首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conservation of seagrasses meadows is important, because these habitats are ecologically important and under threat. Monitoring and modelling are essential tools for assessing seagrass condition and potential threats, however there are many seagrass indicators to choose from, and differentiating between natural variability and declining conditions poses a serious challenge. Tropical seagrass meadows in the Indo-Pacific, in contrast to most temperate meadows, are characterized by a multi-species composition and a year-round growth. Differences in characteristics between species growing within one meadow could induce uncertainty in the assessment of the dynamics of these meadows if variation in productivity and related biomass turnover timescales are not taken into consideration. We present data on biomass distribution, production and turnover timescales of above- and belowground tissues for three key tropical seagrass species (Thalassia hemprichii, Cymodocea rotundata and Halodule uninervis) in two mixed-species meadows in the Spermonde Archipelago, Indonesia. Seagrass leaf turnover time scales were comparable for the three studied seagrass species and varied between 25 and 30 days. Variation in leaf and rhizome turnover timescales were small (or insignificant) between the two meadows. In contrast, rhizome turnover time scales were around ten times longer than leaf turnover timescales, and large differences in rhizome turnover time scales (200–500 days) were observed between the species. The late-successional species T. hemprichii had much slower rhizome turnover compared to the two early successional species. Furthermore, since rhizome biomass has a much longer turnover time compared to leaf biomass, changes in rhizome biomass reflect effects on seagrass meadows on a much longer timescale compared to changes in leaf biomass for these tropical meadows. We conclude that belowground biomass dynamics are an important proxy to assess long-term effects of environmental stressors on seagrass ecosystems and should be included in tropical seagrass management programmes.  相似文献   

2.
The coexistence of multiple species within a trophic level can be regulated by consumer preferences and nutrient supply, but the influence of these factors on the co-occurrence of seagrass species is not well understood. We examined the biomass and density responses of two seagrass species in the Florida Keys Reef Tract to grazing pressure near patch reefs, and evaluated how nutrient enrichment impacted herbivory dynamics. We transplanted Halodule wrightii (shoalgrass) sprigs into caged and uncaged plots in a Thalassia testudinum (turtlegrass) bed near a patch reef. Nutrients (N and P) were added to half of the experimental plots. We recorded changes in seagrass shoot density, and after three months, we measured above- and belowground biomass and tissue nutrient content of both species. Herbivory immediately and strongly impacted H. wrightii. Within six days of transplantation, herbivory reduced the density of uncaged H. wrightii by over 80%, resulting in a decrease in above- and belowground biomass of nearly an order of magnitude. T. testudinum shoot density and belowground biomass were not affected by herbivory, but aboveground biomass and leaf surface area were higher within cages, suggesting that although herbivory influenced both seagrass species, T. testudinum was more resistant to herbivory pressure than H. wrightii. Nutrient addition did not alter herbivory rates or the biomass of either species over the short-term duration of this study. In both species, nutrient addition had little effect on the tissue nutrient content of seagrass leaves, and N:P was near the 30:1 threshold that suggested a balance between N and P. The different impacts of grazing on these two seagrass species suggest that herbivory may be an important regulator of the distribution of multiple seagrass species near herbivore refuges like patch reefs in the Caribbean.  相似文献   

3.
黑河中游荒漠草地地上和地下生物量的分配格局   总被引:2,自引:0,他引:2       下载免费PDF全文
草地生态系统中地上和地下生物量的分配方式对于研究生态系统碳储量和碳循环有着重要的意义。为了解黑河中游荒漠草地的地上和地下生物量分配格局, 从群落和个体两个水平对黑河中游的地上和地下生物量进行了调查。结果表明: 群落水平上地上生物量介于3.2-559.2 g·m-2之间, 地下生物量介于3.3-188.2 g·m-2之间, 个体水平上地上生物量介于6.1-489.0 g·株-1之间, 地下生物量介于2.4-244.2 g·株-1之间, 群落水平上的根冠比(R/S)为0.10-2.49, 个体水平上为0.07-1.55, 地下生物量均小于地上生物量, 群落水平上R/S值大于个体水平。群落和个体水平地上和地下生物量的拟合斜率分别为1.1001和0.9913, 与1没有显著差异, 说明地上与地下生物量呈等速生长关系。群落和个体水平土壤表层0-20 cm和0-30 cm的根系生物量分别占全部根系生物量的89.81%、96.95%和81.42%、93.62%, 表明地下生物量主要集中在0-20 cm和0-30 cm土壤表层。  相似文献   

