首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tumor malignancy is associated with several features such as proliferation ability and frequency of metastasis. Osteopontin (OPN), which abundantly expressed in bone matrix, is involved in cell adhesion, migration, invasion and proliferation via interaction with its receptor, that is, αvβ3 integrin. However, the effect of OPN on migration activity in human chondrosarcoma cells is mostly unknown. Here we found that OPN increased the migration and expression of matrix metalloproteinase (MMP)‐9 in human chondrosarcoma cells (JJ012 cells). RGD peptide, αvβ3 monoclonal antibody and MAPK kinase (MEK) inhibitors (PD98059 and U0126) but not RAD peptide inhibited the OPN‐induced increase of the migration and MMP‐9 up‐regulation of chondrosarcoma cells. OPN stimulation increased the phosphorylation of focal adhesion kinase (FAK), MEK and extracellular signal‐regulated kinase (ERK). In addition, treatment of JJ012 cells with NF‐κB inhibitor (PDTC) or IκB protease inhibitor (TPCK) inhibited OPN‐induced cell migration and MMP‐9 up‐regulation. Stimulation of JJ012 cells with OPN also induced IκB kinase α/β (IKK α/β) phosphorylation, IκBα phosphorylation, p65 Ser536 phosphorylation, and κB‐luciferase activity. The OPN‐mediated increases in MMP‐9 and κB‐luciferase activities were inhibited by RGD peptide, PD98059 or FAK and ERK2 mutant. Taken together, our results indicated that OPN enhances the migration of chondrosarcoma cells by increasing MMP‐9 expression through the αvβ3 integrin, FAK, MEK, ERK and NF‐κB signal transduction pathway. J. Cell. Physiol. 221: 98–108, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

3.
Heparin/heparan sulfate interact with growth factors, chemokines, extracellular proteins, and receptors. Integrins are αβ heterodimers that serve as receptors for extracellular proteins, regulate cell behavior, and participate in extracellular matrix assembly. Heparin binds to RGD‐dependent integrins (αIIbβ3, α5β1, αvβ3, and αvβ5) and to RGD‐independent integrins (α4β1, αXβ2, and αMβ2), but their binding sites have not been located on integrins. We report the mapping of heparin binding sites on the ectodomain of αvβ3 integrin by molecular modeling. The surface of the ectodomain was scanned with small rigid probes mimicking the sulfated domains of heparan sulfate. Docking results were clustered into binding spots. The best results were selected for further docking simulations with heparin hexasaccharide. Six potential binding spots containing lysine and/or arginine residues were identified on the ectodomain of αvβ3 integrin. Heparin would mostly bind to the top of the genu domain, the Calf‐I domain of the α subunit, and the top of the β subunit of RGD‐dependent integrins. Three spots were close enough from each other on the integrin surface to form an extended binding site that could interact with heparin/heparan sulfate chains. Because heparin does not bind to the same integrin site as protein ligands, no steric hindrance prevents the formation of ternary complexes comprising the integrin, its protein ligand, and heparin/heparan sulfate. The basic amino acid residues predicted to interact with heparin are conserved in the sequences of RGD‐dependent but not of RGD‐independent integrins suggesting that heparin/heparan sulfate could bind to different sites on these two integrin subfamilies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
There is a critical need for compounds that target cell surface integrin receptors for applications in cancer therapy and diagnosis. We used directed evolution to engineer the Ecballium elaterium trypsin inhibitor (EETI‐II), a knottin peptide from the squash family of protease inhibitors, as a new class of integrin‐binding agents. We generated yeast‐displayed libraries of EETI‐II by substituting its 6‐amino acid trypsin binding loop with 11‐amino acid loops containing the Arg‐Gly‐Asp integrin binding motif and randomized flanking residues. These libraries were screened in a high‐throughput manner by fluorescence‐activated cell sorting to identify mutants that bound to αvβ3 integrin. Select peptides were synthesized and were shown to compete for natural ligand binding to integrin receptors expressed on the surface of U87MG glioblastoma cells with half‐maximal inhibitory concentration values of 10–30 nM. Receptor specificity assays demonstrated that engineered knottin peptides bind to both αvβ3 and αvβ5 integrins with high affinity. Interestingly, we also discovered a peptide that binds with high affinity to αvβ3, αvβ5, and α5β1 integrins. This finding has important clinical implications because all three of these receptors can be coexpressed on tumors. In addition, we showed that engineered knottin peptides inhibit tumor cell adhesion to the extracellular matrix protein vitronectin, and in some cases fibronectin, depending on their integrin binding specificity. Collectively, these data validate EETI‐II as a scaffold for protein engineering, and highlight the development of unique integrin‐binding peptides with potential for translational applications in cancer. