首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.

Aims

The aim of the present study was to identify the potential therapeutic effects of BH3-mimetic gossypol on melanoma cells with acquired resistance to BRAF inhibitors.

Main methods

The IC50 values of gossypol were determined using MTT assays in three melanoma cell lines with different resistances to BRAF inhibitor. The effects of gossypol on three melanoma cell lines were further examined by immunoblotting analysis, cell cycle analysis, flow cytometric apoptotic assay and autophagy assay. The functional role of autophagy in gossypol-induced growth inhibition was investigated using siRNA-mediated knockdown of Beclin-1.

Key findings

Gossypol retained its efficacy in BRAF-V600E melanoma clones with acquired resistance to BRAF inhibitors through a mechanism independent of MEK–ERK inhibition. Gossypol caused G2/M arrest in both BRAF mutant A375P and A375P/Mdr cells with high expression of p21Cip1, regardless of their drug resistance. Interestingly, we determined that the lack of gossypol-induced mitotic arrest in BRAF-WT-harboring SK-MEL-2 cells was associated with a low level of p21Cip1 expression. In addition, gossypol preferentially induced autophagy and apoptosis in the gossypol-sensitive cells and not in the gossypol-resistant SK-MEL-2 cells. In particular, alleviation of autophagy by knockdown of Beclin-1 partially caused a resistance to gossypol-induced cell cycle arrest at G2/M in BRAF-V600E cells with a concomitant decreased induction of apoptosis.

Significance

Taken together, these results suggest that gossypol may exhibit potential for the treatment of BRAF inhibitor-resistant tumors, but a functional p21Cip1 is a prerequisite for a positive response to its clinical application.  相似文献   

2.
Eum KH  Lee M 《Molecules and cells》2011,31(3):231-238
The effectiveness of an apoptosis-targeting therapy may be limited in tumor cells with defects in apoptosis. Recently, considerable attention in the field of cancer therapy has been focused on the mammalian rapamycin target (mTOR), inhibition of which results in autophagic cell death. In our study using multidrug-resistant v-Ha-rastransformed NIH3T3 (Ras-NIH 3T3/Mdr) cells, we demonstrated that rapamycin-induced cell death may result from 2 different mechanisms. At high rapamycin concentrations (≥ 100 nM), cell death may occur via an autophagy-dependent pathway, whereas at lower concentrations (≤ 10 nM), cell death may occur after G1-phase cell cycle arrest. This effect was accompanied by upregulation of p21Cip1 and p27Kip1 expression via an autophagy-independent pathway. We also tested whether inhibition of mTOR with low concentrations of rapamycin and ectopic Beclin-1 expression would further sensitize multidrug resistance (MDR)-positive cancer cells by upregulating autophagy. Rapamycin at low concentrations might be insufficient to initiate autophagosome formation in autophagy but Beclin-1 overexpression triggered additional processes downstream of mTOR during G1 cell cycle arrest by rapamycin. Our findings suggest that these combination strategies targeting autophagic cell death may yield significant benefits for cancer patients, because lowering rapamycin concentration for cancer treatment minimizes its side effects in patients undergoing chemotherapy.  相似文献   

3.
Regulation of Exit from Quiescence by p27 and Cyclin D1-CDK4   总被引:13,自引:9,他引:4       下载免费PDF全文
The synthesis of cyclin D1 and its assembly with cyclin-dependent kinase 4 (CDK4) to form an active complex is a rate-limiting step in progression through the G1 phase of the cell cycle. Using an activated allele of mitogen-activated protein kinase kinase 1 (MEK1), we show that this kinase plays a significant role in positively regulating the expression of cyclin D1. This was found both in quiescent serum-starved cells and in cells expressing dominant-negative Ras. Despite the observation that cyclin D1 is a target of MEK1, in cycling cells, activated MEK1, but not cyclin D1, is capable of overcoming a G1 arrest induced by Ras inactivation. Either wild-type or catalytically inactive CDK4 cooperates with cyclin D1 in reversing the G1 arrest induced by inhibition of Ras activity. In quiescent NIH 3T3 cells expressing either ectopic cyclin D1 or activated MEK1, cyclin D1 is able to efficiently associate with CDK4; however, the complex is inactive. A significant percentage of the cyclin D1-CDK4 complexes are associated with p27 in serum-starved activated MEK1 or cyclin D1 cell lines. Reduction of p27 levels by expression of antisense p27 allows for S-phase entry from quiescence in NIH 3T3 cells expressing ectopic cyclin D1, but not in parental cells.  相似文献   

