首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteosarcoma is the second leading cause of cancer‐related death for children and young adults. In this study, we have subcutaneously injected—with and without matrigel—athymic mice (Fox1nu/nu) with human osteosarcoma 3AB‐OS pluripotent cancer stem cells (CSCs), which we previously isolated from human osteosarcoma MG63 cells. Engrafted 3AB‐OS cells were highly tumorigenic and matrigel greatly accelerated both tumor engraftment and growth rate. 3AB‐OS CSC xenografts lacked crucial regulators of beta‐catenin levels (E‐cadherin, APC, and GSK‐3beta), and crucial factors to restrain proliferation, resulting therefore in a strong proliferation potential. During the first weeks of engraftment 3AB‐OS‐derived tumors expressed high levels of pAKT, beta1‐integrin and pFAK, nuclear beta‐catenin, c‐Myc, cyclin D2, along with high levels of hyperphosphorylated‐inactive pRb and anti‐apoptotic proteins such as Bcl‐2 and XIAP, and matrigel increased the expression of proliferative markers. Thereafter 3AB‐OS tumor xenografts obtained with matrigel co‐injection showed decreased proliferative potential and AKT levels, and undetectable hyperphosphorylated pRb, whereas beta1‐integrin and pFAK levels still increased. Engrafted tumor cells also showed multilineage commitment with matrigel particularly favoring the mesenchymal lineage. Concomitantly, many blood vessels and muscle fibers appeared in the tumor mass. Our findings suggest that matrigel might regulate 3AB‐OS cell behavior providing adequate cues for transducing proliferation and differentiation signals triggered by pAKT, beta1‐integrin, and pFAK and addressed by pRb protein. Our results provide for the first time a mouse model that recapitulates in vivo crucial features of human osteosarcoma CSCs that could be used to test and predict the efficacy in vivo of novel therapeutic treatments. J. Cell. Biochem. 113: 3380–3392, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
A novel cancer stem‐like cell line (3AB‐OS), expressing a number of pluripotent stem cell markers, was irreversibly selected from human osteosarcoma MG‐63 cells by long‐term treatment (100 days) with 3‐aminobenzamide (3AB). 3AB‐OS cells are a heterogeneous and stable cell population composed by three types of fibroblastoid cells, spindle‐shaped, polygonal‐shaped, and rounded‐shaped. With respect to MG‐63 cells, 3AB‐OS cells are extremely smaller, possess a much greater capacity to form spheres, a stronger self‐renewal ability and much higher levels of cell cycle markers which account for G1‐S/G2‐M phases progression. Differently from MG‐63 cells, 3AB‐OS cells can be reseeded unlimitedly without losing their proliferative potential. They show an ATP‐binding cassette transporter ABCG2‐dependent phenotype with high drug efflux capacity, and a strong positivity for CD133, marker for pluripotent stem cells, which are almost unmeasurable in MG‐63 cells. 3AB‐OS cells are much less committed to osteogenic and adipogenic differentiation than MG‐63 cells and highly express genes required for maintaining stem cell state (Oct3/4, hTERT, nucleostemin, Nanog) and for inhibiting apoptosis (HIF‐1α, FLIP‐L, Bcl‐2, XIAP, IAPs, and survivin). 3AB‐OS may be a novel tumor cell line useful for investigating the mechanisms by which stem cells enrichment may be induced in a tumor cell line. The identification of a subpopulation of cancer stem cells that drives tumorigenesis and chemoresistance in osteosarcoma may lead to prognosis and optimal therapy determination. Expression patterns of stem cell markers, especially CD133 and ABCG2, may indicate the undifferentiated state of osteosarcoma tumors, and may correlate with unfavorable prognosis in the clinical setting. J. Cell. Physiol. 219: 301–313, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Increasing evidence has suggested cancer stem cells (CSCs) are considered to be responsible for cancer formation, recurrence, and metastasis. Recently, many studies have also revealed that microRNAs (miRNAs) strongly implicate in regulating self renewal and tumorigenicity of CSCs in human cancers. However, with respect to colon cancer, the role of miRNAs in stemness maintenance and tumorigenicity of CSCs still remains to be unknown. In the present study, we isolated a population of colon CSCs expressing a CD133 surface phenotype from human HT29 colonic adenocarcinoma cell line by Flow Cytometry Cell Sorting. The CD133+ cells possess a greater tumor sphere-forming efficiency in vitro and higher tumorigenic potential in vivo. Furthermore, the CD133+ cells are endowed with stem/progenitor cells-like property including expression of “stemness” genes involved in Wnt2, BMI1, Oct3/4, Notch1, C-myc and other genes as well as self-renewal and differentiation capacity. Moreover, we investigated the miRNA expression profile of colon CSCs using miRNA array. Consequently, we identified a colon CSCs miRNA signature comprising 11 overexpressed and 8 underexpressed miRNAs, such as miR-429, miR-155, and miR-320d, some of which may be involved in regulation of stem cell differentiation. Our results suggest that miRNAs might play important roles in stemness maintenance of colon CSCs, and analysis of specific miRNA expression signatures may contribute to potential cancer therapy.  相似文献   