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Cyclic strain has been shown to modulate endothelial cell (EC) morphology, proliferation, and function. We have recently reported that the focal adhesion proteins focal adhesion kinase (pp125FAK) and paxillin, are tyrosine phosphorylated in EC exposed to strain and these events regulate the morphological change and migration induced by cyclic strain. Integrins are also localized on focal adhesion sites and have been reported to induce tyrosine phosphorylation of pp125FAK under a variety of stimuli. To study the involvement of different integrins in signaling induced by cyclic strain, we first observed the redistribution of α and β integrins in EC subjected to 4 h cyclic strain. Human umbilical vein endothelial cells (HUVEC) seeded on either fibronectin or collagen surfaces were subjected to 10% average strain at a frequency 60 cycles/min. Confocal microscopy revealed that β1 integrin reorganized in a linear pattern parallel with the long axis of the elongated cells creating a fusion of focal adhesion plaques in EC plated on either fibronectin (a ligand for α5β1) or collagen (a ligand for α2β1) coated plates after 4 h exposure to cyclic strain. β3 integrin, which is a vitronectin receptor, did not redistribute in EC exposed to cyclic strain. Cyclic strain also led to a reorganization of α5 and α2 integrins in a linear pattern in HUVEC seeded on fibronectin or collagen, respectively. The expression of integrins α5, α2, and β1 did not change even after 24 h exposure to strain when assessed by immunoprecipitation of these integrins. Cyclic strain-induced tyrosine phosphorylation of pp125FAK occurred concomitant with the reorganization of β1 integrin. We concluded that α5β1 and α2β1 integrins play an important role in transducing mechanical stimuli into intracellular signals. J. Cell. Biochem. 64:505–513. © 1997 Wiley-Liss, Inc.  相似文献   

6.
We report the structure of an integrin with an αI domain, αXβ2, the complement receptor type 4. It was earlier expected that a fixed orientation between the αI domain and the β‐propeller domain in which it is inserted would be required for allosteric signal transmission. However, the αI domain is highly flexible, enabling two βI domain conformational states to couple to three αI domain states, and greater accessibility for ligand recognition. Although αXβ2 is bent similarly to integrins that lack αI domains, the terminal domains of the α‐ and β‐legs, calf‐2 and β‐tail, are oriented differently than in αI‐less integrins. Linkers extending to the transmembrane domains are unstructured. Previous mutations in the β2‐tail domain support the importance of extension, rather than a deadbolt, in integrin activation. The locations of further activating mutations and antibody epitopes show the critical role of extension, and conversion from the closed to the open headpiece conformation, in integrin activation. Differences among 10 molecules in crystal lattices provide unprecedented information on interdomain flexibility important for modelling integrin extension and activation.  相似文献   

7.
A functional proteomic technology using protein chip and molecular simulation was used to demonstrate a novel biomolecular interaction between P11, a peptide containing the Ser‐Asp‐Val (SDV) sequence and integrin αvβ3. P11 (HSDVHK) is a novel antagonistic peptide of integrin αvβ3 screened from hexapeptide library through protein chip system. An in silico docking study and competitive protein chip assay revealed that the SDV sequence of P11 is able to create a stable inhibitory complex onto the vitronectin‐binding site of integrin αvβ3. The Arg‐Gly‐Asp (RGD)‐binding site recognition by P11 was site specific because the P11 was inactive for the complex formation of a denatured form of integrin–vitronectin. P11 showed a strong antagonism against αvβ3‐GRGDSP interaction with an IC50 value of 25.72±3.34 nM, whereas the value of GRGDSP peptide was 1968.73±444.32 nM. The binding‐free energies calculated from the docking simulations for each P11 and RGD peptide were ?3.99 and ?3.10 kcal/mol, respectively. The free energy difference between P11 and RGD corresponds to approximately a 4.5‐fold lower Ki value for the P11 than the RGD peptide. The binding orientation of the docked P11 was similar to the crystal structure of the RGD in αvβ3. The analyzed docked poses suggest that a divalent metal–ion coordination was a common driving force for the formation of both SDV/αvβ3 and RGD/αvβ3 complexes. This is the first report on the specific recognition of the RGD‐binding site of αvβ3 by a non‐RGD containing peptide using a computer‐assisted proteomic approach.  相似文献   

8.
