首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical strength of the red cell membrane is dependent on ternary interactions among the skeletal proteins, spectrin, actin, and protein 4.1. Protein 4.1's spectrin-actin-binding (SAB) domain is specified by an alternatively spliced exon encoding 21 amino acid (aa) and a constitutive exon encoding 59 aa. A series of truncated SAB peptides were engineered to define the sequences involved in spectrin-actin interactions, and also membrane strength. Analysis of in vitro supramolecular assemblies showed that gelation activity of SAB peptides correlates with their ability to recruit a critical amount of spectrin into the complex to cross-link actin filaments. Also, several SAB peptides appeared to exhibit a weak, cooperative actin-binding activity which mapped to the first 26 residues of the constitutive 59 aa. Fluorescence-imaged microdeformation was used to show SAB peptide integration into the elastic skeletal network of spectrin, actin, and protein 4.1. In situ membrane-binding and membrane-strengthening abilities of the SAB peptides correlated with their in vitro gelation activity. The findings imply that sites for strong spectrin binding include both the alternative 21-aa cassette and a conserved region near the middle of the 59 aa. However, it is shown that only weak SAB affinity is necessary for physiologically relevant action. Alternatively spliced exons can thus translate into strong modulation of specific protein interactions, economizing protein function in the cell without, in and of themselves, imparting unique function.  相似文献   

2.
A complex family of 4.1R isoforms has been identified in non-erythroid tissues. In this study we characterized the exonic composition of brain 4.1R-10-kDa or spectrin/actin binding (SAB) domain and identified the minimal sequences required to stimulate fodrin/F-actin association. Adult rat brain expresses predominantly 4.1R mRNAs that carry an extended SAB, consisting of the alternative exons 14/15/16 and part of the constitutive exon 17. Exon 16 along with sequences carried by exon 17 is necessary and sufficient to induce formation of fodrin-actin-4.1R ternary complexes. The ability of the respective SAB domains of 4.1 homologs to sediment fodrin/actin was also investigated. 4.1G-SAB stimulates association of fodrin/actin, although with an approximately 2-fold reduced efficiency compared with 4.1R-10-kDa, whereas 4.1N and 4.1B do not. Sequencing of the corresponding domains revealed that 4.1G-SAB carries a cassette that shares significant homology with 4.1R exon 16, whereas the respective sequence is divergent in 4.1N and absent from brain 4.1B. An approximately 150-kDa 4.1R and an approximately 160-kDa 4.1G isoforms are present in PC12 lysates that occur in vivo in a supramolecular complex with fodrin and F-actin. Moreover, proteins 4.1R and 4.1G are distributed underneath the plasma membrane in PC12 cells. Collectively, these observations suggest that brain 4.1R and 4.1G may modulate the membrane mechanical properties of neuronal cells by promoting fodrin/actin association.  相似文献   

3.
An X  Debnath G  Guo X  Liu S  Lux SE  Baines A  Gratzer W  Mohandas N 《Biochemistry》2005,44(31):10681-10688
The ternary complex of spectrin, F-actin, and protein 4.1R defines the erythrocyte membrane skeletal network, which governs the stability and elasticity of the membrane. It has been shown that both 4.1R and actin bind to the N-terminal region (residues 1-301) of the spectrin beta chain, which contains two calponin homology domains, designated CH1 and CH2. Here, we show that 4.1R also binds to the separate CH1 and CH2 domains. Unexpectedly, truncation of the CH2 domain by its 20 amino acids, corresponding to its N-terminal alpha helix, was found to greatly enhance its binding to 4.1R. The intact N terminus and the CH1 but not the CH2 domain bind to F-actin, but again, deletion of the first 20 amino acids of the latter exposes an actin-binding activity. As expected, the polypeptide 1-301 inhibits the binding of spectrin dimer to actin and formation of the spectrin-actin-4.1R ternary complex in vitro. Furthermore, the binding of 4.1R to 1-301 is greatly enhanced by PIP(2), implying the existence of a regulatory switch in the cell.  相似文献   