4.
Symmetric aromatic diselenides are potential anticancer agents with strong cytotoxic activity. In this study, the in vitro anticancer activities of a novel series of diarylseleno derivatives from the diphenyldiselenide (DPDS) scaffold were evaluated. Most of the compounds exhibited high efficacy for inducing cytotoxicity against different human cancer cell lines. DPDS 2 , the compound with the lowest mean GI50 value, induced both caspase‐dependent apoptosis and arrest at the G0/G1 phase in acute lymphoblastic leucemia CCRF‐CEM cells. Consistent with this, PARP cleavage; enhanced caspase‐2, ‐3, ‐8 and ‐9 activity; reduced CDK4 expression and increased levels of p53 were detected in these cells upon DPDS 2 treatment. Mutated p53 expressed in CCRF‐CEM cells retains its transactivating activity. Therefore, increased levels of p21CIP1 and BAX proteins were also detected. On the other hand, DPDS 6 , the compound with the highest selectivity index for cancer cells, resulted in G2/M cell cycle arrest and caspase‐independent cell death in p53 deficient HTB‐54 lung cancer cells. Autophagy inhibitors 3‐methyladenine, wortmannin and chloroquine inhibited DPDS 6 ‐induced cell death. Consistent with autophagy, increased LC3‐II and decreased SQSTM1/p62 levels were detected in HTB‐54 cells in response to DPDS 6 . Induction of JNK phosphorylation and a reduction in phospho‐p38 MAPK were also detected. Moreover, the JNK inhibitor SP600125‐protected HTB‐54 cells from DPDS 6 ‐induced cell death indicating that JNK activation is involved in DPDS 6 ‐induced autophagy. These results highlight the anticancer effects of these derivatives and warrant future studies examining their clinical potential.  相似文献   

5.
B-Raf is the most frequently mutated protein kinase in the MAPK signaling cascade in human cancers, making it an important therapeutic target. Here, we describe the differential effects of two Raf-targeting drugs, sorafenib and PLX4720, on multidrug-resistant v-Ha-ras-transformed cells (Ras-NIH 3T3/Mdr). We demonstrate that the growth of the NIH 3T3/Mdr cell line was affected in a dose-dependent manner more significantly by the pan-Raf inhibitor sorafenib than by the selective mutant B-Raf inhibitor PLX4720. Despite their differential effects on LKB1/AMPK phosphorylation, both sorafenib and PLX4720 inhibited downstream mTOR signaling with concomitant induction of autophagy, implying that the differential effects of sorafenib and PLX4720 on multidrug-resistant cells might not be due to different levels of autophagy and apoptosis. Interestingly, sorafenib caused a dose-dependent increase in rhodamine 123 uptake and retention. More importantly, sorafenib reversed the resistance to paclitaxel in Ras-NIH 3T3/Mdr cells. Moreover, MEK/ERK signaling was hyperactivated by the selective mutant B-Raf inhibitor PLX4720 and inhibited by the pan-Raf inhibitor sorafenib. Our data suggest that sorafenib sensitivity in MDR cells is mediated through the inhibition of P-glycoprotein activity following strong inhibition of Raf/MEK/ERK signaling. Thus, Raf inhibition with sorafenib might be a promising approach to abrogate the multidrug resistance of cancer cells.  相似文献   

