首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.

Background

We have shown previously that AtoSC two-component system regulates the biosynthesis of E. coli cPHB [complexed poly-(R)-3-hydroxybutyrate].

Methods

The AtoSC involvement on fatty acids metabolism, towards cPHB synthesis, was studied using cPHB determination, gene expression, and fatty acid metabolic pathways inhibitors.

Results

Deletion of the atoDAEB operon from the E. coli genome resulted in a consistent reduction of cPHB accumulation. When in ΔatoDAEB cells, the atoDAEB operon and the AtoSC system were introduced extrachromosomally, a significant enhancement of cPHB levels was observed. Moreover, the introduction of a plasmid with atoSC genes regulated positively cPHB biosynthesis. A lesser cPHB enhancement was triggered when plasmids carrying either atoS or atoC were introduced. The intracellular distribution of cPHB was regulated by AtoSC or AtoC according to the inducer (acetoacetate or spermidine). Blockage of β-oxidation by acrylic acid reduced cPHB levels, suggesting the involvement of this pathway in cPHB synthesis; however, the overproduction of AtoSC or its constituents separately resulted in cPHB enhancement. Inhibition of fatty acid biosynthesis by cerulenin resulted to a major cPHB reduction, indicating the contribution of this pathway in cPHB production. Inhibition of both β-oxidation and fatty acid biosynthesis reduced dramatically cPHB, suggesting the contribution of both pathways in cPHB biosynthesis.

Conclusions

Short fatty acid catabolism (atoDAEB operon) and fatty acids metabolic pathways participate in cPHB synthesis through the involvement of AtoSC system.

General significance

The involvement of the AtoSC system in the fatty acids metabolic pathways interplay towards cPHB biosynthesis provides additional perceptions of AtoSC role on E. coli regulatory biochemical processes.  相似文献   

3.
The AtoS–AtoC signal transduction system in E. coli, which induces the atoDAEB operon for the growth of E. coli in short-chain fatty acids, can positively modulate the levels of poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis, a biopolymer with many physiological roles in E. coli. Increased amounts of cPHB were synthesized in E. coli upon exposure of the cells to acetoacetate, the inducer of the AtoS–AtoC two-component system. While E. coli that overproduce both components of the signal transduction system synthesize higher quantities of cPHB (1.5–4.5 fold), those that overproduce either AtoS or AtoC alone do not display such a phenotype. Lack of enhanced cPHB production was also observed in cells overexpressing AtoS and phosphorylation-impaired AtoC mutants. The results were not affected by the nature of the carbon source used, i.e., glucose, acetate or acetoacetate. An E. coli strain with a deletion in the atoS–atoC locus (ΔatoSC) synthesized lower amounts of cPHB compared to wild-type cells. When the ΔatoSC strain was transformed with a plasmid carrying a 6.4-kb fragment encoding the AtoS–AtoC system, cPHB biosynthesis was restored to the level of the atoSC+ cells. Introduction of a multicopy plasmid carrying a functional atoDAEB operon, but not one with a promoterless operon, resulted in increased cPHB synthesis only in atoSC+ cells in the presence of acetoacetate. These results indicate that the presence of both a functional AtoS–AtoC two-component signal transduction system and a functional atoDAEB operon is critical for the enhanced cPHB biosynthesis in E. coli.  相似文献   

4.
Recent analysis revealed that, in Escherichia coli the AtoS–AtoC/Az two-component system (TCS) and its target atoDAEB operon regulate the biosynthesis of short-chain poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis, a biopolymer with many physiological roles, upon acetoacetate-mediated induction. We report here that spermidine further enhanced this effect, in E. coli that overproduces both components of the AtoS–AtoC/Az TCS, without altering their protein levels. However, bacteria that overproduce either AtoS or AtoC did not display this phenotype. The extrachromosomal introduction of AtoS–AtoC/Az in an E. coli ΔatoSC strain restored cPHB biosynthesis to the level of the atoSC+ cells, in the presence of the polyamine. Lack of enhanced cPHB production was observed in cells overproducing the TCS that did not have the atoDAEB operon. Spermidine attained the cPHB enhancement through the AtoC/Az response regulator phosphorylation, since atoC phosphorylation site mutants, which overproduce AtoS, accumulated less amounts of cPHB, compared to their wild-type counterparts. Exogenous addition of N8-acetyl-spermidine resulted in elevated amounts of cPHB but at lower levels than those attained upon spermidine addition. Furthermore, AtoS–AtoC/Az altered the intracellular distribution of cPHB according to the inducer recognized by the TCS. Overall, AtoS–AtoC/Az TCS was induced by spermidine to regulate both the biosynthesis and the intracellular distribution of cPHB in E. coli.  相似文献   

