首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 282 毫秒
1.
Uptake of glucose, 3-O-methylglucose and sucrose into beetroot protoplasts is considerably stimulated by 10–6M fusicoccin. This effect is decreased in the presence of 10mM Na+ or K+, 2 mM Mg2+ or Ca2+. Whereas fusicoccin causes no change in the pH-optimum of the sugar uptake (pH 5.0), the apparent Km of this uptake which obeys a biphasic kinetics is decreased by the action of fusicoccin. In the protoplast suspension, fusicoccin induces an acidification which is suppressed by uncoupling agents. Correspondingly, uncouplers as well as vanadate and diethylstilbestrol markedly inhibit the effect of fusicoccin on sugar uptake. The present data support the view that glucose uptake into beetroot protoplasts depend on the proton-pumping activity of the plasmalemma-ATPase. cis–Abscisic acid diminishes significantly the fusicoccin-enhanced glucose uptake. By using a radioimmunoassay, the internal abscisic acid content of the protoplast was estimated to be in the range of 10–6 M. Protoplasts isolated from bundle tissue contain twice as much abscisic acid as those derived from storage parenchyma. Because protoplasts from the bundle tissue were shown to take up sugars much faster than those from the storage cells, the observed effect of abscisic acid might reflect an involvement of this hormone in the regulation of carbohydrate partitioning in the beet.Abbreviations ABA cis–abscisic acid - bundle protoplast protoplasts isolated from the conducting tissue of beetroots - DES diethylstilbestrol - FC fusicoccin - 3-OMG 3-O-methylglucopyranose - PCMBS p–chloromercuribenzenesulfonic acid - storage protoplasts protoplasts isolated from storage parenchyma  相似文献   

2.
Streptanthus tortuosus Kell. suspension cells will grow in a medium with sucrose as carbohydrate source. It was investigated whether the cells are able to take up sucrose or whether sucrose has to be hydrolyzed to glucose and fructose which eventually are taken up. The detailed quantitative analysis of sugar-uptake rates in the low concentration range up to 1 mM showed the following features: (i) There is definitely no sucrose-uptake system working in the low concentration range; any uptake of radioactivity from labelled sucrose proceeds via hydrolysis of sucrose by cell-wallbound invertase. (ii) Hexoses are taken up by two systems, a glucose-specific system with a K m of 45 M and a high V max for glucose and a K m of 6 mM and a low V max for fructose, and a fructosespecific system with a K m of 500 M and high a V max for fructose and a K m of 650 M and a low V max for glucose. (iii) There is a more than tenfold preference for uptake of the fructose derived from sucrose versus uptake of free fructose, with the result that the kinetic disadvantage of the fructoseuptake system compared to the glucose-uptake system is diminished if sucrose is supplied as the carbon source. It is speculated that invertase might work as an enzyme aiding in fructose transport.Abbreviations FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - FW fresh weight  相似文献   

3.
Jaleh Daie 《Planta》1987,171(4):474-482
The uptake of different sugars was studied in segments of isolated phloem from petioles of celery (Apium graveolens L.) in order to determine the kinetics and specificity of phloem loading in this highly uniform conductive tissue. The uptake kinetics of sucrose and the sugar alcohol, mannitol, which are both phloem-translocated, indicated presence of a single saturable system, while uptake of non-phloem sugars (glucose and 3-O-methylglucose) exhibited biphasic kinetics with lower uptake rates than those for sucrose and mannitol. The presence of unlabeled mannitol, 3-O-methylglucose and maltose in the incubation solution did not cause inhibition of labeled-sucrose uptake, indicating high carrier specificity and lack of sucrose hydrolysis in vivo. The pH optimum for sucrose uptake was 5–6. Furthermore, a rapid and transient alkalinization of the external media by sucrose indicated a sugar/H+-cotransport mechanism. Dual-labeling experiments showed that sucrose influx continued at a constant rate (V max=15 mol·h-1·(g FW)-1), whereas sucrose efflux was low and insensitive to external concentration. Therefore, the saturable uptake kinetics for sucrose did not appear to be the result of an equilibrium between rates of sucrose influx and efflux.Abbreviations 3-OMG 3-O-methylglucose - PCMBS p-chloromercuribenzene sulfonate - SE-CC sieve element-companion cell - VB vascular bundle  相似文献   

