首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of bacteria in the regression of certain forms of cancer has been recognized for more than a century. Much effort, therefore, has been spent over the years in developing wild-type or modified bacterial strains to treat cancer. However, their use at the dose required for therapeutic efficacy has always been associated with toxicity problems and other deleterious effects. Recently, the old idea of using bacteria in the treatment of cancer has attracted considerable interest and new genetically engineered attenuated strains as well as microbial compounds that might have specific anticancer activity without side effects are being evaluated for their ability to act as new anticancer agents. This involves the use of attenuated bacterial strains and expressing foreign genes that encode the ability to convert non-toxic prodrugs to cytotoxic drugs. Novel strategies also include the use of bacterial products such as proteins, enzymes, immunotoxins and secondary metabolites, which specifically target cancer cells and cause tumor regression through growth inhibition, cell cycle arrest or apoptosis induction. In this review we describe the current knowledge and discuss the future directions regarding the use of bacteria or their products, in cancer therapy.  相似文献   

2.
The use of live bacteria to induce an immune response to itself or to a carried vaccine component is an attractive vaccine strategy. Advantages of live bacterial vaccines include their mimicry of a natural infection, intrinsic adjuvant properties and their possibility to be administered orally. Derivatives of pathogenic and non-pathogenic food related bacteria are currently being evaluated as live vaccines. However, pathogenic bacteria demands for attenuation to weaken its virulence. The use of bacteria as vaccine delivery vehicles implies construction of recombinant strains that contain the gene cassette encoding the antigen. With the increased knowledge of mucosal immunity and the availability of genetic tools for heterologous gene expression the concept of live vaccine vehicles gains renewed interest. However, administration of live bacterial vaccines poses some risks. In addition, vaccination using recombinant bacteria results in the release of live recombinant organisms into nature. This places these vaccines in the debate on application of genetically modified organisms. In this review we give an overview of live bacterial vaccines on the market and describe the development of new live vaccines with a focus on attenuated bacteria and food-related lactic acid bacteria. Furthermore, we outline the safety concerns and identify the hazards associated with live bacterial vaccines and try to give some suggestions of what to consider during their development.  相似文献   

3.
G-quadruplex (G4) is a promising target for anti-cancer treatment. In this paper, we provide the first evidence supporting the presence of G4 in the mitochondrial DNA (mtDNA) of live cells. The molecular engineering of a fluorescent G4 ligand, 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide (BMVC), can change its major cellular localization from the nucleus to the mitochondria in cancer cells, while remaining primarily in the cytoplasm of normal cells. A number of BMVC derivatives with sufficient mitochondrial uptake can induce cancer cell death without damaging normal cells. Fluorescence studies of these anti-cancer agents in live cells and in isolated mitochondria from HeLa cells have demonstrated that their major target is mtDNA. In this study, we use fluorescence lifetime imaging microscopy to verify the existence of mtDNA G4s in live cells. Bioactivity studies indicate that interactions between these anti-cancer agents and mtDNA G4 can suppress mitochondrial gene expression. This work underlines the importance of fluorescence in the monitoring of drug-target interactions in cells and illustrates the emerging development of drugs in which mtDNA G4 is the primary target.  相似文献   

4.
Mitochondria have recently emerged as new and promising targets for cancer prevention and therapy. One of the reasons for this is that mitochondria are instrumental to many types of cell death and often lie downstream from the initial actions of anti-cancer drugs. Unlike the tumour suppressor gene encoding p53 that is notoriously prone to inactivating mutations but whose function is essential for induction of apoptosis by DNA-targeting agents (such as doxorubicin or 5-fluorouracil), mitochondria present targets that are not so compromised by genetic mutation and whose targeting overcomes problems with mutations of upstream targets such as p53. We have recently proposed a novel class of anti-cancer agents, mitocans that exert their anti-cancer activity by destabilising mitochondria, promoting the selective induction of apoptotic death in tumour cells. In this communication, we review recent findings on mitocans and propose a common basis for their mode of action in inducing apoptosis of cancer cells. We use as an example the analogues of vitamin E that are proving to be cancer cell-specific and may soon be developed into efficient anti-cancer drugs.  相似文献   