Osteopontin (OPN) is an integrin-binding secreted protein that contains an Arg-Gly-Asp (RGD) amino acid sequence and binds to various cell types via RGD-mediated interaction with the αvβ3 integrin. We have identified a cell line whose binding to OPN does not require RGD or αv interactions. We compared the ability of two murine cell lines, L929 fibroblastic cells and B16-BL6 melanoma cells, to interact with OPN (from human milk, and recombinant human and mouse OPN) as well as recombinant OPN prepared to include either the N-terminal or C-terminal halves but lacking the RGD sequence. Both cell lines adhered to GRGDS peptides coupled to BSA, and these interactions were inhibited by addition of GRGDS (but not GRGES) peptides or a monoclonal antibody specific to the αv integrin subunit. Adhesion of L929 cells to OPN was also dependent on the RGD sequence and the αv integrin subunit. However, the binding of B16-BL6 cells was not inhibited by either GRGDS peptides or the anti-αv antibody. B16-BL6 (but not L929) cells were also able to adhere to and spread on both N-terminal and C-terminal OPN proteins that lack the RGD sequence, and these interactions were not inhibited by either GRGDS peptides or anti-αv antibody. Together these results indicate that B16-BL6 cells can adhere to OPN by interactions that are independent of either the RGD sequence or the αv integrin subunit, and suggest that some cells can interact with additional, non-RGD binding sites in OPN. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Background. Integrins are transmembrane αβ heterodimer receptors that function as structural and functional bridges between the cytoskeleton and ECM (extracellular matrix) molecules. The RGD (arginine‐glycine‐aspartate tripeptide motif)‐dependent integrin α8β1 has been shown to be involved in various cell functions in neuronal and mesenchymal‐derived cell types. Its role in epithelial cells remains unknown. Results. Integrin α8β1 was found to be expressed in the crypt cell population of the human intestine but was absent from differentiating and mature epithelial cells of the villus. The function of α8β1 in epithelial crypt cells was investigated at the cellular level using normal HIECs (human intestinal epithelial cells). Specific knockdown of α8 subunit expression using an shRNA (small‐hairpin RNA) approach showed that α8β1 plays important roles in RGD‐dependent cell adhesion, migration and proliferation via a RhoA/ROCK (Rho‐associated kinase)‐dependent mechanism as demonstrated by active RhoA quantification and pharmacological inhibition of ROCK. Moreover, loss of α8β1, through RhoA/ROCK, impairs FA (focal adhesion) complex integrity as demonstrated by faulty vinculin recruitment. Conclusions. Integrin α8β1 is expressed in epithelial cells. In intestinal crypt cells, α8β1 is closely involved in the regulation of adhesion, migration and cell proliferation via a predominant RhoA/ROCK‐dependent mechanism. These results suggest an important role for this integrin in intestinal crypt cell homoeostasis.  相似文献   

10.