4.
K. Zambou  C. G. Spyropoulos 《Planta》1989,179(3):403-408
The uptake of D-mannose was studied in detached cotyledons of germinated fenugreek (Trigonella foenum-graecum L.) seeds. Uptake kinetics indicate the involvement of two components, a saturable component operating at low concentrations and a diffusion-like one at high concentrations. Treatment of cotyledons with carbonyl-cyanide-m-chlorophenylhydrazone and p-chloromercuribenzenesulfonic acid reduced D-mannose-uptake rates by about 35% and 35–65%, respectively. No difference in the uptake rates was observed in the presence of D-galactose or 3-O-methylglucose. D-Mannose uptake was not very much affected by pH. The optimum pH for its uptake was 6.5 while at pH 8.5 its uptake was reduced by 22%. D-Mannose addition to fenugreek cotyledons did not induce alkalinization of the medium. Furthermore, low turgor, which enhances proton/sugar cotransport, decreased D-mannose uptake while the uptake of 3-O-methylglucose was increased. The rate of D-mannose uptake by fenugreek cotyledons depended on the hours of imbibition. These changes of uptake were not followed by analogous changes in the turgor pressure (p) of fenugreek cotyledons, which remained fairly constant. Results indicate that D-mannose is partially taken up by a carrier which has high specificity for D-mannose, but not by a H+-sugar cotransport system. It is further concluded that the carrier plays an important role in switching on and off the uptake capacity of fenugreek cotyledons during seedling development.Abbreviations and symbols CCCP carbonylcyanide-m-chlorophenylhydrazone - DTT dithiothreitol - 3-OMG 3-O-methylglucose - PCMBS p-chloromercuribenzensulfonic acid - water potential - s osmotic potential - p turgor pressure  相似文献   

5.
Bong-Heuy Cho  Ewald Komor 《Planta》1984,162(1):23-29
The incubation of Chlorella cells with glucose causes the induction of an uptake system, which is specific for the basic amino acids arginine and lysine. Both amino acids are taken up in the positively charged form and with high affinity (K m values 2 M and 7 M, respectively). The transport of arginine depolarizes the membrane by 20–30 mV. The charge compensation is achieved within a few seconds after arginine addition by the proton pump, later on K+ efflux serves for charge compensation. No evidence for arginine-proton symport was found, neither by inhibitor studies nor by use of other Chlorella strains which have a slower-responding proton pump. The accumulation of arginine is appreciably higher than it should be according to the thermodynamic force of the membrane potential. There is, however, some evidence that a large proportion of arginine is trapped by intracellular compartments and is therefore not in equilibrium with the outside arginine.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - FCCP p-trifluoromethoxycarbonylcyanide phenylhydrazone  相似文献   

6.
After removal of the lower epidermis, leaf discs ofVicia faba L. were loaded with either [14C]sucrose or [3H]3-O-methylglucose (3-O-MeG). The exit of preloaded sucrose was strongly stimulated when sucrose was present in the bathing medium, and the exit of 3-O-MeG was also markedly increased in the presence of 3-O-MeG. This specific stimulation exhibited single saturation dependence on the external concentration of sugar (K m=9 mM for sucrose, 5 mM for 3-O-MeG), and was sensitive to low temperature, uncouplers and thiol reagents. Sucrose exit was never affected by 3-O-MeG in the bathing medium. Sucrose did not affect the exit of 3-O-MeG in fresh discs, but promoted this exit in discs previously aged for 12 h, indicating partial external hydrolysis of sucrose in the latter tissues. Ageing also dramatically increased the exit of 3-O-MeG induced by 3-O-MeG but had no effect on the exit of sucrose induced by sucrose. The ability of 53 compounds (pentoses, hexoses, hexose-phosphates, polyols, di- and trisaccharides, phenyl- and nitrophenyl-derivatives, sweeteners) to interact with the sucrose carrier and with the hexose carrier was tested. Sucrose, maltose, -phenylglucoside andp-nitrophenyl--glucoside interacted with the sucrose carrier.d-glucose,d-xylose,d-fucose,d-galactose,d-mannose, 3-O-MeG and 2-deoxyglucose interacted with the hexose carrier.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - 3-O-MeG 3-O-methylglucose - PCMBS p-chloromercuribenzenesulphonic acid  相似文献   

