首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Kaposi’s sarcoma (KS) is an angioproliferative and invasive tumor caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). The cellular origin of KS tumor cells remains contentious. Recently, evidence has accrued indicating that KS may arise from KSHV-infected mesenchymal stem cells (MSCs) through mesenchymal-to-endothelial transition (MEndT), but the transformation process has been largely unknown. In this study, we investigated the KSHV-mediated MEndT process and found that KSHV infection rendered MSCs incomplete endothelial lineage differentiation and formed hybrid mesenchymal/endothelial (M/E) state cells characterized by simultaneous expression of mesenchymal markers Nestin/PDGFRA/α-SAM and endothelial markers CD31/PDPN/VEGFR2. The hybrid M/E cells have acquired tumorigenic phenotypes in vitro and the potential to form KS-like lesions after being transplanted in mice under renal capsules. These results suggest a homology of KSHV-infected MSCs with Kaposi’s sarcoma where proliferating KS spindle-shaped cells and the cells that line KS-specific aberrant vessels were also found to exhibit the hybrid M/E state. Furthermore, the genetic analysis identified KSHV-encoded FLICE inhibitory protein (vFLIP) as a crucial regulator controlling KSHV-induced MEndT and generating hybrid M/E state cells for tumorigenesis. Overall, KSHV-mediated MEndT that transforms MSCs to tumorigenic hybrid M/E state cells driven by vFLIP is an essential event in Kaposi’s sarcomagenesis.  相似文献   

2.
Lymphatic endothelial cells (LECs) are differentiated from blood vascular endothelial cells (BECs) during embryogenesis and this physiological cell fate specification is controlled by PROX1, the master regulator for lymphatic development. When Kaposi sarcoma herpes virus (KSHV) infects host cells, it activates the otherwise silenced embryonic endothelial differentiation program and reprograms their cell fates. Interestingly, previous studies demonstrated that KSHV drives BECs to acquire a partial lymphatic phenotype by upregulating PROX1 (forward reprogramming), but stimulates LECs to regain some BEC-signature genes by downregulating PROX1 (reverse reprogramming). Despite the significance of this KSHV-induced bidirectional cell fate reprogramming in KS pathogenesis, its underlying molecular mechanism remains undefined. Here, we report that IL3 receptor alpha (IL3Rα) and NOTCH play integral roles in the host cell type-specific regulation of PROX1 by KSHV. In BECs, KSHV upregulates IL3Rα and phosphorylates STAT5, which binds and activates the PROX1 promoter. In LECs, however, PROX1 was rather downregulated by KSHV-induced NOTCH signal via HEY1, which binds and represses the PROX1 promoter. Moreover, PROX1 was found to be required to maintain HEY1 expression in LECs, establishing a reciprocal regulation between PROX1 and HEY1. Upon co-activation of IL3Rα and NOTCH, PROX1 was upregulated in BECs, but downregulated in LECs. Together, our study provides the molecular mechanism underlying the cell type-specific endothelial fate reprogramming by KSHV.  相似文献   

3.
Kaposi’s sarcoma (KS) is characterized by highly vascularized spindle-cell tumors induced after infection of endothelial cells by Kaposi’s sarcoma-associated herpesvirus (KSHV). In KS tumors, KSHV expresses only a few latent proteins together with 12 pre-microRNAs. Previous microarray and proteomic studies predicted that multiple splice variants of the tumor suppressor protein tropomyosin 1 (TPM1) were targets of KSHV microRNAs. Here we show that at least two microRNAs of KSHV, miR-K2 and miR-K5, repress protein levels of specific isoforms of TPM1. We identified a functional miR-K5 binding site in the 3’ untranslated region (UTR) of one TPM1 isoform. Furthermore, the inhibition or loss of miR-K2 or miR-K5 restores expression of TPM1 in KSHV-infected cells. TPM1 protein levels were also repressed in KSHV-infected clinical samples compared to uninfected samples. Functionally, miR-K2 increases viability of unanchored human umbilical vein endothelial cells (HUVEC) by inhibiting anoikis (apoptosis after cell detachment), enhances tube formation of HUVECs, and enhances VEGFA expression. Taken together, KSHV miR-K2 and miR-K5 may facilitate KSHV pathogenesis.  相似文献   