4.
《植物生态学报》2017,41(1):115
Aims Shrub species have evolved specific strategies to regulate biomass allocation among various organs or between above- and belowground biomass and shrub biomass model is an important approach to estimate biomass allocation among different shrub species. This study was designed to establish the optimal estimation models for each organ (leaf, stem, and root), aboveground and total biomass of 14 common shrub species in Mountain Luya, Shanxi Province, China. Furthermore, we explored biomass allocation characteristics of these shrub species by using the index of leaf biomass fraction (leaf to total biomass), stem biomass fraction (stem to total biomass), root biomass fraction (root to total biomass), and root to shoot mass ratio (R/S) (belowground to aboveground biomass).
Methods We used plant height, basal diameter, canopy diameter and their combination as variables to establish the optimal biomass estimation models for each shrub species. In addition, we used the ratios of leaf, stem, root to total biomass, and belowground to aboveground biomass to explore the difference of biomass allocation patterns of 14 shrub species.
Important findings Most of biomass estimation models could be well expressed by the exponential and linear functions. Biomass for shorter shrub species with more stems could be better estimated by canopy area; biomass for taller shrub species with less stems could be better estimated by the sum of the square of total base diameter multiply stem height; and biomass for the rest shrub species could be better estimated by canopy volume. The averaged value for these shrub species was 0.61, 0.17, 0.48, and 0.35 for R/S, leaf biomass fraction, stem biomass fraction, and root biomass fraction, respectively. Except for leaf biomass fraction, R/S, stem biomass fraction, and root biomass fraction for shrubs with thorn was significantly greater than that for shrubs without thorn.  相似文献   

5.
Aims Both high and low densities of macrophyte vegetation can impair its ecosystem service function. Harvesting is often applied to macrophyte vegetation to maintain an appropriate density. Vegetation harvesting has occasionally gone awry and caused catastrophes, such as vegetation disappearance and cyanobacterial dominance in waterways and lakes. Because water depth influences macrophyte density at all life stages, the simultaneous influences of harvesting and water depth should be carefully examined. Thus, this study aims to quantify the effects of differently harvesting Elodea nuttallii on its growth and reproduction at different water depths in field experiments.Methods Four harvest intensities (harvesting E. nuttallii plant heights equal to 25%, 50%, 75% and 100% of the water depth) were applied to E. nuttallii growing at four different water depths (60, 90, 120 and 150cm). Plant length and root length were measured. The node number, root number of each plant and number of floating plants were counted before harvesting. The harvested plant were dried to a constant weight for dry weight determination.Important findings The rate of increase in the length and shoot number of E. nuttallii varied from ?0.012 to 0.440 day-1 and from ?0.020 to 0.639 day-1, respectively. Water depth>150cm would limit E. nuttallii growth. Elodea nuttallii responded to increasing water depths and low-intensity harvesting by increasing internodal length and decreasing shoot number. The larger internodal length of E. nuttallii observed in relatively deeper water was also induced by the physical strain generated by its buoyancy as its specific gravity was less than water's. The physical mechanism of removing the plant canopy by harvesting decreased E. nuttallii buoyancy and prevented floating. Harvesting increased plant production in shallow waters <90cm deep. Moreover, it is also necessary to perform three medium-intensity harvests at a water depth of 120cm and one low-intensity harvest or no harvesting at a water depth of 150cm to achieve longer lifetimes and less biomass near the water surface when the plants reach or approach the water surface.  相似文献   