7.
Alkaloid uptake into vacuoles isolated from a Fumaria capreolata L. cell suspension culture was investigated. The uptake is carrier-mediated as shown by its substrate saturation, its sensitivity to metabolic inhibitors and especially by its exclusive preference for the (S)-forms of reticuline and scoulerine while the (R)-enantiomers which do not occur in this plant species were strictly discriminated. The carrier has a high affinity for (S)-reticuline with a K m=0.3 M. The rate of alkaloid uptake was 6 pmol·h-1·l-1 vacuole, and 0.03 mg alkaloid·mg-1 vacuolar protein were taken up. Transport was stimulated five-to seven-fold by ATP and was inhibited by the ATPase inhibitors N,N-dicyclohexylcarbodiimide and 4-4-diisothiocyanatostilbene-2,2 disulfonic acid, as well as by the protonophore carbonyl cyanide m-chlorophenylhydrazone. A number of alkaloids did not compete with labelled (S)-reticuline for uptake into vacuoles. The uptake system is absolutely specific for alkaloids indigenous to the plant from which the vacuoles were isolated. Slight modifications of the topography of an alkaloid molecule even with full retention of its electrical charge results in its exclusion. Alkaloid efflux was also shown to be mediated by a highly specific energy-dependent carrier. These results contradict the previously proposed ion-trap mechanism for alkaloid accumulation in vacuoles. A highly specific carrier-mediated and energy-dependent proton antiport system for alkaloid uptake and release is postulated.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DIDS 4-4-diisothiocyanatostilbene-2,2 disulfonic acid Dedicated to Professor Harry Beevers, Santa Cruz, on the occasion of his 60th birthday  相似文献   

8.
Gisela Mäck  Rudolf Tischner 《Planta》1990,182(2):169-173
The pericarp of the dormant sugarbeet fruit acts as a storage reservoir for nitrate, ammonium and -amino-N. These N-reserves enable an autonomous development of the seedling for 8–10 d after imbibition. The nitrate content of the seed (1% of the whole fruit) probably induces nitrate-reductase activity in the embryo enclosed in the pericarp. Nitrate that leaks out of the pericarp is reabsorbed by the emerging radicle. Seedlings germinated from seeds (pericarp was removed) without external N-supply are able to take up nitrate immediately upon exposure via a low-capacity uptake system (vmax = 0.8 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.12 mM). We assume that this uptake system is induced by the seed nitrate (10 nmol/seed) during germination. Induction of a high-capacity nitrate-uptake system (vmax = 3.4 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.08 mM) by externally supplied nitrate occurs after a 20-min lag and requires protein synthesis. Seedlings germinated from whole fruits absorb nitrate via a highcapacity uptake mechanism induced by the pericarp nitrate (748 nmol/pericarp) during germination. The uptake rates of the high-capacity system depend only on the actual nitrate concentration of the uptake medium and not on prior nitrate pretreatments. Nitrate deprivation results in a decline of the nitrate-uptake capacity (t1/2 of vmax = 5 d) probably caused by the decay of carrier molecules. Small differences in Ks but significant differences in vmax indicate that the low- and high-capacity nitrate-uptake systems differ only in the number of identical carrier molecules.Abbreviations NR nitrate reductase - pFPA para-fluorophenylalanine This work was supported by a grant from Bundesministerium für Forschung und Technologie and by Kleinwanzlebener Saatzucht AG, Einbeck.  相似文献   