5.
AtoSC two-component system plays a pivotal role in many regulatory indispensable Escherichia coli processes. AtoSCDAEB regulon, comprising the AtoSC system and the atoDAEB operon, regulates the short-chain fatty acids catabolism. We report here, that AtoSC up-regulates the high-molecular weight PHB biosynthesis, in recombinant phaCAB(+)E. coli, with the Cupriavidus necator phaCAB operon. PHB accumulation was maximized upon the acetoacetate-mediated induction of AtoSC, under glucose 1% w/v, resulting in a yield of 1.73 g/l with a biopolymer content of 64.5% w/w. The deletion of the atoSC locus, in the ΔatoSC strains, resulted in a 5 fold reduction of PHB accumulation, which was restored by the extrachromosomal introduction of the AtoSC system. The deletion of the atoDAEB operon triggered a significant decrease in PHB synthesis in ΔatoDAEB strains. However, the acetoacetate-induced AtoSC system in those strains increased PHB to 1.55 g/l, while AtoC expression increased PHB to 1.4 g/l upon acetoacetate. The complementation of the ΔatoDAEB phenotype was achieved by the extrachromosomal introduction of the atoSCDAEB regulon. The individual inhibition of β-oxidation and mainly fatty-acid biosynthesis pathways by acrylic acid or cerulenin respectively, reduced PHB biosynthesis. Under those conditions the introduction of the atoSC locus or the atoSCDAEB regulon was capable to up-regulate the biopolymer accumulation. The concurrent inhibition of both the fatty acids metabolic pathways eliminated PHB production. PHB up-regulation in phaCAB(+)E. coli, by AtoSC signaling through atoDAEB operon and its participation in the fatty acids metabolism interplay, provide additional perceptions of AtoSC critical involvement in E. coli regulatory processes towards the biotechnologically improved polyhydroxyalkanoates biosynthesis.  相似文献   

6.
Fermentation strategies for production of high concentrations of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] with different 3-hydroxyvalerate (3HV) fractions by recombinant Escherichia coli harboring the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes were developed. Fed-batch cultures of recombinant E. coli with the pH-stat feeding strategy facilitated production of high concentrations and high contents of P(3HB-co-3HV) in a chemically defined medium. When a feeding solution was added in order to increase the glucose and propionic acid concentrations to 20 g/liter and 20 mM, respectively, after each feeding, a cell dry weight of 120.3 g/liter and a relatively low P(3HB-co-3HV) content, 42.5 wt%, were obtained. Accumulation of a high residual concentration of propionic acid in the medium was the reason for the low P(3HB-co-3HV) content. An acetic acid induction strategy was used to stimulate the uptake and utilization of propionic acid. When a fed-batch culture and this strategy were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 141.9 g/liter, 88.1 g/liter, 62.1 wt%, and 15.3 mol%, respectively. When an improved nutrient feeding strategy, acetic acid induction, and oleic acid supplementation were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 203.1 g/liter, 158.8 g/liter, 78.2 wt%, and 10.6 mol%, respectively; this resulted in a high level of productivity, 2.88 g of P(3HB-co-3HV)/liter-h.  相似文献   

7.
AtoSC two-component system participates in many indispensable processes of Escherichia coli. We report here that the AtoSC signal transduction is inhibited by established histidine kinase inhibitors. Closantel, RWJ-49815 and TNP-ATP belonging to different chemical classes of inhibitors, abrogated the in vitro AtoS kinase autophosphorylation. However, when AtoS was embedded in the membrane fractions, higher inhibitor concentrations were required for total inhibition. When AtoS interacted with AtoC forming complex, the intrinsic histidine kinase was protected by the response regulator, requiring increased inhibitors concentrations for partially AtoS autophosphorylation reduction. The inhibitors exerted an additional function on AtoSC, blocking the phosphotransfer from AtoS to AtoC, without however, affecting AtoC~P dephosphorylation. Their in vivo consequences through the AtoSC inhibition were elucidated on atoDAEB operon expression, which was inhibited only in AtoSC-expressing bacteria where AtoSC was induced by acetoacetate or spermidine. The inhibitor effects were extended on the AtoSC regulatory role on cPHB [complexed poly-(R)-3-hydroxybutyrate] biosynthesis. cPHB was decreased upon the blockers only in acetoacetate-induced AtoSC-expressing cells. Increased ATP amounts during bacterial growth reversed the inhibitory TNP-ATP-mediated effect on cPHB. The alteration of pivotal E. coli processes as an outcome of AtoSC inhibition, establish this system as a target of two-component systems inhibitors.  相似文献   