6.
土壤水分条件对克隆植物互花米草表型可塑性的影响   总被引:5,自引:0,他引:5  
何军  赵聪蛟  清华  甘琳  安树青 《生态学报》2009,29(7):3518-3524
在互花米草草滩挖掘沙蚕是海岸带常见的行为,会造成土壤结构松散,蓄水能力下降,局部土壤水分含量低.能否利用这些条件,降低互花米草种群的入侵性,并进而对互花米草的控制提供对策是一个重要的生态学命题.为此,实验模拟3种不同土壤蓄水条件,并测定互花米草在该条件下的形态与存活指标、克隆特征参数及生物量积累与分配格局.结果表明:土壤水分条件对互花米草的叶长和根状茎生物量均没有显著影响(p> 0.05);而其株高、分枝强度、克隆存活数、克隆存活率及地上生物量在各土壤水分条件间差异显著(p< 0.05);在低水分条件下,互花米草的芽数、基茎粗、地上生物量比和叶生物量比均显著低于其他两组处理(p< 0.05),地下生物量比则显著高于其他两组处理(p< 0.05);在中等水分条件下,互花米草的根状茎长、根状茎节数、地下生物量和茎生物量比与其他两组处理差异不显著(p> 0.05),而在其他两组处理间差异显著(p< 0.05);在高水分条件下,总生物量、茎生物量和根生物量显著高于其他两组处理(p< 0.05),根状茎生物量比则显著低于其他两组处理(p< 0.05),而这些指标在其他两组处理间均差异不显著(p> 0.05).由此推断,土壤水分条件适中有利于互花米草的生长扩张以占领有利的资源环境,而土壤水分条件低则抑制互花米草的生长繁殖,影响其种群延续.  相似文献   

7.
The response of clonal growth and ramet morphology to water depth (from 60 to 260 cm) and sediment type (sand versus organic clay) was investigated for the stoloniferous submersed macrophyte Vallisneria natans in an outdoor pond experiment. Results showed that water depth significantly affected clonal growth of V. natans in terms of clone weight, number of ramets, number of generations, clonal radius and stolon length. V. natans showed an optimal clonal growth at water depths of 110–160 cm, but at greater depths clonal growth was severely retarded. A high allometric effect was exhibited in ramet morphology. Along the sequentially produced ramet generations, ramet weight and plant height decreased while stolon length and the root:leaf weight ratio increased. When using ramet generations as covariate, sediment type rather than water depth more strongly affected the ramet characteristics. For plants grown in clay, ramet weight, ramet height and stolon length were greater, and plants exhibited lower root:leaf weight ratio. These data suggest that water depth and sediment type have differential effects on clonal growth of V. natans: Water depth appears primarily to affect numerical increase in ramets and spatial spread, whereas sediment type mainly affects biomass accumulation and biomass allocation. Handling editor: S. M. Thomaz  相似文献   

8.
The density, biomass and shoot morphology of two populations of Zostera noltii were monitored from January 1998 to July 1999 at two shallow Mediterranean lagoons of Biguglia and Urbino, which differ in hydro-morphological conditions and nutrient loading. Monitoring included the principal biological and foliar parameters (shoot density, aboveground and belowground biomass, length, width and number of leaves, LAI and coefficient A: percentage of leaves having lost their apex), the organic matter contents of the sediment and the environmental conditions (salinity, turbidity, temperature, nutrient concentrations and dissolved oxygen levels). The two populations of Z. noltii displayed seasonal changes in density (1600–19600 m2), aboveground biomass (11–153 g. DW. m−2), leaf length (33–255 mm), and leaf width (0.9–1.8 mm). Temperature and turbidity were significant environmental factors influencing the temporal changes observed in the Z. noltii meadows studied. Conversely, the belowground biomass, the number of leaves per shoot and the LAI did not undergo any seasonal changes. In the Biguglia lagoon, the functioning dynamics of the Z. noltii seagrass beds are determined by the catchment area and the inputs of nutrients derived from it, whereas in the Urbino lagoon the dynamics of the Z. noltiibeds depend on low levels of water turbidity.  相似文献   