9.
Sulphate uptake by Amphidinium carterae, Amphidinium klebsii and Gymnodinium microadriaticum grown on artificial seawater medium with sulphate, cysteine, methionine or taurine as sulphur source occurred via an active transport system which conformed to Michaelis-Menten type saturation kinetics. Values for K m ranged from 0.18–2.13 mM and V max ranged from 0.2–24.2 nmol · 105 cells–1 · h–1. K m for symbiotic G. microadriaticum was 0.48 mM and V max was 0.2 nmol · 105 cells–1 · h–1. Sulphate uptake was slightly inhibited by chromate and selenate, but not by tungstate, molybdate, sulphite or thiosulphate. Cysteine and methionine (0.1 mM), but not taurine, inhibited sulphate uptake by symbiotic G. microadriaticum, but not by the two species of Amphidinium. Uptake was inhibited 45–97% under both light and dark conditions by carbonylcyanide 3-chlorophenylhydrazone (CCCP); under dark conditions sulphate uptake was 40–60% of that observed under light conditions and was little affected by 3-(3,4-dichlorophenyl) 1,1-dimethylurea (DCMU).The uptake of taurine, cysteine and methionine by A. carterae, A. klebsii, cultured and symbiotic G. microadriaticum conformed to Michaelis-Menten type saturation kinetics. K m values of taurine uptake ranged from 1.9–10 mM; for cysteine uptake from 0.6–3.2 mM and methionine from 0.001–0.021 mM. Cysteine induced a taurine uptake system with a K m of 0.3–0.7 mM. Cysteine and methionine uptake by all organisms was largely unaffected by darkness or by DCMU in light or darkness. CCCP significantly inhibited uptake of these amino acids. Thus energy for cysteine and methionine uptake was supplied mainly by respiration. Taurine uptake by A. carterae was independent of light but was inhibited by CCCP, whereas uptake by A. klebsii and symbiotic G. microadriaticum was partially dependent on photosynthetic energy. Taurine uptake by cultured G. microadriaticum was more dependent on photosynthetic energy and was more sensitive to CCCP. Cysteine inhibited uptake of methionine and taurine by cultured and symbiotic G. microadriaticum to a greater extent than in the Amphidinium species. Methionine did not greatly affect taurine uptake, but did inhibit cysteine uptake. Taurine did not affect the uptake of cysteine or methionine.  相似文献   

10.
Growth of autotrophically growing duck-weeds (Lemna gibba L., G1) was stimulated by sucrose. The rate of respiration increased when plants had been grown on sucrose (8.7 mol O2 g-1 fresh weight (FW) h-1) and was reduced after growth without sucrose in the dark or under longday conditions (2.5 mol O2 g-1 FW h-1). Photosynthesis was induced already by low light intensities (0.1 klx).Short-time application of glucose or sucrose stimulated respiration in proportion to the hexose uptake rate. Sucrose is probably not taken up as the disaccharide. The transported sugar species after addition of sucrose are its hexose moieties produced by the high activity of the cell wall invertase. Fructose stimulated to a lesser extent; mannitol induced no enhancement; 2-deoxyglucose slightly inhibited O2 uptake. After mild carbon starvation of the plants the uptake of glucose and 3-O-methylglucose proceeded without any lag phase, with similar saturation kinetics in both cases. The initial uptake rate at substrate saturation was 2.6 mol glucose g-1 FW h-1 in the dark. Light stimulated hexose uptake by 2 to 3 times. The results show that Lemna gibba has an energy-dependent constitutive system for hexose uptake.Abbreviation FW fresh weight - LD long day - SD short day  相似文献   

11.
Fluxes of carbohydrate metabolism in ripening bananas   总被引:1,自引:0,他引:1  
The major fluxes of carbohydrate metabolism were estimated during starch breakdown by ripening bananas (Musa cavendishii Lamb ex Paxton). Hands of bananas, untreated with ethylene, were allowed to ripen in the dark at 21° C. Production of CO2 and the contents of starch, sucrose, glucose and fructose of intact fruit were determined for a period of 10 d that included the climacteric. The detailed distribution of label was determined after supplying the following to cores of pulp from climacteric fruit: [U-14C]-, [1-14C]-, [3,4-14C]-and [6-14C]glucose, [U-14C]glycerol, 14CO2. The data obtained were used to estimate the following fluxes, values given as mol hexose · (g FW)–1 · h–1 in parenthesis: starch to hexose monophosphates (5.9) and vice versa (0.4); hexose monophosphates to sucrose (7.7); sucrose to hexose (4.7); hexose to hexose monophosphate (3.8); glycolysis (0.5–1.6); triose phosphate to hexose monophosphates (0.14); oxidative pentose-phosphate pathway (0.48); CO2 fixation in the dark (0.005). These estimates are related to our understanding of carbohydrate metabolism during ripening.We both thank Mr Richard Trethewey for his constructive criticism: S.A.H. thanks the Managers of the Broodbank Fund for a fellowship.  相似文献   