4.
Three binary protein-protein interactions, glycophorin C (GPC)-4.1R, GPC-p55, and p55-4.1R, constitute the GPC-4.1R-p55 ternary complex in the erythrocyte membrane. Little is known regarding the molecular basis for the interaction of 4.1R with either GPC or p55 and regarding the role of 4.1R in regulating the various protein-protein interactions that constitute the GPC-4.1R-p55 ternary complex. In the present study, we present evidence that sequences in the 30-kDa domain encoded by exon 8 and exon 10 of 4.1R constitute the binding interfaces for GPC and p55, respectively. We further show that 4.1R increases the affinity of p55 binding to GPC by an order of magnitude, implying that 4.1R modulates the interaction between p55 and GPC. Finally, we document that binding of calmodulin to 4.1R decreases the affinity of 4.1R interactions with both p55 and GPC in a Ca(2+)-dependent manner, implying that the GPC-4.1R-p55 ternary protein complex can undergo dynamic regulation in the erythrocyte membrane. Taken together, these findings have enabled us to identify an important role for 4.1R in regulating the GPC-4.1R-p55 ternary complex in the erythrocyte membrane.  相似文献   

5.
Protein 4.1 is a globular 80-kDa component of the erythrocyte membrane skeleton that enhances spectrin–actin interaction via its internal 10-kDa domain. Previous studies have shown that protein 4.1 mRNA is expressed as multiple alternatively spliced isoforms, resulting from the inclusion or exclusion of small cassette sequences called motifs. By tissue screening for protein 4.1 isoforms, we have observed new features of an already complex pattern of alternative splicing within the spectrin/actin binding domain. In particular, we found a new 51-nt exon that is present almost exclusively in muscle tissue. In addition, we have isolated multiple genomic clones spanning over 200 kb, containing the entire erythroid and nonerythroid coding sequence of the human locus. The exon/intron structure has now been characterized; with the exception of a 17-nt motif, all of the alternatively spliced motifs correspond to individual exons. The 3′-untranslated region (UTR) has also been completely sequenced using various PCR and genomic-sequencing methods. The 3′ UTR, over 3 kb, accounts for one-half of the mature mRNA.  相似文献   

6.
Direct physical linkage of MAGUKs to the actin cytoskeleton was first established by the interaction of erythrocyte p55 with the FERM domain of protein 4.1R. Subsequently, it was reported that p55 binds to a 51-amino acid peptide, encoded by exon 10, located within the FERM domain of protein 4.1R. In this study, we investigated the nature of the p55-FERM domain binding interface and show that p55 binds to a second 35-amino acid peptide, encoded by an alternatively spliced exon 5, located within the FERM domain of protein 4.1R. Competition and Surface Plasmon Resonance-binding measurements suggest that the peptides encoded by exons 5 and 10 bind to independent sites within the D5 domain of p55. Interestingly, the full length 135 kDa isoform of protein 4.1R containing both exons 5 and 10 was targeted exclusively to the plasma membrane of epithelial cells whereas the same isoform without exon 5 completely lost its membrane localization capacity. Together, these results indicate that p55 binds to two distinct sites within the FERM domain, and the alternatively spliced exon 5 is necessary for the membrane targeting of protein 4.1R in epithelial cells. Since sequences similar to the exon 5-peptide of protein 4.1R and D5 domain of p55 are conserved in many proteins, our findings suggest that a similar mechanism may govern the membrane targeting of other FERM domain containing proteins.  相似文献   