6.
《Autophagy》2013,9(8):1139-1156
To clarify the involvement of autophagy in neuronal differentiation, the effect of rapamycin, an mTOR complex inhibitor, on the dibutyryl cAMP (dbcAMP)-induced differentiation of NG108-15 cells was examined. Treatment of NG108-15 cells with 1 mM dbcAMP resulted in induction of differentiation, including neurite outgrowth and varicosity formation, enhanced voltage-sensitive Ca2+ channel activity and expression of microtubule-associated protein 2, and these effects involved phosphorylation of cAMP-response element binding protein (CREB) and extracellular signal regulated kinase (ERK). Simultaneous application of dbcAMP and rapamycin synergistically increased and accelerated differentiation. mTOR or raptor silencing with siRNA had a similar effect to rapamycin. Rapamycin and silencing of mTOR or raptor evoked autophagy, while blockade of autophagy by addition of 3-methyladenine or beclin 1 or Atg5 silencing prevented the potentiation of differentiation. Silencing of rictor also evokes autophagy, at a level 55% of that induced by raptor silencing and enhancement of differentiation is proportional. Rapamycin also caused increased ATP generation and cell cycle arrest in G0/G1 phase, but had no effect on CREB and ERK phosphorylation. dbcAMP also induced ATP generation, but not autophagy or cell cycle arrest. These results suggest that the increased autophagy, ATP generation and cell cycle arrest caused by mTOR inhibition promotes the dbcAMP-induced differentiation of NG108-15 cells.  相似文献   

7.
Development of resistance to TRAIL, an apoptosis-inducing cytokine, is one of the major problems in its development for cancer treatment. Thus, pharmacological agents that are safe and can sensitize the tumor cells to TRAIL are urgently needed. We investigated whether gossypol, a BH3 mimetic that is currently in the clinic, can potentiate TRAIL-induced apoptosis. Intracellular esterase activity, sub-G1 cell cycle arrest, and caspase-8, -9, and -3 activity assays revealed that gossypol potentiated TRAIL-induced apoptosis in human colon cancer cells. Gossypol also down-regulated cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, and cFLIP) and dramatically up-regulated TRAIL death receptor (DR)-5 expression but had no effect on DR4 and decoy receptors. Gossypol-induced receptor induction was not cell type-specific, as DR5 induction was observed in other cell types. Deletion of DR5 by siRNA significantly reduced the apoptosis induced by TRAIL and gossypol. Gossypol induction of the death receptor required the induction of CHOP, and thus, gene silencing of CHOP abolished gossypol-induced DR5 expression and associated potentiation of apoptosis. ERK1/2 (but not p38 MAPK or JNK) activation was also required for gossypol-induced TRAIL receptor induction; gene silencing of ERK abolished both DR5 induction and potentiation of apoptosis by TRAIL. We also found that reactive oxygen species produced by gossypol treatment was critical for TRAIL receptor induction and apoptosis potentiation. Overall, our results show that gossypol enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and the up-regulation of TRAIL death receptors through the ROS-ERK-CHOP-DR5 pathway.  相似文献   

8.
Macroautophagy/autophagy protects against cellular stress. Renal sublethal injury-triggered tubular epithelial cell cycle arrest at G2/M is associated with interstitial fibrosis. However, the role of autophagy in renal fibrosis is elusive. Here, we hypothesized that autophagy activity in tubular epithelial cells is pivotal for inhibition of cell cycle G2/M arrest and subsequent fibrogenic response. In both renal epithelial cells stimulated by angiotensin II (AGT II) and the murine kidney after unilateral ureteral obstruction (UUO), we observed that occurrence of autophagy preceded increased production of COL1 (collagen, type I). Pharmacological enhancement of autophagy by rapamycin suppressed COL1 accumulation and renal fibrosis. In contrast, genetic ablation of autophagy by proximal tubular epithelial cell-specific deletion of Atg5, with reduction of the LC3-II protein level and degradation of SQSTM1/p62, showed marked cell cycle arrest at the G2/M phase, robust COL1 deposition, and severe interstitial fibrosis in a UUO model, as compared with wild-type mice. In vitro, AGT II exposure triggered autophagy preferentially in the G1/S phase, and increased COL1 expression in the G2/M phase in renal epithelial cells. Stimulation of Atg5-deficient primary proximal tubular cells with AGT II also resulted in elevated G2/M arrest and COL1 production. Pharmacological or genetic inhibition of autophagy increased AGT II-mediated G2/M arrest. Enhanced expression of ATG5, but not the autophagy-deficient ATG5 mutant K130R, rescued the G2/M arrest, suggesting the regulation of cell cycle progression by ATG5 is autophagy dependent. In conclusion, Atg5-mediated autophagy in proximal epithelial cells is a critical host-defense mechanism that prevents renal fibrosis by blocking G2/M arrest.  相似文献   