12.
R. McDonald  S. Fieuw  J. W. Patrick 《Planta》1996,198(4):502-509
The mechanism of carrier-mediated sucrose uptake by the dermal transfer cells of developing Vicia faba L. cotyledons was studied using excised cotyledons and isolated transfer cell protoplasts. Addition of sucrose resulted in a transitory alkalinization of the bathing solution whereas additions of glucose, fructose or raffinose had no effect. Dissipating the proton motive force by exposing cotyledons and isolated transfer cell protoplasts to an alkaline pH, carbonylcyanide m-chlorophenylhydrazone, weak acids (propionic acid and 5,5-dimethyl-oxazolidine-2,4-dione) or tetraphenylphos-phonium ion resulted in a significant reduction of sucrose uptake. The ATPase inhibitors, erythrosin B (EB), diethylstilbestrol (DES) and N,N-dicyclohexylcarbodiimide (DCCD) were found to abolish the sucrose-induced medium alkanization as well as reduce sucrose uptake. Cytochemical localization of the ATPase, based on lead precipitation, demonstrated that the highest activity was present in the plasma membranes located in wall ingrowth regions of the dermal transfer cells. The presence of a transplasma-membrane redox system was detected by the extracellular reduction of the electron acceptor, hexacyanoferrate III. The reduction of the ferric ion was coupled to a release of protons. The redox-induced proton extrusion was abolished by the ATPase inhibitors EB, DES and DCCD suggesting that proton extrusion was solely through the H+-ATPase. Based on these findings, it is postulated that cotyledonary dermal transfer cells take up sucrose by a proton symport mechanism with the proton motive force being generated by a H + -ATPase. Sucrose uptake by the storage parenchyma and inner epidermal cells of the cotyledons did not exhibit characteristics consistent with sucrose-proton symport.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DES diethylstilbestrol - EB erythrosin B - Em membrane potential - FC fusicoccin - HCF II hexacyanoferrate II - HCF III hexacyanoferrate III - Mes 2-(N-morpholino)ethanesulfonic acid - pmf proton motive force - TPP+ tetraphenylphosphonium ion The investigation was supported by funds from the Research Management Committee, The University of Newcastle and the Australian Research Council. One of us, R. McDonald, gratefully acknowledges the support of an Australian Postgraduate Research Award. We are indebted to Stella Savory for preparing the ultrathin sections for electron microscopy.  相似文献   

13.
M. Voß  M. Weidner 《Planta》1988,173(1):96-103
Tonoplast vesicles were prepared from red-beet (Beta vulgaris L. ssp. conditiva) hypocotyl tubers (beetroot) known to store sucrose. Uptake experiments, employing uridine 5-diphospho-[14C]glucose (UDP-[14C]glucose) showed the operation of an UDP-glucose-dependent group translocator for vectorial synthesis and accumulation of sucrose, recently described for sugarcane and red-beet vacuoles and for tonoplast vesicles prepared from sugarcane suspension cells. Characterization of the kinetic properties yielded the following results. Uptake of UDP-glucose was linear for 15 min. The apparent K m was 0.75 mM for UDP-glucose (at pH 7.2, 1 mM Mg2+), V max was 32 nmol·(mg protein)-1·min-1. The incorporation of UDP-glucose exhibited a sigmoidal substrate-saturation curve in the absence of Mg2+, the Hill coefficient (n H) was 1.33; Michaelis-Menten kinetics were obtained, however, in the presence of 1 mM MgCl2. For the reaction sequence under the control of the group translocator a dual pH optimum was found at pH 7.2 and 7.9, respectively. All reaction intermediates and the end product sucrose could be identified by two-dimensional high-performance thin-layer chromatography and autoradiography. The distribution pattern of radioactivity showed almost uniformly high labeling of all intermediates and sucrose. The physiological relevance of the results is discussed in the light of the fact that the tonoplast of red-beet storage cells accommodates two mechanisms of sucrose uptake (i) vectorial sucrose synthesis and (ii) direct ATP-dependent sucrose assimilation.Abbreviations HPTLC High-performance thin-layer chromatography - UDP uridine 5-diphosphate - SDS sodium dodecyl sulfate  相似文献   