8.
In order to enhance 3-hydroxyvalerate (3HV) fraction in copolyesters of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the propionate permease gene prpP or the propionyl-CoA synthase gene prpE was transformed into Escherichia coli XL10-Gold with co-expression of PHB operon (phaCAB) from Ralstonia eutropha. The recombinant E. coli strains were cultured on mixed carbon sources composed of glucose and propionic acid to promote PHBV accumulation. It was shown that the over-expression of prpE suppressed 3HV incorporation into PHBV copolymer, which led to reduced 3HV fraction. In contrast, the over-expression of prpP improved the 3HV content from 5.6 to 14.3 mol%, followed by an increased PHBV accumulation up to 62 wt%. The results showed that the expression of prpP stimulated the uptake and utilization of propionic acid and increased the 3HV fraction in PHBV. However, the over-expression of prpE in E. coli did not affect 3HV content in PHBV. Surprisingly, co-expression of prpE and prpP did not lead to any 3HV formation. This study showed the possibility to change the PHBV composition without overdose of propionic acid which is expensive and toxic for the cells.  相似文献   

9.
The Escherichia coli XL1-blue strain was metabolically engineered to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] through 2-ketobutyrate, which is generated via citramalate pathway, as a precursor for propionyl-CoA. Two different metabolic pathways were examined for the synthesis of propionyl-CoA from 2-ketobutyrate. The first pathway is composed of the Dickeya dadantii 3937 2-ketobutyrate oxidase or the E. coli pyruvate oxidase mutant (PoxB L253F V380A) for the conversion of 2-ketobutyrate into propionate and the Ralstonia eutropha propionyl-CoA synthetase (PrpE) or the E. coli acetyl-CoA:acetoacetyl-CoA transferase for further conversion of propionate into propionyl-CoA. The second pathway employs pyruvate formate lyase encoded by the E. coli tdcE gene or the Clostridium difficile pflB gene for the direct conversion of 2-ketobutyrate into propionyl-CoA. As the direct conversion of 2-ketobutyrate into propionyl-CoA could not support the efficient production of P(3HB-co-3HV) from glucose, the first metabolic pathway was further examined. When the recombinant E. coli XL1-blue strain equipped with citramalate pathway expressing the E. coli poxB L253F V380A gene and R. eutropha prpE gene together with the R. eutropha PHA biosynthesis genes was cultured in a chemically defined medium containing 20 g/L of glucose as a sole carbon source, P(3HB-co-2.3 mol% 3HV) was produced up to the polymer content of 61.7 wt.%. Moreover, the 3HV monomer fraction in P(3HB-co-3HV) could be increased up to 5.5 mol% by additional deletion of the prpC and scpC genes, which are responsible for the metabolism of propionyl-CoA in host strains.  相似文献   

10.
Summary A Pseudomonas sp. EL-2 strain capable of synthesizing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] was isolated from activated sludge. For simulation of P(3HB-co-3HV) production in the cells, deficiency of nutrients such as NH4 +, SO4 2- and Mg2+ was crucial and the maximum content of P(3HB-co-3HV) could reach 46% on NH4 +-deficient medium. This organism synthesized P(3HB-co-3HV) with 3HV monomer in the range from 1.9 to 49.3 mol% from unrelated single carbon sources such as glucose, fructose, propionate, or sorbitol. P(3HB-co-3HV)s containing a higher fraction of 3HV were produced by adding propionic acid to glucose medium.  相似文献   

11.
A new method to estimate the number of polyhydroxyalkanoates (PHA)-degraders in soil and to isolate degraders, called the film-MPN method, is proposed. The incubation time was measured by the first order reaction (FOR) model. This method was used to estimate numbers of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)[P(3HB-co-3HV)]- and poly(3-hydroxyvalerate-co-4-hydroxybutyrate)[P(3HB-co-4HB)]-degraders in garden soil (4.30 × 105 and 2.15 × 105 aerobic degraders per gram of dry soil, respectively). The number of P(3HB-co-3HV)-degraders in paddy field soil was 5.06 × 105 aerobic degraders per gram dry soil. Also, several P(3HB-co-3HV)-degraders were isolated directly from positive-growth tubes of high dilution.  相似文献   

12.
13.
The biosynthesis of polyhydroxyalkanoate copolymers in Escherichia coli from unrelated carbon sources becomes attractive nowadays. We previously developed a poly(hydroxybutyrate-co-hydroxyvalerte) (PHBV) biosynthetic pathway from an unrelated carbon source via threonine metabolic route in E. coli (Chen et al., Appl Environ Microbiol 77:4886-4893, 2011). In our study, a citramalate pathway was introduced in recombinant E. coli by cloning a cimA gene from Leptospira interrogans. By blocking the pyruvate and the propionyl-CoA catabolism and replacing the β-ketothiolase gene, the PHBV with 11.5 mol% 3HV fraction was synthesized. Further, the combination of citramalate pathway with the threonine biosynthesis pathway improved the 3HV fraction in PHBV copolymer to 25.4 mol% in recombinant E. coli.  相似文献   