5.
With the dramatic increase in cancer incidence all over the world in the last decades, studies on identifying novel efficient anti-cancer agents have been intensified. Historically, natural products have represented one of the most important sources of new lead compounds with a wide range of biological activities. In this article, the multifaceted anti-cancer action of propolis-derived flavonoid, galangin, is presented, discussing its antioxidant, anti-inflammatory, antiproliferative, pro-apoptotic, anti-angiogenic, and anti-metastatic effects in various cancer cells. In addition, co-effects with standard chemotherapeutic drugs as well as other natural compounds are also under discussion, besides highlighting modern nanotechnological advancements for overcoming the low bioavailability issue characteristic of galangin. Although further studies are needed for confirming the anti-cancer potential of galangin in vivo malignant systems, exploring this natural compound might open new perspectives in molecular oncology.  相似文献   

6.
One of the greatest challenges facing modern medicine is the evolution of drug resistant strains of bacteria. In addition to traditional methods of exposure to traditional bacterial organisms there is a growing concerned of the use of bacteria as bio-terrorism agents. To counter the evolution of drug resistant and potential bio-terrorism bacterial agents new antibiotic drugs must be developed. One potential source of new therapeutic agents that act via a novel mechanism of action are natural and synthetic antimicrobial peptides (AMPs). In our laboratories we have developed a series of AMPs incorporating the un-natural amino acids Tic-Oic to impart organism selectivity and potency while increasing metabolic stability. Herein the in vitro activity of these peptides, including ten new compounds, against eight potential bio-terrorism bacterial agents and three other bacterial strains is presented and discussed. These peptides exhibit a wide range of organism potency and selectivity. Calcein fluorescence leakage and circular dichroism studies were conducted to confirm that these peptides interact with zwitterionic and anionic liposomes.  相似文献   

7.
Numerous publications have reported the presence of periodontopathogenic bacteria in peripheral and central vascular lesions. However, it is unclear how this bacterial translocation occurs. The objective of this study was to investigate whether periodontopathic bacteria are translocated to lymph nodes proximal to the oral cavity. Obtaining lymph node samples is not ethically feasible unless they are excised as part of the surgical management of patients with cancer. This study analyzed formalin-fixed and paraffin-embedded lymph nodes, histologically negative for cancer cell invasion, that were excised from 66 patients with histories of head and neck cancer. Real-time PCR was performed to amplify the 16S ribosomal DNA fragments from Porphyromonas gingivalis, Treponema denticola, Aggregatibacter actinomycetemcomitans, Tannerella forsythia, and Prevotella intermedia. The relationship between bacterial detection and cancer severity, gender, and the use of anti-cancer therapy was examined by Fisher??s exact test. P. gingivalis, T. forsythia, and P. intermedia were present in 17%, 8%, and 8% of the samples of submandibular and submental lymph nodes, respectively. There were no significant relationships between bacterial detection and the cancer disease status, patient gender or use of anticancer therapy. According to these data, it appears that the translocation of periodontopathic bacteria may occur via lymphatic drainage, irrespective of the cancer disease status, gender or anticancer therapy.  相似文献   

8.
Fungal diseases of plants continue to contribute to heavy crop losses in spite of the best control efforts of plant pathologists. Breeding for disease-resistant varieties and the application of synthetic chemical fungicides are the most widely accepted approaches in plant disease management. An alternative approach to avoid the undesired effects of chemical control could be biological control using antifungal bacteria that exhibit a direct action against fungal pathogens. Several biocontrol agents, with specific fungal targets, have been registered and released in the commercial market with different fungal pathogens as targets. However, these have not yet achieved their full commercial potential due to the inherent limitations in the use of living organisms, such as relatively short shelf life of the products and inconsistent performance in the field. Different mechanisms of action have been identified in microbial biocontrol of fungal plant diseases including competition for space or nutrients, production of antifungal metabolites, and secretion of hydrolytic enzymes such as chitinases and glucanases. This review focuses on the bacterial chitinases that hydrolyze the chitinous fungal cell wall, which is the most important targeted structural component of fungal pathogens. The application of the hydrolytic enzyme preparations, devoid of live bacteria, could be more efficacious in fungal control strategies. This approach, however, is still in its infancy, due to prohibitive production costs. Here, we critically examine available sources of bacterial chitinases and the approaches to improve enzymatic properties using biotechnological tools. We project that the combination of microbial and recombinant DNA technologies will yield more effective environment-friendly products of bacterial chitinases to control fungal diseases of crops.  相似文献   