4.
5.
Stem cell phenotypes are reflected by posttranslational histone modifications, and this chromatin-related memory must be mitotically inherited to maintain cell identity through proliferative expansion. In human embryonic stem cells (hESCs), bivalent genes with both activating (H3K4me3) and repressive (H3K27me3) histone modifications are essential to sustain pluripotency. Yet, the molecular mechanisms by which this epigenetic landscape is transferred to progeny cells remain to be established. By mapping genomic enrichment of H3K4me3/H3K27me3 in pure populations of hESCs in G2, mitotic, and G1 phases of the cell cycle, we found striking variations in the levels of H3K4me3 through the G2-M-G1 transition. Analysis of a representative set of bivalent genes revealed that chromatin modifiers involved in H3K4 methylation/demethylation are recruited to bivalent gene promoters in a cell cycle-dependent fashion. Interestingly, bivalent genes enriched with H3K4me3 exclusively during mitosis undergo the strongest upregulation after induction of differentiation. Furthermore, the histone modification signature of genes that remain bivalent in differentiated cells resolves into a cell cycle-independent pattern after lineage commitment. These results establish a new dimension of chromatin regulation important in the maintenance of pluripotency.  相似文献   

6.
Kaposi’s sarcoma-associated herpesvirus (KSHV) has been consistently identified in Kaposi’s sarcomas (KS), body cavity-based lymphomas (BCBL), and some forms of Castleman’s disease. Previous serological tests with KS patient sera have detected lytic-cycle polypeptides from KSHV-infected BCBL cells. We have found that these polypeptides are predominantly encoded by the K8.1 open reading frame, which is present in the same genomic position as virion envelope glycoproteins of other gammaherpesviruses. The cDNA of K8.1 from BCBL-1 cells was found to encode a glycosylated protein with an apparent molecular mass of 37 kDa. K8.1 was found to be expressed during lytic KSHV replication in BCBL-1 cells and was localized on the surface of cells and virions. The results of immunofluorescence and immunoelectron microscopy suggest that KSHV acquires K8.1 protein on its virion surface during the process of budding at the plasma cell membrane. When KSHV K8.1 derived from mammalian cells was used as an antigen in immunoblot tests, antibodies to K8.1 were detected in 18 of 20 KS patients and in 0 of 10 KS-negative control subjects. These results demonstrate that the K8.1 gene encodes a KSHV virion-associated glycoprotein and suggest that antibodies to K8.1 may prove useful as contributory serological markers for infection by KSHV.  相似文献   

7.
8.
9.
10.
11.
12.
Enhancing differentiation of mesenchymal stem cells (MSCs) to endothelial cells may improve their ability to vascularize tissue and promote wound healing. This study describes a novel role for nitric oxide (NO) in reprogramming MSCs towards an endothelial lineage and highlights the role of Wnt signaling and epigenetic modification by NO. Rat MSCs were transduced with lentiviral vectors expressing endothelial nitric oxide synthase (pLV-eNOS) and a mutated caveolin gene (pLV-CAV-1F92A) to enhance NO generation resulting in increased in vitro capillary tubule formation and endothelial marker gene expression. An exogenous source of NO could also stimulate CD31 expression in MSCs. NO was associated with an arterial-specific endothelial gene expression profile of Notch1, Dll4, and Hey2 and significantly reduced expression of venous markers. Wnt signaling associated with NO was evident through increased gene expression of Wnt3a and β-catenin protein, and expression of the endothelial marker Pecam-1 could be significantly reduced by treatment with the Wnt signaling inhibitor Dkk-1. The role of NO as an epigenetic modifier was evident with reduced gene expression of the methyltransferase, DNMT1, and bisulfite sequencing of the endothelial Flt1 promoter region in NO-producing MSCs showed significant demethylation compared to control cells. Finally, subcutaneous implantation of NO-producing MSCs seeded in a biomaterial scaffold (NovoSorb®) resulted in survival of transplanted cells and the formation of blood vessels. In summary, this study describes, NO as a potent endothelial programming factor which acts as an epigenetic modifier in MSCs and may provide a novel platform for vascular regenerative therapy.  相似文献   

13.

Background

Aberrational epigenetic marks are believed to play a major role in establishing the abnormal features of cancer cells. Rational use and development of drugs aimed at epigenetic processes requires an understanding of the range, extent, and roles of epigenetic reprogramming in cancer cells. Using ChIP-chip and MeDIP-chip approaches, we localized well-established and prevalent epigenetic marks (H3K27me3, H3K4me3, H3K9me3, DNA methylation) on a genome scale in several lines of putative glioma stem cells (brain tumor stem cells, BTSCs) and, for comparison, normal human fetal neural stem cells (fNSCs).

Results

We determined a substantial “core” set of promoters possessing each mark in every surveyed BTSC cell type, which largely overlapped the corresponding fNSC sets. However, there was substantial diversity among cell types in mark localization. We observed large differences among cell types in total number of H3K9me3+ positive promoters and peaks and in broad modifications (defined as >50 kb peak length) for H3K27me3 and, to a lesser extent, H3K9me3. We verified that a change in a broad modification affected gene expression of CACNG7. We detected large numbers of bivalent promoters, but most bivalent promoters did not display direct overlap of contrasting epigenetic marks, but rather occupied nearby regions of the proximal promoter. There were significant differences in the sets of promoters bearing bivalent marks in the different cell types and few consistent differences between fNSCs and BTSCs.

