首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Evolutionary diversification within consumer species may generate selection on local ecological communities, affecting prey community structure. However, the extent to which this niche construction can propagate across food webs and shape trait variation in competing species is unknown. Here, we tested whether niche construction by different life-history variants of the planktivorous fish alewife (Alosa pseudoharengus) can drive phenotypic divergence and resource use in the competing species bluegill (Lepomis macrochirus). Using a combination of common garden experiments and a comparative field study, we found that bluegill from landlocked alewife lakes grew relatively better when fed small than large zooplankton, had gill rakers better adapted for feeding on small-bodied prey and selected smaller zooplankton compared with bluegill from lakes with anadromous or no alewife. Observed shifts in bluegill foraging traits in lakes with landlocked alewife parallel those in alewife, suggesting interspecific competition leading to parallel phenotypic changes rather than to divergence (which is commonly predicted). Our findings suggest that species may be locally adapted to prey communities structured by different life-history variants of a competing dominant species.  相似文献   

2.
Recent work suggests that juvenile alewives (Alosa pseudoharengus) share similar phenotypes among independently derived landlocked (freshwater resident) populations. Based on this observation, it is possible that the alewife life history forms represent a case of parallel adaptive divergence. To further evaluate this hypothesis, we describe patterns of body shape divergence between anadromous and landlocked alewife life history forms using geometric morphometrics. Our results suggest that body shape differs significantly between juveniles of the alewife forms: anadromous fish were more robust, with larger heads and deeper caudal peduncles, while landlocked fish from three independently isolated populations were more fusiform with thinner caudal peduncles and smaller heads. These differences matched population level dietary patterns, which suggest that anadromous fish consumed more littoral resources than landlocked fish. Finding consistent differences across populations of the same form supports the notion that landlocked alewives have diverged from their anadromous ancestors in a parallel manner, in response to pressures associated with being isolated in freshwater lakes. Comparing alewife phenotypes to expectations from the literature suggests that neither migration distance of the population, nor the relative availability of habitats in each lake, are likely drivers of the pattern we report. Instead, the pattern is consistent with the hypothesis that divergence between alewife forms results from the distinct effects of each form on its zooplankton prey.  相似文献   

3.
Jerome J. Weis  David M. Post 《Oikos》2013,122(9):1343-1349
Predation has important cascading impacts on primary producer biomass and community composition in many ecosystems. While most studies have focused on the consequences of interspecific or density differences in predators, it is recognized that phenotypic variation within species can have strong and cascading community and ecosystem consequences at lower trophic levels. In coastal New England lakes, both the presence and life history form of the zooplanktivorous fish alewife, Alosa pseudoharengus, have strong influence on the biomass, size structure and community composition of crustacean zooplankton communities. Here we test the hypothesis that alewife presence and life history will have cascading impacts on phytoplankton biomass and community composition in a mesocosm experiment that previously reported strong biomass and compositional differences of crustacean zooplankton communities among alewife treatments. We show that alewife life history led to small but statistically significant differences in phytoplankton community composition among treatments. This compositional difference was driven primarily by an increase in the density of two edible phytoplankton genera associated with lower zooplankton biomass in the anadromous alewife treatment. Our results show that intraspecific variation in a predator can have cascading effects on primary producer communities. However we did not observe significant differences in total algal biomass.  相似文献   

4.
Theory predicts that the evolution of phenotypic plasticity depends upon cues that indicate environmental change. Predators typically induce plastic responses in prey. However, variation among populations of predators alters the frequency of predation and, possibly, the evolution of plasticity. We compared responses to predator cues in Daphnia ambigua from lakes where alewife (Alosa pseudoharengus) either do (anadromous) or do not (landlocked) migrate between marine and freshwater. In 'anadromous' lakes, Daphnia are abundant each spring but eliminated by alewives in summer, whereas Daphnia are constantly under the threat of predation in 'landlocked' lakes. Daphnia from 'anadromous' lakes grew faster, matured earlier and larger, produced more offspring and invested more in sex than Daphnia from landlocked lakes. We observed several significant lake type-by-predator treatment interactions. These interactions, whereby the differences between lakes were greater in predator-conditioned water, agree with theory and argue that Daphnia plasticity has been influenced by variation in alewives.  相似文献   