9.
Helicobacter pylori is a common human pathogen infecting about 30% of children and 60% of adults worldwide and is responsible for diseases such as gastritis, peptic ulcer and gastric cancer. Treatment against H. pylori is based on the use of antibiotics, but therapy failure can be higher than 20% and is essentially due to an increase in the prevalence of antibiotic-resistant bacteria, which has led to the search for alternative therapies. In this review, we discuss alternative therapies for H. pylori, mainly phytotherapy and probiotics. Probiotics are live organisms or produced substances that are orally administrated, usually in addition to conventional antibiotic therapy. They may modulate the human microbiota and promote health, prevent antibiotic side effects, stimulate the immune response and directly compete with pathogenic bacteria. Phytomedicine consists of the use of plant extracts as medicines or health-promoting agents, but in most cases the molecular mode of action of the active ingredients of these herbal extracts is unknown. Possible mechanisms include inhibition of H. pylori urease enzyme, disruption of bacterial cell membrane, and modulation of the host immune system. Other alternative therapies are also reviewed.  相似文献   

10.
In 2002 it was decided to establish laboratory facilities in Denmark for diagnosing agents associated with bioterrorism in order to make an immediate appropriate response to the release of such agents possible. Molecular assays for detection of specific agents and molecular and proteomic techniques for identification of bacteria were introduced as part of the program. All assays and techniques were made accessible for use in diagnosing patients, even when an intentional release was not suspected. Medical expertise on different diseases was established at the department as an integrated part of the program. The analyses included PCR assays for specific bacteria, identification of isolated bacteria by DNA sequencing, detection and identification of bacteria in clinical sample material by universal bacterial PCR and DNA sequencing, and identification of bacteria by mass spectrometry. The established analyses formed a basis on which a series of further developments was built. In addition to reducing the time for obtaining diagnoses and improving the accuracy of diagnosis of individual infected patients, the analyses provided new knowledge on the frequency and distribution of some bacterial infections, including Q fever, tularemia, trench fever, brucellosis, and melioidosis. The implementation of an antibioterrorism program in a clinical diagnostic setting improved the diagnostic possibilities for patients in Denmark and provided new epidemiologic information. It also introduced a number of diagnostic assays for bacterial infections not associated with bioterrorism that are difficult to culture or identify.  相似文献   

11.
Deregulation of ceramide metabolism is a hallmark of human cancer. Ceramide analogues thereby represent a new class of anti-cancer agents. We aimed at developing effective and low toxic ceramide analogues and synthesized a new class of ceramide analogues starting from l-threonine. Several analogues exhibit potent cytotoxicity against human cancer cells in vitro with IC50 as low as 4.8?μM. These ceramide analogues decreased xIAP and Bcl-xL level and exhibited significant sensitization activity to overcome human cancer cell resistance to TRAIL, a cancer-selective agent that are being tested in human clinical trials. Furthermore, we determined that these ceramide analogues effectively suppress human cancer xenograft growth in vivo with no significant toxicity at the efficacious dose. Therefore, we have developed a simple and effective method to synthesize functional ceramide analogues using l-threonine as starting material and these analogues have the great potential to be further developed as anti-cancer agents in human cancer therapy.  相似文献   

12.
There is an increasing need for new cancer therapies. The antitumour effect of bacterial infection has been well observed and practiced throughout history. Bacteria are well‐suited to serve as anticancer agents due to their intrinsic mobility, cell toxicity, immunogenicity, and preferential accumulation within the anoxic tumour environment. Furthermore, advances in biotechnology and molecular techniques have made it easier than ever to engineer bacteria as both therapeutic agents themselves and as therapeutic vectors. Here, we review bacteriolytic therapy and immunotherapy strategies, and examine the development of bacteria as vehicles for cell‐ and tissue‐targeted delivery of genetic cancer therapeutics.  相似文献   