Conclusions

Overall, our “core set” data establishes sets of potential therapeutic targets, but the diversity in sets of sites and broad modifications among cell types underscores the need to carefully consider BTSC subtype variation in epigenetic therapy. Our results point toward substantial differences among cell types in the activity of the production/maintenance systems for H3K9me3 and for broad regions of modification (H3K27me3 or H3K9me3). Finally, the unexpected diversity in bivalent promoter sets among these multipotent cells indicates that bivalent promoters may play complex roles in the overall biology of these cells. These results provide key information for forming the basis for future rational drug therapy aimed at epigenetic processes in these cells.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-724) contains supplementary material, which is available to authorized users.  相似文献   

14.
Ten Eleven Translocation (TET) protein-catalyzed 5mC oxidation not only creates novel DNA modifications, such as 5hmC, but also initiates active or passive DNA demethylation. TETs’ role in the crosstalk with specific histone modifications, however, is largely elusive. Here, we show that TET2-mediated DNA demethylation plays a primary role in the de novo establishment and maintenance of H3K4me3/H3K27me3 bivalent domains underlying methylated DNA CpG islands (CGIs). Overexpression of wild type (WT), but not catalytic inactive mutant (Mut), TET2 in low-TET-expressing cells results in an increase in the level of 5hmC with accompanying DNA demethylation at a subset of CGIs. Most importantly, this alteration is sufficient in making de novo bivalent domains at these loci. Genome-wide analysis reveals that these de novo synthesized bivalent domains are largely associated with a subset of essential developmental gene promoters, which are located within CGIs and are previously silenced due to DNA methylation. On the other hand, deletion of Tet1 and Tet2 in mouse embryonic stem (ES) cells results in an apparent loss of H3K27me3 at bivalent domains, which are associated with a particular set of key developmental gene promoters. Collectively, this study demonstrates the critical role of TET proteins in regulating the crosstalk between two key epigenetic mechanisms, DNA methylation and histone methylation (H3K4me3 and H3K27me3), particularly at CGIs associated with developmental genes.  相似文献   

15.
WD repeat-containing protein 5 (WDR5) is a common component of mammalian mixed lineage leukemia methyltransferase family members and is important for histone H3 lysine 4 methylation (H3K4me), which has been implicated in control of activation of cell lineage genes during embryogenesis. However, WDR5 has not been considered to play a specific regulatory role in epigenetic programming of cell lineage because it is ubiquitously expressed. Previous work from our laboratory showed the appearance of histone H3K4me within smooth muscle cell (SMC)-marker gene promoters during the early stages of development of SMC from multipotential embryonic cells but did not elucidate the underlying mechanisms that mediate SMC-specific and locus-selective H3K4me. Results presented herein show that knockdown of WDR5 significantly decreased SMC-marker gene expression in cultured SMC differentiation systems and in Xenopus laevis embryos in vivo. In addition, we showed that WDR5 complexes within SMC progenitor cells contained H3K4 methyltransferase enzymatic activity and that knockdown of WDR5 selectively decreased H3K4me1 and H3K4me3 enrichment within SMC-marker gene promoter loci. Moreover, we present evidence that it is recruited to these gene promoter loci through interaction with a SMC-selective pituitary homeobox 2 (Pitx2). Taken together, studies provide evidence for a novel mechanism for epigenetic control of SMC-marker gene expression during development through interaction of WDR5, homeodomain proteins, and chromatin remodeling enzymes.  相似文献   

16.
Vernalization, the promotion of flowering in response to low temperatures, is one of the best characterized examples of epigenetic regulation in plants. The promotion of flowering is proportional to the duration of the cold period, but the mechanism by which plants measure time at low temperatures has been a long‐standing mystery. We show that the quantitative induction of the first gene in the Arabidopsis vernalization pathway, VERNALIZATION INSENSITIVE 3 (VIN3), is regulated by the components of Polycomb Response Complex 2, which trimethylates histone H3 lysine 27 (H3K27me3). In differentiated animal cells, H3K27me3 is mostly associated with long‐term gene repression, whereas, in pluripotent embyonic stem cells, many cell lineage‐specific genes are inactive but exist in bivalent chromatin that carries both active (H3K4me3) and repressive (H3K27me3) marks on the same molecule. During differentiation, bivalent domains are generally resolved to an active or silent state. We found that H3K27me3 maintains VIN3 in a repressed state prior to cold exposure; this mark is not removed during VIN3 induction. Instead, active VIN3 is associated with bivalently marked chromatin. The continued presence of H3K27me3 ensures that induction of VIN3 is proportional to the duration of the cold, and that plants require prolonged cold to promote the transition to flowering. The observation that Polycomb proteins control VIN3 activity defines a new role for Polycomb proteins in regulating the rate of gene induction.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号