5.
The spatial insurance hypothesis predicts that intermediate rates of dispersal between patches in a metacommunity allow species to track favourable conditions, preserving diversity and stabilizing biomass at local and regional scales. However, theory is unclear as to whether dispersal will provide spatial insurance when environmental conditions are changing directionally. In particular, increased temperatures as a result of climate change are expected to cause synchronous growth or decline across species and communities, and this has the potential to erode the stabilizing compensatory dynamics facilitated by dispersal. Here we report on an experimental test of how dispersal affects the diversity and stability of metacommunities under warming using replicate two‐patch pond zooplankton metacommunities. Initial differences in local community composition and abiotic conditions were established by seeding each patch in the metacommunities with plankton and sediment from one of two natural ponds that differed in water chemistry and species composition. We exposed metacommunities to a 2°C increase in average ambient temperature, crossed with three rates of dispersal (none, intermediate, high). In ambient conditions, intermediate dispersal rates preserved diversity and stabilized metacommunities by promoting spatially asynchronous fluctuations in biomass, especially between local populations of the dominant genus, Ceriodaphnia. However, warming synchronized their populations so that these effects of dispersal were lost. Furthermore, because the stabilizing effect of dispersal was primarily due to asynchronous fluctuations between populations of a single genus, metacommunity biomass was stabilized, but dispersal did not stabilize local community biomass. Our results show that dispersal can preserve diversity and provide stability to metacommunities, but also show that this benefit can be eroded when warming is directional and synchronous across patches of a metacommunity, as is expected with climate warming.  相似文献   

6.
Organisms experience competing selective pressures, which can obscure the mechanisms driving evolution. Daphnia ambigua is found in lakes where a predator, the alewife (Alosa pseudoharengus) either does (anadromous) or does not (landlocked) migrate between marine and freshwater. We previously reported an association between alewife variation and life history evolution in Daphnia. However, differences in alewife migration indirectly influence phytoplankton composition for Daphnia. In ‘anadromous lakes’, Daphnia are present in the spring and experience abundant high-quality green algae. Intense predation by young-of-the-year anadromous alewife quickly eliminates these Daphnia populations by early summer. Daphnia from ‘landlocked lakes’ and lakes without alewife (‘no alewife lakes’) are present during the spring and summer and are more likely to experience high concentrations of sub-optimal cyanobacteria during the summer. To explore links between predation, resources, and prey evolution, we reared third-generation laboratory-born Daphnia from all lake types on increasing cyanobacteria concentrations. We observed several significant ‘lake type × resource’ interactions whereby the differences among lake types depended upon cyanobacteria concentrations. Daphnia from anadromous lakes developed faster, were larger at maturation, produced more offspring, and had higher intrinsic rates of increase in the absence of cyanobacteria. Such trends disappeared or reversed as cyanobacteria concentration was increased because Daphnia from anadromous lakes were more strongly influenced by the presence of cyanobacteria. Our results argue that alewife migration and phytoplankton composition both play a role in Daphnia evolution.  相似文献   

7.
Ecological factors are known to cause evolutionary diversification. Recent work has shown that evolution in strongly interacting predator species has reciprocal impacts on ecosystems. These divergent impacts of predators may alter the selective landscape and cause the evolution of prey. Yet, this link between intraspecific variation and evolution is unexplored. We compared the life history of a species of zooplankton (Daphnia ambigua) from lakes in New England in which the dominant planktivorous predator, the alewife (Alosa pseudoharengus), differs in feeding traits and migratory behaviour. Anadromous alewife (seasonal migrants) exhibit larger gapes, gill-raker spacing and target larger prey than landlocked alewife (year-round freshwater resident). In 'anadromous' lakes, Daphnia are abundant in the spring but extirpated by alewife predation in summer. Daphnia are rare year-round in 'landlocked' lakes. We show that Daphnia from lakes with anadromous alewife grew faster, matured earlier but at the same size and produced more offspring than Daphnia from lakes with landlocked or no alewife across multiple temperature and resource treatments. Our results are inconsistent with a response to size-selective predation but are better explained as an adaptation to colder temperatures and shorter periods of development (countergradient variation) mediated by seasonal alewife predation.  相似文献   