7.
C M Cohen  S F Foley 《Biochemistry》1984,23(25):6091-6098
Ternary complex formation between the major human erythrocyte membrane skeletal proteins spectrin, protein 4.1, and actin was quantified by measuring cosedimentation of spectrin and band 4.1 with F-actin. Complex formation was dependent upon the concentration of spectrin and band 4.1, each of which promoted the binding of the other to F-actin. Simultaneous measurement of the concentrations of spectrin and band 4.1 in the sedimentable complex showed that a single molecule of band 4.1 was sufficient to promote the binding of a spectrin dimer to F-actin. However, the molar ratio of band 4.1/spectrin in the complex was not fixed, ranging from approximately 0.6 to 2.2 as the relative concentration of added spectrin to band 4.1 was decreased. A mole ratio of 0.6 band 4.1/spectrin suggests that a single molecule of band 4.1 can promote the binding of more than one spectrin dimer to an actin filament. Saturation binding studies showed that in the presence of band 4.1 every actin monomer in a filament could bind at least one molecule of spectrin, yielding ternary complexes with spectrin/actin mole ratios as high as 1.4. Electron microscopy of such complexes showed them to consist of actin filaments heavily decorated with spectrin dimers. Ternary complex formation was not affected by alteration in Mg2+ or Ca2+ concentration but was markedly inhibited by KCl above 100 mM and nearly abolished by 10 mM 2,3-diphosphoglycerate or 10 mM adenosine 5'-triphosphate. Our data are used to refine the molecular model of the red cell membrane skeleton.  相似文献   

8.
Spectrin dimers interact weakly with F-actin under physiological solvent conditions (with an association constant of about 5 X 10(3) M-1 at 20 degrees C). In the presence of the membrane skeletal constituent, protein 4.1, strong binding is observed; an analysis of the profiles for formation of a ternary complex leads to an association constant of about 1 X 10(12) M-2. This association becomes weaker at low ionic strength, whereas the opposite applies to the spectrin-actin interaction. The stability of the ternary complex is maximal at physiological ionic strength and somewhat above. The effect of temperature in the range 0-20 degrees C on the formation of the ternary complex is small, whereas the spectrin-actin interaction almost vanishes at low temperature. There is no detectable calcium sensitivity in either the binary or the ternary system within the limits of precision of our assay. The ternary complex resembles the natural system in the membrane in that the actin is resistant to dissociation and unavailable in the deoxyribonuclease assay; after selective proteolytic destruction of spectrin and 4.1, all the actin becomes available. In the absence of 4.1, spectrin dimers do not measurably protect the actin against dissociation.  相似文献   

9.
Protein 4.1R, a multifunctional structural protein, acts as an adaptor in mature red cell membrane skeletons linking spectrin-actin complexes to plasma membrane-associated proteins. In nucleated cells protein 4.1 is not associated exclusively with plasma membrane but is also detected at several important subcellular locations crucial for cell division. To identify 4.1 domains having critical functions in nuclear assembly, 4.1 domain peptides were added to Xenopus egg extract nuclear reconstitution reactions. Morphologically disorganized, replication deficient nuclei assembled when spectrin-actin-binding domain or NuMA-binding C-terminal domain peptides were present. However, control variant spectrin-actin-binding domain peptides incapable of binding actin or mutant C-terminal domain peptides with reduced NuMA binding had no deleterious effects on nuclear reconstitution. To test whether 4.1 is required for proper nuclear assembly, 4.1 isoforms were depleted with spectrin-actin binding or C-terminal domain-specific antibodies. Nuclei assembled in the depleted extracts were deranged. However, nuclear assembly could be rescued by the addition of recombinant 4.1R. Our data establish that protein 4.1 is essential for nuclear assembly and identify two distinct 4.1 domains, initially characterized in cytoskeletal interactions, that have crucial and versatile functions in nuclear assembly.  相似文献   

10.
《The Journal of cell biology》1987,105(6):2837-2845
Adducin is an erythrocyte membrane skeletal phosphoprotein comprised of two related subunits of 105,000 and 100,000 Mr. These peptides form a functional heterodimer, and the smaller of the two binds calmodulin in a calcium-dependent fashion. Although this protein has been physicochemically characterized, its function remains unknown. We have examined the interaction of human adducin with actin and with human erythrocyte spectrin using sedimentation, electrophoretic, and morphologic techniques. Purified adducin binds actin at physiologic ionic strength and bundles it into arrays of laterally arranged filaments, the adducin forming cross-bridges between the filaments at 35.2 /- 3.8 (2 SD) nm intervals. The stoichiometry of high affinity adducin binding to actin at saturation is 1:7, corresponding to a dimer of adducin for every actin helical unit. Adducin also promotes the binding of spectrin to actin independently of protein 4.1. At saturation, each adducin promotes the association of one spectrin heterodimer. The formation of this ternary spectrin-actin-adducin complex is independent of the assembly path, and the complex exists in a readily reversible equilibrium with the free components. The binding of adducin to actin and its ability to stimulate spectrin-actin binding is down-regulated by calmodulin in a calcium-dependent fashion. These results thus identify a putative role for adducin, and define a calcium- and calmodulin-dependent mechanism whereby higher states of actin association and its interaction with spectrin in the erythrocyte may be controlled.  相似文献   