We previously reported infiltration of immune-inflammatory cells in coronary arteries from cardiac allografts, associated with increased endothelial and smooth muscle cell fibronectin synthesis regulated by interleukin (IL)-1b?. We now investigate, using a porcine endothelial-smooth muscle cell co-culture system, whether IL-1b?-stimulated fibronectin production is functionally important in lymphocyte transendothelial migration. Lymphocytes were harvested from porcine peripheral blood and, in the unactivated state or following activation with phorbol myristic acetate (PMA) and IL-2, were characterized by fluorescence-activated cell sorter (FACS) analysis and added to a confluent endothelial monolayer on the upper chamber of a transwell system. Endothelial cells, as well as smooth muscle cells (in the bottom of the chamber), were stimulated with IL-1b?. Then transendothelial lymphocyte migration was determined in the presence of CS1 and RGD (fibronectin) peptides, blocking α4b?1 and α5b?1 integrin receptors on lymphocyte surfaces, respectively. A 55-70% inhibition of lymphocyte migration was observed when compared to control peptides. The combination of CS1 and RGD peptides did not significantly enhance the inhibitory effect of either peptide alone. A similar decrease in lymphocyte transendothelial migration toward smooth muscle cells was documented using a monoclonal antibody to cellular fibronectin. Furthermore, using smooth muscle cell conditioned medium; we reproduced the enhanced transendothelial lymphocyte migration as well as the inhibition with blocking peptides or fibronectin antibodies. Our data suggest that cytokine-mediated fibronectin synthesis in vascular cells recruits inflammatory cells through interactions of specific peptides with cell surface α4b?1 α5b?1 integrins. © 1995 Wiley-Liss, Inc.  相似文献   

11.
The maturation of connective tissue involves the organization of collagen fibres by resident fibroblasts. Fibroblast attachment to collagen has been demonstrated to involve cell surface receptors, integrins of the β1 family. Integrins are associated with cytoplasmic actin of microfilaments either directly or through focal adhesions. The major actin isoform of fibroblast microfilaments is β actin and to a lesser extent α smooth muscle (α SM) actin. Cultured human dermal fibroblasts derived from adult dermis, newborn foreskin or keloid scar were grown on either uncoated or collagen-coated surfaces. The expression and synthesis of both α2β1 integrin and α SM actin were followed by immunohistology and immunoprecipitation. Fibroblasts on uncoated surfaces expressed little α2β1 integrin on their surface, while 20 per cent of them demonstrated α SM actin within microfilaments. Fibroblasts grown on a collagen-coated surface minimally expressed α SM actin in microfilament structures and a majority of the cells were positive for α2β1 integrin on their membranes. Using [35S]-methionine incorporation and immunoprecipitation, it was shown that fibroblasts grown in uncoated dishes synthesized more α SM actin than fibroblasts grown on collagen-coated dishes. In contrast, fibroblasts grown on collagen coated dishes synthesized more α2β1 integrin compared to the same cells grown on uncoated dishes. Fibroblasts maintained on a type I collagen upregulate the expression and synthesis of α2β1 integrin, and downregulate the expression and synthesis of α SM actin. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
Previous reports indicated that integrins associated signals are tightly related to tumor progression. Here, we observed elevated expression of integrin α2β1 in tumor tissues from microtubule‐directed chemotherapeutic drugs (MDCDs) resistant patients compared with the samples from chemosensitive patients. More importantly, we sorted the integrin α2β1+ tumor cells and found those cells revealed high MDCDs resistance, whereas MDCDs shows effective cytotoxicity to those integrin α2β1? tumor cells in vitro and in vivo. Mechanistically, we demonstrated that integrin α2β1 could induce MDCDs resistance through the activation of the PI3K/AKT pathway. Applying MPEG‐PLA to co‐encapsulate the integrin α2β1 inhibitor E7820 and MDCDs could effectively reverse MDCDs resistance, resulting in enhanced anticancer effects while avoiding potential systemic toxicity in vitro and in vivo. In conclusion, the expression of integrin α2β1 contributes to MDCDs resistance, while applying E7820 combination treatment by MPEG‐PLA nanoparticles could reverse the resistance.  相似文献   

13.
14.
Hepatic blood flow and sinusoidal endothelial fenestration decrease during aging. Consequently, fluid mechanical forces are reduced in the space of Disse where hepatic stellate cells (HSC) have their niche. We provide evidence that integrin α51 is an important mechanosensor in HSC involved in shear stress‐induced release of hepatocyte growth factor (HGF), an essential inductor of liver regeneration which is impaired during aging. The expression of the integrin subunits α5 and β1 decreases in liver and HSC from aged rats. CRISPR/Cas9‐mediated integrin α5 and β1 knockouts in isolated HSC lead to lowered HGF release and impaired cellular adhesion. Fluid mechanical forces increase integrin α5 and laminin gene expression whereas integrin β1 remains unaffected. In the aged liver, laminin β2 and γ1 protein chains as components of laminin‐521 are lowered. The integrin α5 knockout in HSC reduces laminin expression via mechanosensory mechanisms. Culture of HSC on nanostructured surfaces functionalized with laminin‐521 enhances Hgf expression in HSC, demonstrating that these ECM proteins are critically involved in HSC function. During aging, HSC acquire a senescence‐associated secretory phenotype and lower their growth factor expression essential for tissue repair. Our findings suggest that impaired mechanosensing via integrin α51 in HSC contributes to age‐related reduction of ECM and HGF release that could affect liver regeneration.  相似文献   

15.