4.
5.
6.
MicroRNAs (miRNAs) can control cancer and cancer stem cells (CSCs), and this topic has drawn immense attention recently. Stem cells are a tiny population of a bulk of tumor cells that have enormous potential in expansion and metastasis of the tumor. miRNA have a crucial role in the management of the function of stem cells. This role is to either promote or suppress the tumor. In this review, we investigated the function and different characteristics of CSCs and function of the miRNAs that are related to them. We also demonstrated the role and efficacy of these miRNAs in breast cancer and breast cancer stem cells (BCSC). Eventually, we revealed the metastasis, tumor formation, and their role in the apoptosis process. Also, the therapeutic potential of miRNA as an effective method for the treatment of BCSC was described. Extensive research is required to investigate the employment or suppression of these miRNAs for therapeutics approached in different cancers in the future.  相似文献   

7.
8.
9.
10.
The role of endothelial cells (ECs) in aortic valve (AV) disease remains relatively unknown; however, disease preferentially occurs in the fibrosa. We hypothesized oscillatory shear (OS) present on the fibrosa stimulates ECs to modify mRNAs and microRNAs (miRNAs) inducing disease. Our goal was to identify mRNAs and miRNAs differentially regulated by OS and laminar shear (LS) in human AVECs (HAVECs) from the fibrosa (fHAVECs) and ventricularis (vHAVECs). HAVECs expressed EC markers as well as some smooth muscle cell markers and functionally aligned with the flow. HAVECs were exposed to OS and LS for 24 h, and total RNA was analyzed by mRNA and miRNA microarrays. We found over 700 and 300 mRNAs down- and upregulated, respectively, by OS; however, there was no side dependency. mRNA microarray results were validated for 26 of 28 tested genes. Ingenuity Pathway Analysis revealed thrombospondin 1 (Thbs1) and NF-κB inhibitor-α (Nfkbia) as highly connected, shear-sensitive genes. miRNA array analysis yielded 30 shear-sensitive miRNAs and 3 side-specific miRNAs. miRNA validation confirmed 4 of 17 shear-sensitive miRNAs and 1 of 3 side-dependent miRNAs. Using miRWalk and several filtering steps, we identified shear-sensitive mRNAs potentially targeted by shear-sensitive miRNAs. These genes and signaling pathways could act as therapeutic targets of AV disease.  相似文献   

11.
12.
XB130, a novel adaptor protein, promotes cell growth by controlling expression of many related genes. MicroRNAs (miRNAs), which are frequently mis-expressed in cancer cells, regulate expression of targeted genes. In this present study, we aimed to explore the oncogenic mechanism of XB130 through miRNAs regulation. We analyzed miRNA expression in XB130 short hairpin RNA (shRNA) stably transfected WRO thyroid cancer cells by a miRNA array assay, and 16 miRNAs were up-regulated and 22 miRNAs were down-regulated significantly in these cells, in comparison with non-transfected or negative control shRNA transfected cells. We chose three of the up-regulated miRNAs (miR-33a, miR-149 and miR-193a-3p) and validated them by real-time qRT-PCR. Ectopic overexpression of XB130 suppressed these 3 miRNAs in MRO cells, a cell line with very low expression of XB130. Furthermore, we transfected miR mimics of these 3 miRNAs into WRO cells. They negatively regulated expression of oncogenes (miR-33a: MYC, miR-149: FOSL1, miR-193a-3p: SLC7A5), by targeting their 3′ untranslated region, and reduced cell growth. Our results suggest that XB130 could promote growth of cancer cells by regulating expression of tumor suppressive miRNAs and their targeted genes.  相似文献   

13.
14.
There are emerging data to suggest that microRNAs (miRNAs) have significant roles in regulating the function of normal cells and cancer stem cells (CSCs). This review aims to analyse the roles of miRNAs in the regulation of colon CSCs through their interaction with various signalling pathways. Studies showed a large number of miRNAs that are reported to be deregulated in colon CSCs. However, few of the studies available were able to outline the function of miRNAs in colon CSCs and uncover their signalling pathways. From those miRNAs, which are better described, miR‐21 followed by miR‐34, miR‐200 and miR‐215 are the most reported miRNAs to have roles in colon CSC regulation. In particular, miRNAs have been reported to regulate the stemness features of colon CSCs mainly via Wnt/B‐catenin and Notch signalling pathways. Additionally, miRNAs have been reported to act on processes involving CSCs through cell cycle regulation genes and epithelial–mesenchymal transition. The relative paucity of data available on the significance of miRNAs in CSCs means that new studies will be of great importance to determine their roles and to identify the signalling pathways through which they operate. Such studies may in future guide further research to target these genes for more effective cancer treatment. miRNAs were shown to regulate the function of cancer stem cells in large bowel cancer by targeting a few key signalling pathways in cells.  相似文献   