11.
4.1 Proteins are a family of multifunctional cytoskeletal components (4.1R, 4.1G, 4.1N and 4.1B) derived from four related genes, each of which is expressed in the nervous system. Using subcellular fractionation, we have investigated the possibility that 4.1 proteins are components of forebrain postsynaptic densities, cellular compartments enriched in spectrin and actin, whose interaction is regulated by 4.1R. Antibodies to each of 4.1R, 4.1G, 4.1N and 4.1B recognize polypeptides in postsynaptic density preparations. Of these, an 80-kDa 4.1R polypeptide is enriched 11-fold in postsynaptic density preparations relative to brain homogenate. Polypeptides of 150 and 125 kDa represent 4.1B; of these, only the 125 kDa species is enriched (threefold). Antibodies to 4.1N recognize polypeptides of approximately 115, 100, 90 and 65 kDa, each enriched in postsynaptic density preparations relative to brain homogenate. Minor 225 and 200 kDa polypeptides are recognized selectively by specific anti-4.1G antibodies; the 200 kDa species is enriched 2.5-fold. These data indicate that specific isoforms of all four 4.1 proteins are components of postsynaptic densities. Blot overlay analyses indicate that, in addition to spectrin and actin, postsynaptic density polypeptides of 140, 115, 72 and 66 kDa are likely to be 4.1R-interactive. Of these, 72 kDa and 66 kDa polypeptides were identified as neurofilament L and alpha-internexin, respectively. A complex containing 80 kDa 4.1R, alpha-internexin and neurofilament L was immunoprecipitated with anti-4.1R antibodies from brain extract. We conclude that 4.1R interacts with the characteristic intermediate filament proteins of postsynaptic densities, and that the 4.1 proteins have the potential to mediate the interactions of diverse components of postsynaptic densities.  相似文献   

12.
Proteins of the 4.1 family are characteristic of eumetazoan organisms. Invertebrates contain single 4.1 genes and the Drosophila model suggests that 4.1 is essential for animal life. Vertebrates have four paralogues, known as 4.1R, 4.1N, 4.1G and 4.1B, which are additionally duplicated in the ray-finned fish. Protein 4.1R was the first to be discovered: it is a major mammalian erythrocyte cytoskeletal protein, essential to the mechanochemical properties of red cell membranes because it promotes the interaction between spectrin and actin in the membrane cytoskeleton. 4.1R also binds certain phospholipids and is required for the stable cell surface accumulation of a number of erythrocyte transmembrane proteins that span multiple functional classes; these include cell adhesion molecules, transporters and a chemokine receptor. The vertebrate 4.1 proteins are expressed in most tissues, and they are required for the correct cell surface accumulation of a very wide variety of membrane proteins including G-Protein coupled receptors, voltage-gated and ligand-gated channels, as well as the classes identified in erythrocytes. Indeed, such large numbers of protein interactions have been mapped for mammalian 4.1 proteins, most especially 4.1R, that it appears that they can act as hubs for membrane protein organization. The range of critical interactions of 4.1 proteins is reflected in disease relationships that include hereditary anaemias, tumour suppression, control of heartbeat and nervous system function. The 4.1 proteins are defined by their domain structure: apart from the spectrin/actin-binding domain they have FERM and FERM-adjacent domains and a unique C-terminal domain. Both the FERM and C-terminal domains can bind transmembrane proteins, thus they have the potential to be cross-linkers for membrane proteins. The activity of the FERM domain is subject to multiple modes of regulation via binding of regulatory ligands, phosphorylation of the FERM associated domain and differential mRNA splicing. Finally, the spectrum of interactions of the 4.1 proteins overlaps with that of another membrane-cytoskeleton linker, ankyrin. Both ankyrin and 4.1 link to the actin cytoskeleton via spectrin, and we hypothesize that differential regulation of 4.1 proteins and ankyrins allows highly selective control of cell surface protein accumulation and, hence, function. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé  相似文献   