8.
Lakes and their topological distribution across Earth's surface impose ecological and evolutionary constraints on aquatic metacommunities. In this study, we group similar lake ecosystems as metacommunity units influencing diatom community structure. We assembled a database of 195 lakes from the tropical Andes and adjacent lowlands (8°N–30°S and 58–79°W) with associated environmental predictors to examine diatom metacommunity patterns at two different levels: taxon and functional (deconstructed species matrix by ecological guilds). We also derived spatial variables that inherently assessed the relative role of dispersal. Using complementary multivariate statistical techniques (principal component analysis, cluster analysis, nonmetric multidimensional scaling, Procrustes, variance partitioning), we examined diatom–environment relationships among different lake habitats (sediment surface, periphyton, and plankton) and partitioned community variation to evaluate the influence of niche‐ and dispersal‐based assembly processes in diatom metacommunity structure across lake clusters. The results showed a significant association between geographic clusters of lakes based on gradients of climate and landscape configuration and diatom assemblages. Six lake clusters distributed along a latitudinal gradient were identified as functional metacommunity units for diatom communities. Variance partitioning revealed that dispersal mechanisms were a major contributor to diatom metacommunity structure, but in a highly context‐dependent fashion across lake clusters. In the Andean Altiplano and adjacent lowlands of Bolivia, diatom metacommunities are niche assembled but constrained by either dispersal limitation or mass effects, resulting from area, environmental heterogeneity, and ecological guild relationships. Topographic heterogeneity played an important role in structuring planktic diatom metacommunities. We emphasize the value of a guild‐based metacommunity model linked to dispersal for elucidating mechanisms underlying latitudinal gradients in distribution. Our findings reveal the importance of shifts in ecological drivers across climatic and physiographically distinct lake clusters, providing a basis for comparison of broad‐scale community gradients in lake‐rich regions elsewhere. This may help guide future research to explore evolutionary constraints on the rich Neotropical benthic diatom species pool.  相似文献   

9.
Internal dispersal, which occurs among local communities within a metacommunity, and external dispersal, which supplies immigrants from outside the metacommunity, can both have a major impact on species diversity. However, few studies have considered the two simultaneously. Here I report preliminary computer-simulation results to suggest that internal and external dispersal can interact to influence species richness. Specifically, the results show that internal dispersal did not affect species richness under frequent external dispersal, whereas it enhanced richness in local communities while decreasing richness in metacommunities under infrequent external dispersal. Conversely, external dispersal influenced species richness in local communities more greatly in the absence of internal dispersal than in its presence, while external dispersal did not affect richness in metacommunities regardless of internal dispersal. Furthermore, internal and external dispersal interactively determined the importance of community assembly history in generating and maintaining variation in local community structure. Overall, these results suggest that the two dispersal types can reciprocally provide the context in which each affects species diversity and therefore that their effects cannot be understood in isolation of the other.Electronic Supplementary Material Supplementary material is available for this article at Tadashi Fukami is the recipient of the ninth Denzaburo Miyadi Award.  相似文献   

10.
1. Dispersal intensity is a key process for the persistence of prey-predator metacommunities. Consequently, knowledge of the ecological mechanisms of dispersal is fundamental to understanding the dynamics of these communities. Dispersal is often considered to occur at a constant per capita rate; however, some experiments demonstrated that dispersal may be a function of local species density. 2. Here we use aquatic experimental microcosms under controlled conditions to explore intra- and interspecific density-dependent dispersal in two protists, a prey Tetrahymena pyriformis and its predator Dileptus sp. 3. We observed intraspecific density-dependent dispersal for the prey and interspecific density-dependent dispersal for both the prey and the predator. Decreased prey density lead to an increase in predator dispersal, while prey dispersal increased with predator density. 4. Additional experiments suggest that the prey is able to detect its predator through chemical cues and to modify its dispersal behaviour accordingly. 5. Density-dependent dispersal suggests that regional processes depend on local community dynamics. We discuss the potential consequences of density-dependent dispersal on metacommunity dynamics and stability.  相似文献   