15.
Cancer stem cell characterization represents a breakthrough in cancer research. Despite evidence showing the existence and the role of cancer stem cells in osteosarcoma (OS) onset and progression, little is known about their specific surface phenotype. To address this issue, we carried out a cytometric analysis with an antibody‐array comprising 245 membrane proteins comparing the stem and differentiated OS cells. As experimental model, we chose the stem‐like cell line 3aminobenzamide‐OS and its parental, differentiated, cell line MG63. We identified 50 differentially expressed, 23 homogeneously expressed, and 172 not expressed proteins in the two cell line models, thus defining a surface protein signature specific for each of them. Furthermore, we selected ERK1/2 (p44/42 mitogen‐activated protein kinases) as a potential pathway correlated with processes that characterize tumorigenic potential and stemness of 3aminobenzamide‐OS cells.  相似文献   

16.
17.
Nasopharyngeal carcinoma-associated gene 6 (NGX6) was shown to be a novel putative tumor suppressor gene in colon cancer. The purpose of this study is to investigate its role in regulation of miRNA expression for in the hopes of translating this data into a novel strategy in control of colon cancer. In this study colon cancer HT-29 cells were stably transfected with NGX6 or vector-only plasmid and then subjected to miRNA array analysis, and Q-RT-PCR was then used to verify miRNA array data. Then bioinformatic analyses using Sanger, Target Scan, and MicroRNA software were performed to obtain data on the target genes of each miRNA and define their function. Our results showed that 14 miRNAs were found to be differentially expressed in NGX6-transfected cells compared to the control cells. In particular, miR-126, miR-142-3p, miR-155, miR-552, and miR-630 were all upregulated, whereas miR-146a, miR-152, miR-205, miR-365, miR-449, miR-518c, miR-584, miR-615, and miR-622 were downregulated after NGX6 transfection. Q-RT-PCR confirmed all of these miRNAs, and invalidated miR-552 and miR-630. Furthermore, bioinformatic analyses of these 12 miRNAs, among these miRNAs, target genes of miR-615 are unclear, another 11 miRNAs produced a total of 254 potential target genes and further study showed that these genes together formed a regulatory network that contributes to apoptosis, mobility/migration, hydrolysis activity, and molecular signaling through targeting JNK and Notch pathways. Taken together, these results have suggested that NGX6 plays an important role in regulation of apoptosis, mobility/migration, and hydrolase as well as activity of JNK and Notch pathways through NGX6-mediated miRNA expression. Further investigation will reveal the function of these differentially expressed miRNAs and verify expression of the miRNA-targeted genes for development of novel strategies for better control of colon cancer.  相似文献   

18.
The role of microRNAs (miRNAs) in human cancer biology has been confirmed on a genome-wide scale through the high incidence of these genes in cancer-associated regions. We analyzed the association between canine miRNA genes and cancer-associated regions (deleted and amplified regions) using previously published array of comparative genomic hybridization data on 268 canine cancer samples—comprising osteosarcoma, breast cancer, leukemia, and colorectal cancer. We also assessed this relationship apropos the incidence of miRNA genes in the CpG islands of the canine genome assembly. The association was evaluated using the mixed-effects Poisson regression analysis. Our analyses revealed that 135 miRNA genes were exactly located in the aberrated regions: 77 (57 %) in the loss and 58 (43 %) in amplified regions. Our findings indicated that the miRNA genes were located more frequently in the deleted regions as well as in the CpG islands than in all other regions. Additionally, with the exception of leukemia, the amplified regions significantly contained higher numbers of miRNA genes than did all the other regions.  相似文献   

19.
MicroRNAs (miRNAs) play important roles in global gene regulation. Researchers in recombinant protein production have proposed miRNAs as biomarkers and cell engineering targets. However, miRNA expression remains understudied in Chinese Hamster Ovary cells, one of the most commonly used host cell systems for therapeutic protein production. To profile highly conserved miRNA expression, we used the miRCURY? miRNA array for screening miRNAs in CHO cells. The selection criteria for further miRNA profiling included positive hybridization signals and experimentally validated predicted regulatory targets. On the basis of screening, we selected 16 miRNAs for quantitative RT‐PCR profiling. We profiled miR expression in parental CHO DG44 and CHO K1 cell lines as well as four recombinant DG44‐derived CHO lines producing a recombinant human IgG. We observed that miR‐221 and miR‐222 were significantly downregulated in all IgG‐producing cell lines when compared with parental DG44, whereas miR‐125b was significantly downregulated in one IgG‐producing line. In another IgG‐producing line, miR‐19a was significantly upregulated. miRNA expression was also profiled in two of these lines that were amplified by stepwise increase of methotrexate. In both amplified cell lines, let‐7b and miR‐221 were significantly downregulated. In parental CHO K1, let‐7b, miR‐15b, and miR‐17 were significantly downregulated when compared with DG44. The results reported here are the first steps toward profiling highly conserved miRNAs and studying the clonal difference in miRNA expression in CHO cells and may shed light on using miRNAs in cell engineering. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号