metallothionein gene expression support an interrelationship between zinc homeostasis and inflammation in type 2 DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号