11.
In the growing field of eco-evolutionary dynamics, evidence for an influence of rapid shifts in phenotype on ecological processes is accumulating, yet, the contributions of phenotypic plasticity versus genetic change to these observed ecological changes are unclear. In one of the best studied ecosystems in terms of eco-evolutionary dynamics, landlocked versus anadromous alewife (Alosa pseudoharengus) have caused strong evolutionary divergence in their key zooplankton prey (Daphnia ambigua). We previously showed that such evolutionary differences have cascading ecological effects on consumer-resource dynamics and primary production. Yet, these locally adapted populations of Daphnia also differ in trait plasticity, which may, in turn, modify the pathway from evolution to ecology. Here we compared Daphnia from lakes with landlocked versus anadromous alewife for differences in rates of population growth in the presence and absence of predator cues over the course of a 39-day experiment. We predicted that predator-induced shifts in life history traits would facilitate faster rates of population growth. Contrary to our expectations, predator cue exposure did not alter rates of population growth. We instead found that Daphnia from lakes with landlocked alewife ultimately attained higher population densities (and exhibited faster population growth) when compared with Daphnia from lakes with anadromous alewife. Based on our previous work, these population level responses were unexpected, as Daphnia from lakes with landlocked alewife exhibit slower rates of somatic growth and delayed maturation. We discuss our results in lieu of the known differences in plasticity and how the population growth patterns may be influenced by resource limitation.  相似文献   

12.
Dispersal rates play a critical role in metacommunity dynamics, yet few studies have attempted to characterize dispersal rates for the majority of species in any natural community. Here we evaluate the relationship between the abundances of 179 plankton taxa in a pond metacommunity and their dispersal rates. We find the expected positive relationship between the regional abundances of phytoplankton, protozoa and metazoan zooplankton, which is suggestive of dispersal being a density‐independent per capita rate for these groups. When we tested to see if the rates of dispersing taxa predicted changes in community composition, we found that dispersers had no measurable impact on the short‐term trajectory of local pond communities or mesocosm communities established experimentally (assembled communities), but became increasingly represented in the overall pond metacommunity during the course of the full growing season. In comparison, the composition of experimental mesocosms that lacked any initial zooplankton community (unassembled communities) were found to be driven by dispersal measured at the local pond community but not by dispersal observed across the overall metacommunity. These results suggest that the role of dispersal may shift from a contributor to local, ecological dynamics to that of metacommunity‐wide, colonization–extinction dynamics as communities assemble.  相似文献   

13.
Zhichao Pu  Lin Jiang 《Oikos》2015,124(10):1327-1336
Ample evidence suggests that ecological communities can exhibit historical contingencies. However, few studies have explored whether differences in assembly history can generate alternative local community states in metacommunities in which local communities are linked by dispersal. In a protist microcosm experiment, we examined the influence of species colonization history on metacommunity assembly under homogeneous environmental conditions, by manipulating both the sequence of species colonization into local communities and the rate of dispersal among local communities. Whereas the role of dispersal in structuring local communities decreased over time and became non‐significant towards the end of the experiment, species colonization history significantly influenced local communities throughout the experiment. Local communities, regardless of the rate of dispersal among them, exhibited two alternative states characterized by the dominance of different species. The alternative community states, however, emerged in the absence of priority effects that were often associated with alternative community states found in other assembly studies. Rather, they were driven by variation in species interaction strength among local communities with different assembly histories. These results suggest that dispersal among local communities may not necessarily reduce the role of species colonization history in shaping metacommunity assembly, and that differences in species colonization history need to be explicitly considered as an important factor in causing heterogeneous community states in metacommunities.  相似文献   

14.
1. We used a zooplankton metacommunity to ask how dispersal, genetic drift and selection act to determine the local and regional distributions of trait variation. Since the formation of the lakes 80 years ago, cladoceran species have sorted into local assemblages that cluster by lake depth. Given this species sorting, we ask whether intraspecific variation in an ecologically important phenotypic trait – body size – has sorted as well. 2. We quantified changes in body size through time by measuring ephippia from D. pulicaria, D. dentifera and D. ambigua recovered from sediment cores from two lakes. We then estimated mean body size of contemporary populations of two competing species, Daphnia pulicaria and D. dentifera, in a laboratory common garden experiment. Finally, we used microsatellite loci to characterise genetic diversity and gene flow among local sites in the metacommunity. 3. Body size was variable both within and among years for the three species of Daphnia examined using sediment cores. For two lakes where we examined body size distributions through time, we observed a significant shift in body size of the first species to arrive after colonisation by other Daphnia species, which suggests selection has occurred historically. 4. Despite heritable variation in body size in the laboratory, evidence for trait sorting was only found for D. pulicaria, which was larger in deeper lakes. Mean body size varied among lakes, but did not sort relative to depth for D. dentifera. 5. Microsatellite data indicated that neutral genetic diversity was low in the region; only 27% of the individuals assayed were unique multi‐locus genotypes. We also found significant patterns of isolation by distance for both species. However, population structure was stronger in D. dentifera than in D. pulicaria. Hence, we conclude that a limited number of colonists have successfully invaded this metacommunity, and those genotypes arriving in this new region have experienced significant dispersal limitation among local sites. 6. Overall, while dispersal and selection have clearly led to the development of predictable community assemblages related to depth in this metacommunity, the distribution of phenotypic traits within species can differ substantially even between two trophically similar species. Our results highlight the complex roles of colonisation history, dispersal, selection and stochasticity in determining inter‐ and intra‐specific patterns in metacommunities.  相似文献   