9.
The two species of Typha common in the southeastern United States, T. latifolia and T. domingensis differ substantially in their tolerance to deep water. The objective of this study was to examine the morphology and biomass allocation of these two species to determine if they have similar phenotypic responses to water depth. Replicate monocultures of the two species were established at a range of water depths in an artificial pond and allowed to grow for three growing seasons. At the end of the experiment, subsamples were harvested for determination of plant morphology as well as above- and belowground biomass. Both species of Typha showed increases in maximum height with increasing depth. The species less tolerant to deep water (T. latifolia) allocated more of its biomass to leaves with increasing water depth. In contrast, the deep water species (T. domingensis) showed increased total size of each ramet but a fixed percentage of biomass in leaves with increasing water depth. Both species had a decreasing incidence of flowering and decreasing shoot density with increasing water depth. In general, these species conform to expectations based on considerations of how their carbon budgets would be affected by water depth.  相似文献   

10.
Future increases in oceanic carbon dioxide concentrations (CO2(aq)) may provide a benefit to submerged plants by alleviating photosynthetic carbon limitation. However, other environmental factors (for example, nutrient availability) may alter how seagrasses respond to CO2(aq) by regulating the supply of additional resources required to support growth. Thus, questions remain in regard to how other factors influence CO2(aq) effects on submerged vegetation. This study factorially manipulated CO2(aq) and nutrient availability, in situ, within a subtropical seagrass bed for 350 days, and examined treatment effects on leaf productivity, shoot density, above- and belowground biomass, nutrient content, carbohydrate storage, and sediment organic carbon (Corg). Clear, open-top chambers were used to replicate CO2(aq) forecasts for the year 2100, whereas nutrient availability was manipulated via sediment amendments of nitrogen (N) and phosphorus (P) fertilizer. We provide modest evidence of a CO2 effect, which increased seagrass aboveground biomass. CO2(aq) enrichment had no effect on nutrient content, carbohydrate storage, or sediment Corg content. Nutrient addition increased leaf productivity and leaf N content, however did not alter above- or belowground biomass, shoot density, carbohydrate storage, or Corg content. Treatment interactions were not significant, and thus NP availability did not influence seagrass responses to elevated CO2(aq). This study demonstrates that long-term carbon enrichment may alter the structure of shallow seagrass meadows, even in relatively nutrient-poor, oligotrophic systems.  相似文献   

11.
Aims A plant has a limited amount of resources at any time and it allocates them to different structures. In spite of the large number of previous studies on allocation patterns within single species, knowledge of general patterns in species allocation is still very limited. This is because each study was done in different conditions using different methodology, making generalization difficult. We investigate intraspecific above- versus below-ground biomass allocation among individuals across a spectrum of dry-grassland plant species at two different developmental stages and ask whether allocation is age- and species specific, and whether differences among species can be explained by their life-history traits and phylogeny.Methods We collected data on above- and below-ground biomass of seedlings and adult plants of 20 species from a common garden experiment. We analysed data on shoot–root biomass allocation allometrically and studied the relationship between the allometric exponents (slopes on log–log scale), species life-history traits and phylogenetic distances.Important findings We found isometric as well as allometric patterns of biomass allocation in the studied species. Seedlings and adult individuals of more than half of the species differed in their above- versus below-ground biomass allometric exponents. Seedlings and adult individuals of the remaining species differed in their allometric coefficients (intercepts). Annual species generally allocated proportionally more to above- than below-ground biomass as seedlings than as adults, whereas perennial species showed the opposite pattern. Plant life-history traits, such as plant life span, age of first flowering, month in which the species begin flowering and specific leaf area were much more important in explaining differences in shoot–root allometry among species than were phylogenetic relationships. This suggests that allocation patterns vary greatly among closely related species but can be predicted based on species life-history traits.  相似文献   