Extracellular divalent cations are important regulators of integrin ligand binding activity. In this study we evaluated how divalent cations affect the organization of integrins into focal adhesion sites. Integrins αvβ3 and αvβ5 were compared because they share a high degree of structural homology and because both integrins mediate cell adhesion to vitronectin. On MG-63 osteosarcoma cells, we found that both the extent and pattern of integrin organization was regulated by the type of extracellular divalent ion. Integrin αvβ3 organized in focal contacts when Mn2+ or Mg2+ was present, but not in Ca2+. In contrast, αvβ5 organized in focal contacts only when Ca2+ or Mg2+ was present. Integrin αvβ5 clustered in a centrally located punctate field on the ventral surface of the cell in the presence of Mn2+. These observations reveal a previously unappreciated role for divalent ions in regulating the organization of integrins into focal adhesion sites. © 1996 Wiley-Liss, Inc.  相似文献   

16.
How to target cancer cells with high specificity and kill cancer cells with high efficiency remains an urgent demand for anticancer drugs. Temporin‐La, which belongs to the family of temporins, presents antitumor activity against many cancer cell lines. We first used a whole bioinformatic analysis method as a platform to identify new anticancer antimicrobial peptides (AMPs). On the basis of these results, we designed a temporin‐La analog (temporin‐Las) and related constructs containing the Arg‐Gly‐Asp (RGD) tripeptide, the integrin αvβ3 homing domain (RGD‐La and RGD‐Las). We detected a link between the net charges and integrin αvβ3 expression of cancer cell lines and the antitumor activities of these peptides. Temporin‐La and its synthetic analogs inhibited cancer cell proliferation in a dose‐dependent manner. Evidence was provided that the affinity between RGD‐Las and tumor cell membranes was stronger than other tested peptides using a pull‐down assay. Morphological changes on the cell membrane induced by temporin‐La and RDG‐Las, respectively, were examined by scanning electron microscopy. Additionally, time‐dependent morphological changes were detected by confocal microscopy, where the binding process of RGD‐Las to the cell membrane could be monitored. The results indicate that the electrostatic interaction between these cationic peptides and the anionic cell membrane is a major determinant of selective cell killing. Thus, the RGD tripeptide is a valuable ligand motif for tumor targeting, which leads to an increased anticancer efficiency by RGD‐Las. These AMP‐derived peptides have clinical potential as specifically targeting agents for the treatment of αvβ3 positive tumors. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Posterior capsular opacification (PCO) is the major complication arising after cataract treatment. PCO occurs when the lens epithelial cells remaining following surgery (LCs) undergo a wound healing response producing a mixture of α‐smooth muscle actin (α‐SMA)‐expressing myofibroblasts and lens fibre cells, which impair vision. Prior investigations have proposed that integrins play a central role in PCO and we found that, in a mouse fibre cell removal model of cataract surgery, expression of αV integrin and its interacting β‐subunits β1, β5, β6, β8 are up‐regulated concomitant with α‐SMA in LCs following surgery. To test the hypothesis that αV integrins are functionally important in PCO pathogenesis, we created mice lacking the αV integrin subunit in all lens cells. Adult lenses lacking αV integrins are transparent and show no apparent morphological abnormalities when compared with control lenses. However, following surgical fibre cell removal, the LCs in control eyes increased cell proliferation, and up‐regulated the expression of α‐SMA, β1‐integrin, fibronectin, tenascin‐C and transforming growth factor beta (TGF‐β)–induced protein within 48 hrs, while LCs lacking αV integrins exhibited much less cell proliferation and little to no up‐regulation of any of the fibrotic markers tested. This effect appears to result from the known roles of αV integrins in latent TGF‐β activation as αV integrin null lenses do not exhibit detectable SMAD‐3 phosphorylation after surgery, while this occurs robustly in control lenses, consistent with the known roles for TGF‐β in fibrotic PCO. These data suggest that therapeutics antagonizing αV integrin function could be used to prevent fibrotic PCO following cataract surgery.  相似文献   

18.