15.
Consumers with different seasonal life histories encounter different communities of producers during specific seasonal phases. If consumers evolve to prefer the producers that they encounter, then consumers may reciprocally influence the temporal composition of producer communities. Here, we study the keystone consumer Daphnia ambigua, whose seasonal life history has diverged due to intraspecific predator divergence across lakes of New England. We ask whether grazing preferences of Daphnia have diverged also and test whether any grazing differences influence temporal composition patterns of producers. We reared clonal populations of Daphnia from natural populations representing the two diverged life history types for multiple generations. We conducted short‐term (24 hr) and long‐term (27 days) grazing experiments in equal polycultures consisting of three diatom and two green algae species, treated with no consumer, Daphnia from lakes with anadromous alewife, or from lakes with landlocked alewife. After 24 hr, life history and grazing preference divergence in Daphnia ambigua drove significant differences in producer composition. However, those differences disappeared at the end of the 27‐day experiment. Our results illustrate that, despite potentially more complex long‐term dynamics, a multitrophic cascade of evolutionary divergence from a predator can influence temporal community dynamics at the producer level.  相似文献   

16.
Limberger R  Wickham SA 《PloS one》2011,6(12):e29071
Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator. Presence and absence of predator dispersal was cross-classified with low and high connectivity. The effect of connectivity on local and regional richness strongly depended on whether corridors were open for the predator. Local richness was initially positively affected by connectivity through rescue of species from stochastic extinctions. With predator dispersal, however, this positive effect soon turned negative as the predator spread over the metacommunity. Regional richness was unaffected by connectivity when local communities were connected only for the prey, while predator dispersal resulted in a pronounced decrease of regional richness. The level of connectivity influenced the speed of richness decline, with regional species extinctions being delayed for one week in weakly connected metacommunities. While connectivity enabled rescue of prey species from stochastic extinctions, deterministic extinctions due to predation were not overcome through reimmigration from predator-free refuges. Prey reimmigrating into these sink habitats appeared to be directly converted into increased predator abundance. Connectivity thus had a positive effect on the predator, even when the predator was not dispersing itself. Our study illustrates that dispersal of a species with strong negative effects on other community members shapes the dispersal-diversity relationship. When connections enable the spread of a generalist predator, positive effects of connectivity on prey species richness are outweighed by regional extinctions through predation.  相似文献   

17.
Ecosystems are often arranged in naturally patchy landscapes with habitat patches linked by dispersal of species in a metacommunity. The size of a metacommunity, or number of patches, is predicted to influence community dynamics and therefore the structure and function of local communities. However, such predictions have yet to be experimentally tested using full food webs in natural metacommunities. We used the natural mesocosm system of aquatic macroinvertebrates in bromeliad phytotelmata to test the effect of the number of patches in a metacommunity on species richness, abundance, and community composition. We created metacommunities of varying size using fine mesh cages to enclose a gradient from a single bromeliad up to the full forest. We found that species richness, abundance, and biomass increased from enclosed metacommunities to the full forest size and that diversity and evenness also increased in larger enclosures. Community composition was affected by metacommunity size across the full gradient, with a more even detritivore community in larger metacommunities, and taxonomic groups such as mosquitoes going locally extinct in smaller metacommunities. We were able to divide the effects of metacommunity size into aquatic and terrestrial habitat components and found that the importance of each varied by species; those with simple life cycles were only affected by local aquatic habitat whereas insects with complex life cycles were also affected by the amount of terrestrial matrix. This differential survival of obligate and non‐obligate dispersers allowed us to partition the beta‐diversity between metacommunities among functional groups. Our study is one of the first tests of metacommunity size in a natural metacommunity landscape and shows that both diversity and community composition are significantly affected by metacommunity size. Synthesis Natural food webs are sensitive to meta‐community size, i.e. the number of patches connected through dispersal. We provide an empirical test using the aquatic foodweb associated within bromeliads as a model system. When we reduced the number of bromeliad patches connect through dispersal, we found a clear change of the foodweb in terms of population sizes, beta diversity, community composition and predator‐prey ratios. The response of individual taxa was predictable based on species traits including dispersal modes, life cycle, and adult resource requirements. Our study demonstrates that community structure is strongly influenced by the interplay of species traits and landscape properties.  相似文献   