13.
Prior to the advent of antibiotics, live organisms were used directly in attempts to control microbial infections and cure cancers. Examples of such biological control included bacteriotherapy, bacteriophage therapy, malaria therapy, probiotics and the use of living maggots. In all cases, the organisms themselves, rather than products of their metabolism, were used as the potentially curative agents. The history of the use of biocontrol agents in the treatment of human infections and cancer is discussed here in relation to more recent examples of the use of this approach. Modern studies suggest that the use of biological control in the treatment of human infections may be worth re‐evaluating in the light of the increasing world‐wide occurrence of antibiotic‐resistant bacteria and the opportunities provided by recent developments in gene technology.  相似文献   

14.
The discovery and use of antimicrobial agents in the last 50 yr has been one of medicine’s greatest achievements. These agents have reduced morbidity and mortality of humans and animals and have directly contributed to human’s increased life span. However, bacteria are becoming increasingly resistant to these agents by mutations, which alter existing bacterial proteins, and/or acquisition of new genes, which provide new proteins. The latter are often associated with mobile elements that can be exchanged quickly across bacterial populations and may carry multiple antibiotic genes fo resistance. In some case, virulence factors are also found on these same mobile elements. There is mounting evidence that antimicrobial use in agriculture, both plant and animal, and for environmental purposes does influence the antimicrobial resistant development in bacteria important in humans and in reverse. In this article, we will examine the genes which confer resistance to tetracycline, macrolide-lincosamide-streptogramin (MLS), trimethoprim, and sulfonamide.  相似文献   

15.
Pancreatic cancer has a poor prognosis with a 5-year survival rate of <5%. It does not respond well to either chemotherapy or radiotherapy, due partly to apoptotic resistance (AR) of the cancer cells. AR has been attributed to certain genetic abnormalities or defects in apoptotic signaling pathways. In pancreatic cancer, significant mutations of K-ras and p53, constitutive activation of NFκB, over-expression of heat shock proteins (Hsp90, Hsp70), histone deacetylase (HDACs) and the activities of other proteins (COX-2, Nrf2 and bcl-2 family members) are closely linked with resistance to apoptosis and invasion. AR has also been associated with aberrant signaling of MAPK, PI3K–AKT, JAK/STAT, SHH, Notch, and Wnt/β-catenin pathways. Strategies targeting these signaling molecules and pathways provide an alternative for overcoming AR in pancreatic cancer. The use of herbal medicines or natural products (HM/NPs) alone or in combination with conventional anti-cancer agents has been shown to produce beneficial effects through actions upon multiple molecular pathways involved in AR. The current standard first-line chemotherapeutic agents for pancreatic cancer are gemcitabine (Gem) or Gem-containing combinations; however, the efficacy is dissatisfied and this limitation is largely attributed to AR. Meanwhile, emerging data have pointed to a combination of HM/NPs that may augment the sensitivity of pancreatic cancer cells to Gem. Greater understanding of how these compounds affect the molecular mechanisms of apoptosis may propel development of HM/NPs as anti-cancer agents and/or adjuvant therapies forward.In this review, we give a critical appraisal of the use of HM/NPs alone and in combination with anti-cancer drugs. We also discuss the potential regulatory mechanisms whereby AR is involved in these protective pathways.  相似文献   

16.
One of the primary limitations of cancer therapy is lack of selectivity of therapeutic agents to tumor cells. Current efforts are focused on discovering and developing anticancer agents that selectively target only tumor cells and spare normal cells to improve the therapeutic index. The use of preferentially replicating bacteria as an oncolytic agent is one of the innovative approaches for the treatment of cancer. This is based on the observation that some obligate or facultative anaerobic bacteria are capable of multiplying selectively in tumors and inhibiting their growth. Meanwhile, bacteria have been demonstrated to colonize and destroy tumor, and have emerged as biological gene vectors to tumor microenvironment. To improve the efficacy and safety of the bacterial therapy, a further understanding of bacteria between with immune system is required. Furthermore, we want to evaluate how bacterial infection facilitates the “bystander effect” of chemotherapeutic agent and assess if it can be used for additional antitumor effect when combined with chemotherapy. This study may not only evaluate therapeutic efficacy of bacteria for the treatment of cancer but also elucidate the mechanisms underlying antitumor activities mediated by bacteria, which involve host immune responses and the cellular molecular responses.  相似文献   