12.
《Aquatic Botany》2005,83(3):175-186
A field experiment was conducted to examine interactions between the seagrass Halodule wrightii and the macroalga Caulerpa prolifera in the Indian River Lagoon, FL, USA, and further if the outcome of the interactions between the two species was influenced by water depth. The experiment involved the manipulation of neighbor presence in plots established at the shallowest (50 cm) and deepest (80 cm) depths at which the two species co-existed at adequate densities to perform removal experiments. Shoot and frond densities were measured at the beginning (April), middle (July) and end (October) of the 6-month growing season, and above- and below-ground biomass values were determined at the end of the experiment (October). In the middle of the growing season H. wrightii had higher shoot densities and greater biomass in plots where C. prolifera had been removed at both water depths. This same pattern in shoot density and biomass for H. wrightii also occurred at the end of the growing season at the 80 cm depth. C. prolifera occurred at higher densities and greater biomass in the 80 cm depth range, but was generally unaffected by the presence of H. wrightii at either depth.  相似文献   

13.
Allometric scaling models describing size-dependent biological relationships are important for understanding the adaptive responses of plants to environmental variation. In this study, allometric analysis was used to investigate the biomass allocation and morphology of three submerged macrophytes (Potamogeton maackianus, Potamogeton malaianus and Vallisneria natans) in response to water depth (1.0 and 2.5?m) in an in situ experiment. The three macrophytes exhibited different allometric strategies associated with distinct adjustments in morphology and biomass allocation in response to varying water depths. In deeper water, after accounting for the effects of plant size, P. maackianus and P. malaianus tended to enhance light harvesting by allocating more biomass to the stem, increasing shoot height and specific leaf area. V. natans tended to allocate more biomass to the leaf than to the basal stem (rosette), showing a higher leaf mass ratio and shoot height in deeper water. The three species decreased biomass allocation to roots as water depth increased. The main effect of water depth treatments was reduced light availability, which induced plastic shoot or leaf elongation. This shows that macrophytes have evolved responses to light limitation similar to those of terrestrial plants.  相似文献   

14.
To compare the general features of Thalassia testudinum seagrass at Mochima Bay with sea urchin (Lxtechinus variegatus) abundance and distribution, three T. testudinum seagrass beds were selected, from the mouth (strong wave exposure) to the inner bay (calm waters). Each site was surveyed by using 5 line transects (20 m long) parallel to the coast and 1 m2 quadrats. In situ measurements of T. testudinum cover, shoot and leaf density were taken. Estimation of dry biomass for each seagrass fraction (leaves, rhizomes and roots) and leaf length were obtained from 25 vegetation samples extracted per site using cores (15 cm diameter). A multivariate analysis of variance (Manova) and a less significative difference test (LSD) were performed to examine differences between sites and within sites at different depths. A stepwise multiple regression analysis was done, dependent variable was sea urchin density; independent variables: vegetation values at each site. The only seagrass species found in the three sites was T. testudinum, and cover was 56-100%, leaf density 100-1000 leaf/m2, lengths 6-18.8 cm and shoot density 20-475 shoots/m2. The highest sea urchin densities were found at Isla Redonda and Ensenada Toporo (1-3.6 ind/m2), the lowest at Playa Colorada (0.6-0.8 ind/m2). Significant differences in seagrass features between sites were obtained (Manova p < 0.001), but not between depths (Manova p < 0.320). The regression coefficient between sea urchin density and seagrass parameters was statistically significant (r2 = 0.154, p < 0.007), however, total biomass was the only variable with a significant effect on sea urchin distribution (beta = 0.308, p < 0.032). The other variables did not explain satisfactorily L. variegatus abundance and distribution.  相似文献   