18.
Most metacommunity studies have taken a direct mechanistic approach, aiming to model the effects of local and regional processes on local communities within a metacommunity. An alternative approach is to focus on emergent patterns at the metacommunity level through applying the elements of metacommunity structure (EMS; Oikos, 97, 2002, 237) analysis. The EMS approach has very rarely been applied in the context of a comparative analysis of metacommunity types of main microbial, plant, and animal groups. Furthermore, to our knowledge, no study has associated metacommunity types with their potential ecological correlates in the freshwater realm. We assembled data for 45 freshwater metacommunities, incorporating biologically highly disparate organismal groups (i.e., bacteria, algae, macrophytes, invertebrates, and fish). We first examined ecological correlates (e.g., matrix properties, beta diversity, and average characteristics of a metacommunity, including body size, trophic group, ecosystem type, life form, and dispersal mode) of the three elements of metacommunity structure (i.e., coherence, turnover, and boundary clumping). Second, based on those three elements, we determined which metacommunity types prevailed in freshwater systems and which ecological correlates best discriminated among the observed metacommunity types. We found that the three elements of metacommunity structure were not strongly related to the ecological correlates, except that turnover was positively related to beta diversity. We observed six metacommunity types. The most common were Clementsian and quasi‐nested metacommunity types, whereas Random, quasi‐Clementsian, Gleasonian, and quasi‐Gleasonian types were less common. These six metacommunity types were best discriminated by beta diversity and the first axis of metacommunity ecological traits, ranging from metacommunities of producer organisms occurring in streams to those of large predatory organisms occurring in lakes. Our results showed that focusing on the emergent properties of multiple metacommunities provides information additional to that obtained in studies examining variation in local community structure within a metacommunity.  相似文献   

19.
20.
Variation in eye size is ubiquitous across taxa. Increased eye size is correlated with improved vision and increased fitness via shifts in behavior. Tests of the drivers of eye size evolution have focused on macroevolutionary studies evaluating the importance of light availability. Predator‐induced mortality has recently been identified as a potential driver of eye size variation. Here, we tested the influence of increased predation by the fish predator, the alewife (Alosa pseudoharengus) on eye size evolution in waterfleas (Daphnia ambigua) from lakes in Connecticut. We quantified the relative eye size of Daphnia from lakes with and without alewife using wild‐caught and third‐generation laboratory reared specimens. This includes comparisons between lakes where alewife are present seasonally (anadromous) or permanently (landlocked). Wild‐caught specimens did not differ in eye size across all lakes. However, third‐generation lab reared Daphnia from lakes with alewife, irrespective of the form of alewife predation, exhibited significantly larger eyes than Daphnia from lakes without alewife. This genetically based increase in eye size may enhance the ability of Daphnia to detect predators. Alternatively, such shifts in eye size may be an indirect response to Daphnia aggregating at the bottom of lakes. To test these mechanisms, we collected Daphnia as a function of depth and found that eye size differed in Daphnia found at the surface versus the bottom of the water column between anadromous alewife and no alewife lakes. However, we found no evidence of Daphnia aggregating at the bottom of lakes. Such results indicate that the evolution of a larger eye may be explained by a connection between eyes and enhanced survival. We discuss the cause of the lack of concordance in eye size variation between our phenotypic and genetic specimens and the ultimate drivers of eye size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号