13.
The Ca2(+)-dependent regulation of the erythroid membrane cytoskeleton was investigated. The low-salt extract of erythroid membranes, which is mainly composed of spectrin, protein 4.1, and actin, confers a Ca2+ sensitivity on its interaction with F-actin. This Ca2+ sensitivity is fortified by calmodulin and antagonized by trifluoperazine, a potent calmodulin inhibitor. Additionally, calmodulin is detected in the low-salt extract. These results suggest that calmodulin is the sole Ca2(+)-sensitive factor in the low-salt extract. The main target of calmodulin in the erythroid membrane cytoskeleton was further examined. Under native conditions, calmodulin forms a stable and equivalent complex with protein 4.1 as determined by calmodulin affinity chromatography, cross-linking experiments, and fluorescence binding assays with an apparent Kd of 5.5 x 10(-7) M irrespective of the free Ca2+ concentration. Domain mapping with chymotryptic digestion reveals that the calmodulin-binding site resides within the N-terminal 30-kDa fragment of protein 4.1. In contrast, the interaction of calmodulin with spectrin is unexpectedly weak (Kd = 1.2 x 10(-4) M). Given the content of calmodulin in erythrocytes (2-5 microM), these results imply that the major target for calmodulin in the erythroid membrane cytoskeleton is protein 4.1. Low- and high-shear viscometry and binding assays reveal that an equivalent complex of calmodulin with protein 4.1 regulates the spectrin/actin interaction in a Ca2(+)-dependent manner. At a low Ca2+ concentration, protein 4.1 potentiates the actin cross-linking and the actin binding activities of spectrin. At a high Ca2+ concentration, the protein 4.1-potentiated actin cross-linking activity but not the actin binding activity of spectrin is suppressed by Ca2+/calmodulin. The Ca2(+)-dependent regulation of the spectrin/protein 4.1/calmodulin/actin interaction is discussed.  相似文献   

14.
It has been demonstrated by our laboratory that the irreversibly sickled cell (ISC) spectrin-4.1-actin complex dissociates slowly as compared to ternary complexes formed out of control (AA) and reversibly sickle cell (RSCs) core skeletons. These studies indicated that the molecular basis for the inability of irreversibly sickled cells (ISCs) to change shape is a skeleton that disassembles, and therefore reassembles, very slowly. The present study is based on the following observations: a) alpha-spectrin repeats 20 and 21 contain ubiquitination sites, and b) The spectrin repeats beta-1 and beta-2 are in direct contact with spectrin repeats alpha-20 and alpha-21 during spectrin heterodimer formation, and contain the protein 4.1 binding domain. We demonstrate here that alpha-spectrin ubiquitination at repeats 20 and 21 increases the dissociation of the spectrin-protein-4.1-actin ternary complex thereby regulating protein 4.1's ability to stimulate the spectrin-actin interaction. Performing in vitro ternary complex dissociation assays with AA control and sickle cell SS spectrin (isolated from high-density sickle cells), we further demonstrate that reduced ubiquitination of alpha-spectrin is, in part, responsible for the locked membrane skeleton in sickle cell disease.  相似文献   