9.
《Autophagy》2013,9(10):1702-1711
In response to starvation, cells undergo increased levels of autophagy and cell cycle arrest but the role of autophagy in starvation-induced cell cycle arrest is not fully understood. Here we show that autophagy genes regulate cell cycle arrest in the budding yeast Saccharomyces cerevisiae during nitrogen starvation. While exponentially growing wild-type yeasts preferentially arrest in G1/G0 in response to starvation, yeasts carrying null mutations in autophagy genes show a significantly higher percentage of cells in G2/M. In these autophagy-deficient yeast strains, starvation elicits physiological properties associated with quiescence, such as Snf1 activation, glycogen and trehalose accumulation as well as heat-shock resistance. However, while nutrient-starved wild-type yeasts finish the G2/M transition and arrest in G1/G0, autophagy-deficient yeasts arrest in telophase. Our results suggest that autophagy is crucial for mitotic exit during starvation and appropriate entry into a G1/G0 quiescent state.  相似文献   

10.
In response to starvation, cells undergo increased levels of autophagy and cell cycle arrest but the role of autophagy in starvation-induced cell cycle arrest is not fully understood. Here we show that autophagy genes regulate cell cycle arrest in the budding yeast Saccharomyces cerevisiae during nitrogen starvation. While exponentially growing wild-type yeasts preferentially arrest in G1/G0 in response to starvation, yeasts carrying null mutations in autophagy genes show a significantly higher percentage of cells in G2/M. In these autophagy-deficient yeast strains, starvation elicits physiological properties associated with quiescence, such as Snf1 activation, glycogen and trehalose accumulation as well as heat-shock resistance. However, while nutrient-starved wild-type yeasts finish the G2/M transition and arrest in G1/G0, autophagy-deficient yeasts arrest in telophase. Our results suggest that autophagy is crucial for mitotic exit during starvation and appropriate entry into a G1/G0 quiescent state.  相似文献   

11.
Phosphatidylinositol (PI) 3-kinase is required for G1 to S phase cell cycle progression stimulated by a variety of growth factors and is implicated in the activation of several downstream effectors, including p70S6K. However, the molecular mechanisms by which PI 3-kinase is engaged in activation of the cell cycle machinery are not well understood. Here we report that the expression of a dominant negative (DN) form of either the p110α catalytic or the p85 regulatory subunit of heterodimeric PI 3-kinase strongly inhibited epidermal growth factor (EGF)-induced upregulation of cyclin D1 protein in NIH 3T3(M17) fibroblasts. The PI 3-kinase inhibitors LY294002 and wortmannin completely abrogated increases in both mRNA and protein levels of cyclin D1 and phosphorylation of pRb, inducing G1 arrest in EGF-stimulated cells. By contrast, rapamycin, which potently suppressed p70S6K activity throughout the G1 phase, had little inhibitory effect, if any, on either of these events. PI 3-kinase, but not rapamycin-sensitive pathways, was also indispensable for upregulation of cyclin D1 mRNA and protein by other mitogens in NIH 3T3 (M17) cells and in wild-type NIH 3T3 cells as well. We also found that an enforced expression of wild-type p110 was sufficient to induce cyclin D1 protein expression in growth factor-deprived NIH 3T3(M17) cells. The p110 induction of cyclin D1 in quiescent cells was strongly inhibited by coexpression of either of the PI 3-kinase DN forms, and by LY294002, but was independent of the Ras-MEK-ERK pathway. Unlike mitogen stimulation, the p110 induction of cyclin D1 was sensitive to rapamycin. These results indicate that the catalytic activity of PI 3-kinase is necessary, and could also be sufficient, for upregulation of cyclin D1, with mTOR signaling being differentially required depending upon cellular conditions.  相似文献   