Tumor malignancy is associated with several features such as proliferation ability and frequency of metastasis. Connective tissue growth factor (CTGF), a secreted protein that binds to integrins, modulates the invasive behavior of certain human cancer cells. However, the effect of CTGF on migration activity in human chondrosarcoma cells is mostly unknown. Here we found that CTGF increased the migration and expression of matrix metalloproteinase (MMP)‐13 in human chondrosarcoma cells (JJ012 cells). RGD peptide, αvβ3 monoclonal antibody (mAb) and MAPK kinase (MEK) inhibitors (PD98059 and U0126) but not RAD peptide inhibited the CTGF‐induced increase of the migration and MMP‐13 up‐regulation of chondrosarcoma cells. CTGF stimulation increased the phosphorylation of focal adhesion kinase (FAK) and extracellular signal‐regulated kinase (ERK). In addition, treatment of JJ012 cells with NF‐κB inhibitor (PDTC) or IκB protease inhibitor (TPCK) inhibited CTGF‐induced cell migration and MMP‐13 up‐regulation. Stimulation of JJ012 cells with CTGF also induced IκB kinase α/β (IKK α/β) phosphorylation, IκBα phosphorylation, p65 Ser536 phosphorylation, and κB‐luciferase activity. The CTGF‐mediated increases in κB‐luciferase activities were inhibited by RGD, PD98059, U0126 or FAK, and ERK2 mutant. Taken together, our results indicated that CTGF enhances the migration of chondrosarcoma cells by increasing MMP‐13 expression through the αvβ3 integrin, FAK, ERK, and NF‐κB signal transduction pathway. J. Cell. Biochem. 107: 345–356, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The small GTPase Rap1 and the cytoskeletal protein talin regulate binding of C3bi‐opsonised red blood cells (RBC) to integrin αMβ2 in phagocytic cells, although the mechanism has not been investigated. Using COS‐7 cells transfected with αMβ2, we show that Rap1 acts on the β2 and not the αM chain, and that residues 732–761 of the β2 subunit are essential for Rap1‐induced RBC binding. Activation of αMβ2 by Rap1 was dependent on W747 and F754 in the β2 tails, which are required for talin head binding, suggesting a link between Rap1 and talin in this process. Using talin1 knock‐out cells or siRNA‐mediated talin1 knockdown in the THP‐1 monocytic cell line, we show that Rap1 acts upstream of talin but surprisingly, RIAM knockdown had little effect on integrin‐mediated RBC binding or cell spreading. Interestingly, Rap1 and talin influence each other's localisation at phagocytic cups, and co‐immunoprecipitation experiments suggest that they interact together. These results show that Rap1‐mediated activation of αMβ2 in macrophages shares both common and distinct features from Rap1 activation of αIIbβ3 expressed in CHO cells. J. Cell. Biochem. 111: 999–1009, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
CYR61 is one of the six proteins of the CCN family of proteins known to play diverse roles in angiogenesis, cellular proliferation, survival, migration and wound healing. However, the specific function of CYR61 in cancer is unclear, and the literature remains controversial. We used quantitative real‐time PCR to establish the expression profile of CYR61 and integrin αVβ5 in three non–small cell lung cancer, five colorectal cancer, one breast cancer and one oesophageal squamous carcinoma cell lines. We showed that the levels of CYR61 were significantly increased in oesophageal squamous carcinoma cell line along with the enhanced levels of αVβ5 integrin. Further, we investigated whether tumour cell–secreted CYR61 can facilitate cell migration by interacting with the αVβ5 integrin. Using tumour cell lines with low, intermediate and high CYR61 expression and their isogenic variants as a cellular model, we determined that integrin αVβ5 expressed on these tumour cells is required for cell migration. Moreover, we showed that the modulation of expression levels of CYR61 in these cancer cells affected their capacity for migration. These results represent an advance to the understanding of the role of CYR61 and αvβ5 integrin as proteins that cooperate to mediate cancer cell migration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号