17.
Despite setbacks, the clinical development of antiangiogenic agents has accelerated remarkably over the past 3-4 years. Consequently, there are currently three direct inhibitors of the VEGF pathway approved for use in cancer therapy. Other agents that block the VEGF pathway are in advanced stages of clinical development and have shown promising results. With these exciting developments come crucial questions regarding the use of these new molecular-targeted agents, alone or in combination with standard cytotoxic or targeted agents. Importantly, the mechanisms of action of anti-VEGF therapy remain unknown. Here, we discuss several potential mechanisms of action such as tumor vascular normalization, bone marrow-derived cell recruitment blockade and cytostatic effects of anti-VEGF therapy. We review the current progress, the major stumbling blocks and the future directions for anti-cancer therapy using anti-VEGF agents, emphasizing clarification of the underlying molecular mechanisms of action and biomarker identification and validation.  相似文献   

18.
Superparamagnetic iron oxide nanoparticles (SPIONs) are in clinical use for disease detection by MRI. A major advancement would be to link therapeutic drugs to SPIONs in order to achieve targeted drug delivery combined with detection. In the present work, we studied the possibility of developing a versatile synthesis protocol to hierarchically construct drug-functionalized-SPIONs as potential anti-cancer agents. Our model biocompatible SPIONs consisted of an iron oxide core (9-10 nm diameter) coated with polyvinylalcohols (PVA/aminoPVA), which can be internalized by cancer cells, depending on the positive charges at their surface. To develop drug-functionalized-aminoPVA-SPIONs as vectors for drug delivery, we first designed and synthesized bifunctional linkers of varied length and chemical composition to which the anti-cancer drugs 5-fluorouridine or doxorubicin were attached as biologically labile esters or peptides, respectively. These functionalized linkers were in turn coupled to aminoPVA by amide linkages before preparing the drug-functionalized-SPIONs that were characterized and evaluated as anti-cancer agents using human melanoma cells in culture. The 5-fluorouridine-SPIONs with an optimized ester linker were taken up by cells and proved to be efficient anti-tumor agents. While the doxorubicin-SPIONs linked with a Gly-Phe-Leu-Gly tetrapeptide were cleaved by lysosomal enzymes, they exhibited poor uptake by human melanoma cells in culture.  相似文献   

19.
Live recombinant bacteria represent attractive antigen delivery systems able to induce both mucosal and systemic immune responses against heterologous antigens. The first live recombinant bacterial vectors developed were derived from attenuated pathogenic microorganisms. In addition to the difficulties often encountered in the construction of stable attenuated mutants of pathogenic organisms, attenuated pathogens may retain a residual virulence level that renders them unsuitable for the vaccination of partially immunocompetent individuals such as infants, the elderly or immunocompromised patients. As an alternative to this strategy, non-pathogenic food-grade lactic acid bacteria (LAB) maybe used as live antigen carriers. This article reviews LAB vaccines constructed using antigens other than tetanus toxin fragment C, against bacterial, viral, and parasitic infective agents, for which protection studies have been performed. The antigens utilized for the development of LAB vaccines are briefly described, along with the efficiency of these systems in protection studies. Moreover, the key factors affecting the performance of these systems are highlighted.  相似文献   

20.
Most bacteria pathogenic for humans have closely related nonpathogenic counterparts that live as saprophytes, commensals or even symbionts (mutualists) in similar or different habitats. The knowledge of how these bacteria adapt their metabolism to the preferred habitats is critical for our understanding of pathogenesis, commensalism and symbiosis, and - in the case of bacterial pathogens - could help to identify targets for new antimicrobial agents. The focus of this review is on the metabolic potentials and adaptations of three different groups of human extra- and intracellular bacterial pathogens and their nonpathogenic relatives. All bacteria selected have the potential to reach the interior of mammalian host cells. However, their ability to replicate intracellularly differs significantly. The question therefore arises whether there are specific metabolic requirements that support stable intracellular replication. Furthermore, we discuss - whenever relevant data for the pathogenic representatives are available - the possible effect of the metabolism on the expression of virulence genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号