12.
Besides the well‐understood DNA damage response via establishment of G2 checkpoint arrest, novel studies focus on the recovery from arrest by checkpoint override to monitor cell cycle re‐entry. The aim of this study was to investigate the role of Chk1 in the recovery from G2 checkpoint arrest in HCT116 (human colorectal cancer) wt, p53–/– and p21–/– cell lines following H2O2 treatment. Firstly, DNA damage caused G2 checkpoint activation via Chk1. Secondly, overriding G2 checkpoint led to (i) mitotic slippage, cell cycle re‐entry in G1 and subsequent G1 arrest associated with senescence or (ii) premature mitotic entry in the absence of p53/p21WAF1 causing mitotic catastrophe. We revealed subtle differences in the initial Chk1‐involved G2 arrest with respect to p53/p21WAF1: absence of either protein led to late G2 arrest instead of the classic G2 arrest during checkpoint initiation, and this impacted the release back into the cell cycle. Thus, G2 arrest correlated with downstream senescence, but late G2 arrest led to mitotic catastrophe, although both cell cycle re‐entries were linked to upstream Chk1 signalling. Chk1 knockdown deciphered that Chk1 defines long‐term DNA damage responses causing cell cycle re‐entry. We propose that recovery from oxidative DNA damage‐induced G2 arrest requires Chk1. It works as cutting edge and navigates cells to senescence or mitotic catastrophe. The decision, however, seems to depend on p53/p21WAF1. The general relevance of Chk1 as an important determinant of recovery from G2 checkpoint arrest was verified in HT29 colorectal cancer cells.  相似文献   

13.
Recently, we reported that reduction of intracellular Cl? concentration ([Cl?]i) inhibited proliferation of MKN28 gastric cancer cells by diminishing the transition rate from G1 to S cell‐cycle phase through upregulation of p21, cyclin‐dependent kinase inhibitor, in a p53‐independent manner. However, it is still unknown how intracellular Cl? regulates p21 expression level. In this study, we demonstrate that mitogen‐activated protein kinases (MAPKs) are involved in the p21 upregulation and cell‐cycle arrest induced by reduction of [Cl?]i. Culture of MKN28 cells in a low Cl? medium significantly induced phosphorylation (activation) of MAPKs (ERK, p38, and JNK) and G1/S cell‐cycle arrest. To clarify the involvement of MAPKs in p21 upregulation and cell growth inhibition in the low Cl? medium, we studied effects of specific MAPKs inhibitors on p21 upregulation and G1/S cell‐cycle arrest in MKN28 cells. Treatment with an inhibitor of p38 or JNK significantly suppressed p21 upregulation caused by culture in a low Cl? medium and rescued MKN28 cells from the low Cl?‐induced G1 cell‐cycle arrest, whereas treatment with an ERK inhibitor had no significant effect on p21 expression or the growth of MKN28 cells in the low Cl? medium. These results strongly suggest that the intracellular Cl? affects the cell proliferation via activation of p38 and/or JNK cascades through upregulation of the cyclin‐dependent kinase inhibitor (p21) in a p53‐independent manner in MKN28 cells. J. Cell. Physiol. 223:764–770, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
The purpose of the present study was to clarify roles of cytosolic chloride ion (Cl) in regulation of lysosomal acidification [intra-lysosomal pH (pHlys)] and autophagy function in human gastric cancer cell line (MKN28). The MKN28 cells cultured under a low Cl condition elevated pHlys and reduced the intra-lysosomal Cl concentration ([Cl]lys) via reduction of cytosolic Cl concentration ([Cl]c), showing abnormal accumulation of LC3II and p62 participating in autophagy function (dysfunction of autophagy) accompanied by inhibition of cell proliferation via G0/G1 arrest without induction of apoptosis. We also studied effects of direct modification of H+ transport on lysosomal acidification and autophagy. Application of bafilomycin A1 (an inhibitor of V-type H+-ATPase) or ethyl isopropyl amiloride [EIPA; an inhibitor of Na+/H+ exchanger (NHE)] elevated pHlys and decreased [Cl]lys associated with inhibition of cell proliferation via induction of G0/G1 arrest similar to the culture under a low Cl condition. However, unlike low Cl condition, application of the compound, bafilomycin A1 or EIPA, induced apoptosis associated with increases in caspase 3 and 9 without large reduction in [Cl]c compared with low Cl condition. These observations suggest that the lowered [Cl]c primarily causes dysfunction of autophagy without apoptosis via dysfunction of lysosome induced by disturbance of intra-lysosomal acidification. This is the first study showing that cytosolic Cl is a key factor of lysosome acidification and autophagy.  相似文献   