14.
Pseudomonas sp EL-2 was cultivated to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] from a structurally unrelated carbon source, glucose, by a fed-batch culture technique. Variation of the carbon to nitrogen (C/N) ratio of the medium produced optimal P(3HB-co-3HV) production at a C/N ratio of 95. Production of P(3HB-co-3HV) was favored by a dissolved oxygen tension of 40%. A maximum biomass concentration of 38 g L−1 containing 53% P(3HB-co-3HV) was achieved after 45 h of cultivation. This corresponds to a volumetric productivity of 0.84 g L−1 h−1. The copolymer contained 7.5 mol% 3-hydroxyvalerate. Journal of Industrial Microbiology & Biotechnology (2000) 24, 36–40. Received 28 January 1999/ Accepted in revised form 11 September 1999  相似文献   

15.
Biopolymers, such as poly-3-hydroxybutyrate (P(3HB)) are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB) production is currently more expensive than the production of oil-derived plastics, and therefore, more efficient P(3HB) production processes would be desirable. In this study, we describe the model-guided design and experimental validation of several engineered P(3HB) producing operons. In particular, we describe the characterization of a hybrid phaCAB operon that consists of a dual promoter (native and J23104) and RBS (native and B0034) design. P(3HB) production at 24 h was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. Additionally, we describe the utilization of non-recyclable waste as a low-cost carbon source for the production of P(3HB).  相似文献   

16.
17.
Several recombinant Escherichia coli strains, including XL1-Blue, JM109, HB101, and DH5alpha harboring a stable high-copynumber plasmid pSYL105 containing the Alcaligenes eutrophus polyhydroxyalkanoate (PHA) biosynthesis genes were constructed. These recombinant strains were examined for their ability to synthesize and accumulate poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymer from glucose and either propionate or valerate. All recombinant E. coli strains could synthesize the P(3HB-co-3HV) copolymer in the medium containing glucose and propionate. However, only the homopolymer poly-(3-hydroxybutyrate) [P(3HB)] was synthesized from glucose and valerate. The PHA concentration and the 3HV fraction could be increased by inducing with acetate and/or oleate. When supplemented with oleate, the 3HV fraction increased by fourfold compared with that obtained without induction. Induction with propionate resulted in lower PHA concentration due to the inhibitory effect, but an 3HV fraction of as high as 33.0% could be obtained. These results suggest that P(3HB-co-3HV) can be efficiently produced from propionate by recombinant E. coli by inducing with acetate, propionate, or oleate. (c) 1996 John Wiley & Sons, Inc.  相似文献   

18.
Accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), a well-known co-polymer of polyhydroxyalkanoates family, was investigated in a N2-fixing cyanobacterium, Aulosira fertilissima CCC 444, in presence of propionate and valerate in the culture medium. The most significant rise in P(3HB-co-3HV) co-polymer content up to 77 % of dry cell weight was recorded under 0.5 % fructose?+?0.4 % valerate supplementation depicting a productivity of 38 mg L?1 day?1, which was further increased by 2.5-fold, i.e., up to 95 mg L?1 day?1 under P deficiency. Surface analysis revealed a regular and smooth surface for P(3HB-co-3HV) co-polymer, against rugged and porous surface of the homopolymer of poly-β-hydroxybutyrate. X-ray diffraction showed semi-crystalline nature of the P(3HB-co-3HV) co-polymer. The thermal and mechanical properties of the co-polymer are comparable with the chemoheterotrophic bacterial polymers, thus opens up possibilities of using cyanobacterial PHAs in various fields.  相似文献   

19.
20.
Fermentation strategies for production of high concentrations of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] with different 3-hydroxyvalerate (3HV) fractions by recombinant Escherichia coli harboring the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes were developed. Fed-batch cultures of recombinant E. coli with the pH-stat feeding strategy facilitated production of high concentrations and high contents of P(3HB-co-3HV) in a chemically defined medium. When a feeding solution was added in order to increase the glucose and propionic acid concentrations to 20 g/liter and 20 mM, respectively, after each feeding, a cell dry weight of 120.3 g/liter and a relatively low P(3HB-co-3HV) content, 42.5 wt%, were obtained. Accumulation of a high residual concentration of propionic acid in the medium was the reason for the low P(3HB-co-3HV) content. An acetic acid induction strategy was used to stimulate the uptake and utilization of propionic acid. When a fed-batch culture and this strategy were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 141.9 g/liter, 88.1 g/liter, 62.1 wt%, and 15.3 mol%, respectively. When an improved nutrient feeding strategy, acetic acid induction, and oleic acid supplementation were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 203.1 g/liter, 158.8 g/liter, 78.2 wt%, and 10.6 mol%, respectively; this resulted in a high level of productivity, 2.88 g of P(3HB-co-3HV)/liter-h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号