14.
Influx, efflux and net uptake of NO 3 was studied in Pisum sativum L. cv. Marma in short-term experiments where 13NO 3 was used to trace influx. The influx rate in N-limited plants was similar both during net uptake at external concentrations of around 50 M, and at low external NO 3 concentrations (4–6 M) when net uptake was practically zero. Efflux could be inferred from discrepancies between influx and net uptake but was never very high in the N-limited plants during net uptake. Close to the threshold concentration for not NO 3 uptake, efflux was high and equalled influx. Thus, the threshold concentration can be regarded as a NO 3 compensation point. The inclusion of NH 4 + in the outer medium decreased influx by about 40% but did not significantly affect efflux. The roles of NO 3 fluxes and nitrate-reductase activity in regulating/limiting NO 3 utilization are discussed.Abbreviations DW dry weight - FW fresh weight - RN relative nitrogen addition rate  相似文献   

15.
Data for the maximum carboxylation velocity of ribulose-1,5-biosphosphate carboxylase, Vm, and the maximum rate of whole-chain electron transport, Jm, were calculated according to a photosynthesis model from the CO2 response and the light response of CO2 uptake measured on ears of wheat (Triticum aestivum L. cv. Arkas), oat (Avena sativa L. cv. Lorenz), and barley (Hordeum vulgare L. cv. Aramir). The ratio Jm/Vm is lower in glumes of oat and awns of barley than it is in the bracts of wheat and in the lemmas and paleae of oat and barley. Light-microscopy studies revealed, in glumes and lemmas of wheat and in the lemmas of oat and barley, a second type of photosynthesizing cell which, in analogy to the Kranz anatomy of C4 plants, can be designated as a bundle-sheath cell. In wheat ears, the CO2-compensation point (in the absence of dissimilative respiration) is between those that are typical for C3 and C4 plants.A model of the CO2 uptake in C3–C4 intermediate plants proposed by Peisker (1986, Plant Cell Environ. 9, 627–635) is applied to recalculate the initial slopes of the A(pc) curves (net photosynthesis rate versus intercellular partial pressure of CO2) under the assumptions that the Jm/Vm ratio for all organs investigated equals the value found in glumes of oat and awns of barley, and that ribulose-1,5-bisphosphate carboxylase is redistributed from mesophyll to bundle-sheath cells. The results closely match the measured values. As a consequence, all bracts of wheat ears and the inner bracts of oat and barley ears are likely to represent a C3–C4 intermediate type, while glumes of oat and awns of barley represent the C3 type.Abbreviations A net photosynthesis rate (mol·m-2·s-1) - Jm maximum rate of whole-chain electron transport (mol·e-·m-2·s-1) - pc (bar) intercellular partial pressure of CO2 - PEP phosphoenolpyruvate - PPFD photosynthetic photon flux density (mol quanta·m-2·s-1) - RuBPCase ribulose bisphosphate carboxylase/oxygenase - RuBP ribulose bisphosphate - Vm maximum carboxylation velocity of RuBPCase (mol·m-2·s-1) - T* CO2 compensation point in the absence of dissimilative respiration (bar)  相似文献   