15.
西南喀斯特地区两种草本对干湿交替和N添加的生长响应   总被引:3,自引:0,他引:3  
李周  高凯敏  刘锦春  梁千慧  陶建平 《生态学报》2016,36(11):3372-3380
喀斯特地区的"岩溶干旱"和频繁的变水环境成为喀斯特地区植被生长和分布的重要选择压力,是该地区植被恢复重建的主要障碍因子。N沉降也会对喀斯特地区的生态系统造成难以预测的影响。为了探究喀斯特地区草本植物对干湿交替和N添加的生长响应,以苍耳(Xanthium sibiricum)和三叶鬼针草(Bidens pilosa)为研究对象,通过盆栽水分受控实验,研究了5种不同水分处理[对照组(CK)、干旱组(D)、1周干湿交替处理组(DW-1)、2周干湿交替处理组(DW-2)和3周干湿交替处理组(DW-3)]与N添加(N+、N-)对两种草本植物生长和生物量的影响。结果表明,干旱胁迫抑制了植物生长和生物量的积累,株高、叶面积、总根长和根体积等生长指标和地上生物量均显著降低,根冠比增大。不同程度的干湿交替对植物的生长和生物量的积累均表现出一定程度的补偿效应,但这种补偿效应的大小随着干旱持续时间的延长而减弱。N添加对植物的生长和生物量积累有显著地促进作用,株高、根表面积、根体积和根生物量较对照组显著增加,但这种促进作用随着干旱历时的增加而减弱,可能与土壤水分状况有关。同时,N添加还影响着植物生物量的分配,在促进两种植物地上和地下生长的同时,还促进了植物根冠比的增加。  相似文献   

16.
Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011–2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level.  相似文献   

17.
北极地区气候变暖对莎草地上和地下部分物候和生物量的影响 北极地区的土壤和植被中存储了大量的碳,在气候变化的大背景下,北极升温速度几乎是地球其他地区的2倍。由于缺乏同步测量,尚不清楚北极地区植被地上部分和地下部分的物候和生物 量对气候变化的反应。在2016和2017年的生长季节,我们在北极的Toolik Lake站点上建立了一个移植花园,并沿纬度变化从高到低依次从 Sagwon、Toolik Lake和Coolfoot这3个站点移植了3种不同生态类型的莎草(Eriophorum vaginatum)。一半莎草用作增温处理,另一半为控制处理。我们用物候相机、手持式光谱仪和微根窗分别观测3种生态型莎草的绿色度、归一化植被指数(NDVI)和根长动态,根据NDVI和根长计算了叶片和细根的生物量。研究发现,莎草的叶和根生长是异步的,叶片开始生长的时间比根系生长的时间早约28天。气温升高1°C会延迟叶片衰老的时间,从而延长生长期,但温度升高对根系物候没有显着影响,变暖在统计学上没有增加叶片和根的生物量。此外,叶片生长的季节动态受气温的影响,但根的生长与土壤融化深度有关。因此,我们建议在使用碳和养分循环模型时,应将叶和根成分分开考虑,因为地上和地下的以及功能属性可能对气候变暖有不同的反应。  相似文献   

18.
Summary Compensatory growth in response to simulated belowground herbivory was studied in the old-field clonal perennialSolidago canadensis. We grew rootpruned plants and plants with intact root systems in soil with or without fertilizer. For individual current shoots (aerial shoot with rhizome and roots) and for whole clones the following predictions were tested: a) root removal is compensated by increased root growth, b) fertilizer application leads to increased allocation to aboveground plant organs and increased leaf turnover, c) effects of fertilizer application are reduced in rootpruned plants. When most roots (90%) were removed current shoots quickly restored equilibrium between above-and belowground parts by compensatory belowground growth whereas the whole clone responded with reduced aboveground growth. This suggests that parts of a clone which are shared by actively growing shoots act as a buffer that can be used as source of material for compensatory growth in response to herbivory. Current shoots increased aboveground mass and whole clones reduced belowground mass in response to fertilizer application, both leading to increased allocation to aboverground parts. Also with fertilizer application both root-pruned and not root-pruned plants increased leaf and shoot turnover. Unfertilized plants, whether rootpruned or not, showed practically no aboveground growth and very little leaf and shoot turnover. Effects of root removal were as severe or more severe under conditions of high as under conditions of low nutrients, suggesting that negative effects of belowground herbivory are not ameliorated by abundant nutrients. Root removal may negate some effects of fertilizer application on the growth of current shoots and whole clones.  相似文献   