15.
The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G2/M cell cycle arrest which was associated with the formation of LC3+ autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3+ autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells.  相似文献   

16.
1. The effect of gossypol in the presence of K+ or Mg2+, or both, was studied on ATPase activity and respiration of rat liver mitochondria.2. Respiration was uncoupled in the presence of gossypol, Mg2+, and K+, whereas in the presence of gossypol and Mg2+ a partial inhibition was observed.3. Gossypol stimulated ATPase activity in the presence of K+ or Mg2+, but maximal activity was observed when both cations were in the incubation medium.4. Stimulation of ATPase activity in the presence of Mg2+ was dose related.5. EDTA reverted the stimulation produced by gossypol on ATPase activity.6. Gossypol had no effect on the ATPase activity of submitochondrial particles, which suggests an indirect action of gossypol on the enzyme.7. Mitochondrial membrane potential showed a higher collapse in the presence of gossypol and 1mM MgCl2.8. The observed effects of gossypol could be explained by the collapse of the mitochondrial membrane potential.  相似文献   

17.
Gossypol, a natural Bcl-2 homology domain 3 mimetic compound isolated from cottonseeds, is currently being evaluated in clinical trials. Here, we provide evidence that gossypol induces autophagy followed by apoptotic cell death in both the MCF-7 human breast adenocarcinoma and HeLa cell lines. We first show that knockdown of the Bcl-2 homology domain 3-only protein Beclin 1 reduces gossypol-induced autophagy in MCF-7 cells, but not in HeLa cells. Gossypol inhibits the interaction between Beclin 1 and Bcl-2 (B-cell leukemia/lymphoma 2), antagonizes the inhibition of autophagy by Bcl-2, and hence stimulates autophagy. We then show that knockdown of Vps34 reduces gossypol-induced autophagy in both cell lines, and consistent with this, the phosphatidylinositol 3-phosphate-binding protein WIPI-1 is recruited to autophagosomal membranes. Further, Atg5 knockdown also reduces gossypol-mediated autophagy. We conclude that gossypol induces autophagy in both a canonical and a noncanonical manner. Notably, we found that gossypol-mediated apoptotic cell death was potentiated by treatment with the autophagy inhibitor wortmannin or with small interfering RNA against essential autophagy genes (Vps34, Beclin 1, and Atg5). Our findings support the notion that gossypol-induced autophagy is cytoprotective and not part of the cell death process induced by this compound.  相似文献   