16.
Nitrogen-starved sunflower plants (Helianthus annuus L. cv. Peredovic) cannot absorb NO 3 or NO 2 upon initial exposure to these anions. Ability of the plants to take up NO 3 and NO 2 at high rates from the beginning was induced by a pretreatment with NO 3 . Nitrite also acted as inducer of the NO 2 -uptake system. The presence of cycloheximide during NO 3 -pretreatment prevented the subsequent uptake of NO 3 and NO 2 , indicating that both uptake systems are synthesized de novo when plants are exposed to NO 3 . Cycloheximide also suppressed nitrate-reductase (EC 1.6.6.1) and nitrite-reductase (EC 1.7.7.1) activities in the roots. The sulfhydryl-group reagent N-ethylmaleimide greatly inhibited the uptake of NO 3 and NO 2 . Likewise, N-ethylmaleimide promoted in vivo the inactivation of nitrate reductase without affecting nitrite-reductase activity. Rates of NO 3 and NO 2 uptake as a function of external anion concentration exhibited saturation kinetics. The calculated Km values for NO 3 and NO 2 uptake were 45 and 23 M, respectively. Rates of NO 3 uptake were four to six times higher than NO 3 -reduction rates in roots. In contrast, NO 2 -uptake rates, found to be very similar to NO 3 -uptake rates, were much lower (about 30 times) than NO 2 -reduction rates. Removal of oxygen from the external solution drastically suppressed NO 3 and NO 2 uptake without affecting their reduction. Uptake and reduction were also differentially affected by pH. The results demonstrate that uptake of NO 3 and NO 2 into sunflower plants is mediated by energy-dependent inducible-transport systems distinguishable from the respective enzymatic reducing systems.Abbreviations CHI cycloheximide - NEM N-ethylmaleimide - NiR nitrite reductase - NR nitrate reductase - pHME p-hydroxymercuribenzoate This research was supported by grant PB86-0232 from the Dirección General de Investigatión Científica y Técnica (Spain). One of us (E.A.) thanks the Consejeria de Educación y Ciencia de la Junta de Andalucia for the tenure of a fellowship. We thank Miss G. Alcalá and Miss C. Santos for their valuable technical and secretarial assistance.  相似文献   

17.
Roberto Viola 《Planta》1996,198(2):186-196
Metabolism of radiolabelled hexoses by discs excised from developing potato (Solanum tuberosum L.) tubers was been investigated in the presence of acid invertase to prevent accumulation of labelled sucrose in the bathing medium (Viola, 1996, Planta 198: 179–185). When the discs were incubated with either [U-14C]glucose or [U-14C]fructose without unlabelled hexoses, the unidirectional rate of sucrose synthesis was insignificant compared with that of sucrose breakdown. The inclusion of unlabelled fructose in the medium induced a dramatic increase in the unidirectional rate of sucroses synthesis in the tuber discs. Indeed, the decline in the sucrose content observed when discs were incubated without exogenous sugars could be completely prevented by including 300 mM fructose in the bathing medium. On the other hand, the inclusion of unlabelled glucose in the medium did not significantly affect the relative incorporation of [U-14C]glucose to starch, sucrose or glycolytic products. Substantial differences in the intramolecular distribution of 13C enrichment in the hexosyl moieties of sucrose were observed when the discs were incubated with either [2-13C]fructose or [2-13C]glucose. The pattern of 13C enrichment distribution in sucrose suggested that incoming glucose was converted into sucrose via the sucrose-phosphate synthase pathway whilst fructose was incorporated directly into sucrose via sucrose synthase. Quantitative estimations of metabolic fluxes in vivo in the discs were also provided. The apparent maximal rate of glucose phosphorylation was close to the extractable maximum catalytic activity of glucokinase. On the other hand, the apparent maximal rate of fructose phosphorylation was much lower than the maximum catalytic activity of fructokinase, suggesting that the activity of the enzyme (unlike that of glucokinase) was regulated in vivo. Although in the discs incubated with or without fructose the rates of starch synthesis or glycolysis were similar, the relative partitioning of metabolic intermediates into sucrose was much higher in discs incubated with fructose (0.6% and 32.6%, respectively). It is hypothesised that the equilibrium of the reaction catalysed by sucrose synthase in vivo is affected in discs incubated with fructose as a result of the accumulation of the sugar in the tissue. This results in the onset of sucrose cycling. Incubation with glucose enhanced all metabolic fluxes. In particular, the net rate of starch synthesis increased from 2.0 mol · hexose · g FW–1 · h–1 in the absence of exogenous glucose to 3.7 mol · hexose · g FW–1 · h–1 in the presence of 300 mM glucose. These data are taken as an indication that the regulation of fructokinase in vivo may represent a limiting factor in the utilisation of sucrose for biosynthetic processes in developing potato tubers.Abbreviations ADPGlc adenosine 5-diphosphoglucose - Glc6P glucose-6-phosphate - hexose-P hexose phosphate - NMR nuclear magnetic resonance - UDPGlc uridine 5-diphosphoglucose Many thanks to L. Sommerville for skillfull assistance and to J. Crawford and J. Liu for useful discussions on flux analysis. The research was funded by the Scottish Office Agriculture and Fisheries Department.  相似文献   