19.
The ability of a plant to change its root characteristics to increase the acquisition of soil water is an important adaptation mechanism to water limitation. In this regard, a field study was carried out in the Pannonian region of eastern Austria with two tetraploid wheat genotypes, i.e. Durum (Triticum durum Desf.) and Khorasan (Triticum turanicum Jakubz), during a comparatively wetter and drier year, i.e. 2008 and 2009, respectively. The genotypes showed significant differences in average root diameter and fine root length. All root traits varied with soil depth. The highest root length density and root biomass were observed with Khorasan wheat in 0–10 cm soil depth. Durum wheat showed a stronger response in fine roots to water availability and produced more fine roots in the moist year. Electric root capacitance was higher with Khorasan wheat. Durum showed higher biological yield stability across years with different precipitation with respect to above- and belowground biomass. It produced more leaf area under humid conditions. Khorasan allocated more assimilates to belowground organs in dry conditions, but without positive effect on aboveground biomass.  相似文献   

20.
The importance of seagrass canopy to associated fauna was assessed by comparing the species richness, abundance and diversity of the epi- and infaunal macroinvertebrate assemblages in a seagrass (Zostera japonica Ascherson and Graebner) bed and the adjacent unvegetated area in Hong Kong. Seagrass cover had significant effects on the composition and abundance of the associated fauna and the amount of detritus accumulated on the sediment surface. Detritus abundance was significantly higher in the seagrass bed, and was positively correlated with both the above- and belowground biomass of Z. japonica. Both the abundance and species richness of the epi- and infauna were significantly positively correlated with the belowground biomass of the seagrass and detritus standing crop. Macrofaunal species richness was higher (118) in the seagrass bed than the adjacent unvegetated areas (70), with a higher degree of similarity between the infauna than the epifauna of the two habitats. While all species recorded from the unvegetated areas were found in the seagrass bed, 48 species occurred only in the seagrass-covered areas. Species richness of epifauna was significantly higher in the seagrass bed, but there was no difference between infaunal species of the two habitats. On the contrary, faunal (epi- and infauna) abundance was significantly higher in seagrass areas. The seagrass bed also supported species of small tellinid bivalves previously not recorded from Hong Kong. Artificial seagrass units (ASUs, 0.2 m(2)) with four combinations of leaf density and leaf length and a control (bare sand) were placed at short distances from natural patches of Z. japonica. The composition, abundance and biomass of the epibenthos associated with the ASUs and the control were recorded after 3 months in the field. While species richness did not differ among the treatments, total abundance of epibenthos was significantly higher in the high density-long leaves (HL) treatment than in the control. Results of a discriminant analysis using log-transformed abundance data suggest that the gastropod Clithon oualaniensis, the mussel Musculista senhousia and the crab Thalamita sp. were important species distinguishing the assemblages in the various treatments. All the three species were significantly more abundant in the HL treatment than in the low density-short leaves (LS) treatment and the control. By contrast, there was no significant difference in the biomass of the epifauna, but discriminant analysis again separated the five treatments based on the composition of the biomass, with the same three species identified as the most important discriminating species. The species richness and abundance of the epifauna associated with the ASUs were similar to the adjacent unvegetated areas, but significantly lower than in the Zostera patches. The physical canopy structure of Z. japonica beds increased the abundance of the epibenthos, potentially through provision of canopy and indirectly through trapping of detritus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号