18.
《Cell calcium》1997,22(2):75-82
In MCF-7 breast cancer cells, insulin-like growth factor-1 (IGF-1) increased the calcium-permeability of the cells by activating a voltage-independent calcium-permeable channel. IGF-1 also induced oscillatory elevation of cytoplasmic free calcium concentration in these cells. An anti-allergic compound, tranilast, reduced the calcium-permeability augmented by IGF-1 in a dose-dependent manner and blocked the oscillatory elevation of cytoplasmic free calcium concentration. Tranilast did not affect early intracellular signals activated by IGF-1, including receptor autophosphorylation, activations of Ras, mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Tranilast inhibited increases in [3H]-thymidine incorporation, DNA content and cell number induced by IGF-1. The ID50 for [3H]-thymidine incorporation and DNA content were about 10 μM. The inhibitory effect of tranilast was reversible, and cell viability was not affected. Treatment with tranilast increased the number of cells in the G1 phase suggesting that this compound induced G1 arrest. Tranilast also reduced the phosphorylation of the retinoblastoma protein. These results indicate that tranilast inhibits the IGF-1-induced cell growth in MCF-7 cells by blocking calcium entry.  相似文献   

19.
Autophagy can either promote or inhibit cell death in different cellular contexts. In this study, we investigated the role of autophagy in ATG5 knockout (KO) cell line established using CRISPR/Cas9 system. In ATG5 KO cells, RT‐PCR and immunoblot of LC3 confirmed the functional gene knockout. We found that knockout of ATG5 significantly increased proliferation of NIH 3T3 cells. In particular, autophagy deficiency enhanced susceptibility to cellular transformation as determined by an in vitro clonogenic survival assay and a soft agar colony formation assay. We also found that ATG5 KO cells had a greater migration ability as compared to wild‐type (WT) cells. Moreover, ATG5 KO cells were more resistant to treatment with a Src family tyrosine kinase inhibitor (PP2) than WT cells were. Cyto‐ID Green autophagy assay revealed that PP2 failed to induce autophagy in ATG5 KO cells. PP2 treatment decreased the percentage of cells in the S and G2/M phases among WT cells but had no effect on cell cycle distribution of ATG5 KO cells, which showed a high percentage of cells in the S and G2/M phases. Additionally, the proportion of apoptotic cells significantly decreased after treatment of ATG5 KO cells with PP2 in comparison with WT cells. We found that expression levels of p53 were much higher in ATG5 KO cells. The ATG5 KO seems to lead to compensatory upregulation of the p53 protein because of a decreased apoptosis rate. Taken together, our results suggest that autophagy deficiency can lead to malignant cell transformation and resistance to PP2.  相似文献   

20.
Abstract. Objectives: Previously, we have found that the ClC‐3 chloride channel is involved in endothelin‐1 (ET‐1)‐induced rat aortic smooth muscle cell proliferation. The present study was to investigate the role of ClC‐3 in cell cycle progression/distribution and the underlying mechanisms of proliferation. Materials and methods: Small interference RNA (siRNA) is used to silence ClC‐3 expression. Cell proliferation, cell cycle distribution and protein expression were measured or detected with cell counting, bromodeoxyuridine (BrdU) incorporation, Western blot and flow cytometric assays respectively. Results: ET‐1‐induced rat basilar vascular smooth muscle cell (BASMC) proliferation was parallel to a significant increase in endogenous expression of ClC‐3 protein. Silence of ClC‐3 by siRNA inhibited expression of ClC‐3 protein, prevented an increase in BrdU incorporation and cell number induced by ET‐1. Silence of ClC‐3 also caused cell cycle arrest in G0/G1 phase and prevented the cells’ progression from G1 to S phase. Knockdown of ClC‐3 potently inhibited cyclin D1 and cyclin E expression and increased cyclin‐dependent kinase inhibitors (CDKIs) p27KIP and p21CIP expression. Furthermore, ClC‐3 knockdown significantly attenuated phosphorylation of Akt and glycogen synthase kinase‐3β (GSK‐3β) induced by ET‐1. Conclusion: Silence of ClC‐3 protein effectively suppressed phosphorylation of the Akt/GSK‐3β signal pathway, resulting in down‐regulation of cyclin D1 and cyclin E, and up‐regulation of p27KIP and p21CIP. In these BASMCs, integrated effects lead to cell cycle G1/S arrest and inhibition of cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号