18.
Experiments were conducted on14C-sorbitol, fructose, and glucose uptakeinto flesh discs, and sorbitol efflux from thediscs, with and without ABA application toexamine the effect of abscisic acid (ABA) onsugar accumulation in peach fruit flesh at thestart of the maturation stage in relation tomembrane transport. Total uptake of14C-sorbitol, fructose, and glucose intoflesh discs was effectively promoted by ABA ata concentration of 10–5 M. PCMBS(p-chloromercuribenzensulfonicacid)-sensitive uptake, which was considered ascarrier-mediated uptake, of sorbitol into thediscs was clearly stimulated by ABA at10–5 M, compared with glucose andfructose uptake. Sorbitol efflux from the discsacross the tonoplast was restricted by ABA at10–5 M. ABA application todeveloping fruit increased sugar accumulationin the fruit. Estimated ABA concentration inthis fruit was approximately 10–5 M. These results indicate that sugar accumulationin peach fruit flesh is stimulated by ABA at aconcentration of 10–5 M both invitro and in vivo. ABA stimulatesuptake of sugars, especially sorbitol, into theflesh by enhancing carrier-mediated transportpossibly across both tonoplast and plasmamembrane.  相似文献   

19.
I. Struve  U. Lüttge 《Planta》1987,170(1):111-120
Membrane vesicles were isolated from mesophyll cells of Mesembryanthemum crystallinum in the C3 state and in the crassulacean acid metabolism (CAM) state. The distribution of ATP-hydrolysis and H+-transport activities, and the activities of hydroxypyruvate reductase and Antimycin-insensitive cytochrome-c-reductase on continuous sucrose gradients was studied. For isolations carried out routinely a discontinuous sucrose gradient (24%/37%/50%) was used. Nitrate-sensitive ATP-hydrolysis and H+-transport activities increased several-fold during the transition from C3 photosynthesis to CAM. Nitrate-sensitive ATPase showed a substrate preference for ATP with an apparent Km (MgATP2-) of 0.19–0.37 mM. In both C3 and CAM states the ATPase showed a concentration-dependent stimulation by the anions chloride and malate. However, the pH optima of the two states were different: the ATPase of C3- M. crystallinum had an optimum of pH 7.4 and that of CAM-M. crystallinum an optimum of pH 8.4. The optical probe oxonol-VI was used to demonstrate the formation of MgATP2--dependent electric-potential gradients in tonoplast vesicles.Abbreviations Bistris-Pronane 1,3-bis [tris(hydroxymethyl)-methylaminol propane - CAM Crassulacean acid metabolism - DIDS 4,4-dilsothiocyano-2,2-stilbene disulfonic acid: - DTT dithiothreitol - ER endoplasmic reticulum - Hepes 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - HPR hydroxypyruvate reductase - IDPase inosine 5-diphosphatase - OX-VI oxonol VI - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

20.
Ulva rigida was cultivated in 7501 tanks at different densities with direct and continuous inflow (at 2, 4, 8 and 12 volumes d–1) of the effluents from a commercial marine fishpond (40 metric tonnes, Tm, of Sparus aurata, water exchange rate of 16 m3 Tm–1) in order to assess the maximum and optimum dissolved inorganic nitrogen (DIN) uptake rate and the annual stability of the Ulva tank biofiltering system. Maximum yields (40 g DW m–2 d–1) were obtained at a density of 2.5 g FW 1–1 and at a DIN inflow rate of 1.7 g DIN m–2 d–1. Maximum DIN uptake rates were obtained during summer (2.2 g DIN M–2 d–1), and minimum in winter (1.1 g DIN m–2 d–1) with a yearly average DIN uptake rate of 1.77 g DIN m–2 d–1 At yearly average DIN removal efficiency (2.0 g DIN m–2 d–1, if winter period is excluded), 153 m2 of Ulva tank surface would be needed to recover 100% of the DIN produced by 1 Tm of fish.Abbreviations DIN= dissolved inorganic nitrogen (NH inf4 sup+ + NO inf3 sup– + NO inf2 sup– ); - FW= fresh weight; - DW= dry weight; - PFD= photon flux density; - V= DIN uptake rate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号