15.
The review is focused on the domain structure and function of protein 4.1, one of the proteins belonging to the membrane skeleton. The protein 4.1 of the red blood cells (4.1R) is a multifunctional protein that localizes to the membrane skeleton and stabilizes erythrocyte shape and membrane mechanical properties, such as deformability and stability, via lateral interactions with spectrin, actin, glycophorin C and protein p55. Protein 4.1 binding is modulated through the action of kinases and/or calmodulin-Ca2+. Non-erythroid cells express the 4.1R homologues: 4.1G (general type), 4.1B (brain type), and 4.1N (neuron type), and the whole group belongs to the protein 4.1 superfamily, which is characterized by the presence of a highly conserved FERM domain at the N-terminus of the molecule. Proteins 4.1R, 4.1G, 4.1N and 4.1B are encoded by different genes. Most of the 4.1 superfamily proteins also contain an actin-binding domain. To date, more than 40 members have been identified. They can be divided into five groups: protein 4.1 molecules, ERM proteins, talin-related molecules, protein tyrosine phosphatase (PTPH) proteins and NBL4 proteins. We have focused our attention on the main, well known representatives of 4.1 superfamily and tried to choose the proteins which are close to 4.1R or which have distinct functions. 4.1 family proteins are not just linkers between the plasma membrane and membrane skeleton; they also play an important role in various processes. Some, such as focal adhesion kinase (FAK), non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells, play the role in cell adhesion. The other members control or take part in tumor suppression, regulation of cell cycle progression, inhibition of cell proliferation, downstream signaling of the glutamate receptors, and establishment of cell polarity; some are also involved in cell proliferation, cell motility, and/or cell-to-cell communication.  相似文献   

16.
The role of band 4.1 in the association of actin with erythrocyte membranes   总被引:8,自引:0,他引:8  
Spectrin stimulates the association of F-actin with erythrocyte inside-out vesicles. Although inside-out vesicles are nearly devoid of two of the three major cytoskeletal proteins, spectrin and actin, they retain nearly all of the cytoskeletal protein designated band 4.1. Inside-out vesicles which have been substantially depleted of band 4.1 by extraction in 1 M KCl, 0.4 M urea and then reconstituted with spectrin show a markedly diminished ability to bind actin by comparison with vesicles containing normal amounts of band 4.1. This diminution is not due to an impaired ability of the vesicles to bind spectrin. Addition of purified band 4.1 to vesicles either before or after they have been reconstituted with spectrin restores their actin binding capacity to near normal levels as does addition of a spectrin-band 4.1 complex prepared by sucrose gradient centrifugation. Band 4.1 bound to vesicles in the absence of added spectrin has no effect on actin binding. Our results suggest that a spectrin band 4.1 complex is responsible for binding actin to erythrocyte membranes.  相似文献   

17.
The calcium receptor calmodulin interacts with components of the human red cell membrane skeleton as well as with the membrane. Under physiological salt conditions, calmodulin has a calcium-dependent affinity for spectrin, one of the major components of the membrane skeleton. It is apparent from our results that calmodulin inhibits the ability of erythrocyte spectrin (when preincubated with filamentous actin) to create nucleation centers and thereby to seed actin polymerization. The gelation of filamentous actin induced by spectrin tetramers is also inhibited by calmodulin. The inhibition is calcium dependent and decreases with increasing pH, similar to the binding of calmodulin to spectrin. Direct binding studies using aqueous two-phase partition indicate that calmodulin interferes with the binding of actin to spectrin. Even in the presence of protein 4.1, which is believed to stabilize the ternary complex, calmodulin has an inhibitory effect. Since calmodulin also inhibits the corresponding activities of brain spectrin (fodrin), it appears likely that calmodulin may modulate the organization of cytoskeletons containing actin and spectrin or spectrin analogues.  相似文献   

18.
19.
By shadowing specimens dried onto mica sheets we have obtained clear images of actin crosslinked by spectrin, an actin-binding protein found in erythrocytes. We conclude that spectrin dimers possess a single binding site for F actin. Tetramers formed by head-to-head association of two dimers possess two actin binding sites, one at each tail. Polymerizing G actin in the presence of spectrin tetramers or mixing preformed F actin with spectrin tetramer plus band 4.1 results in an extensively crosslinked network of actin filaments. When G actin is polymerized in the presence of spectrin at spectrin:actin mole ratios close to that present on the erythrocyte membrane, large amorphous protein networks are formed. These networks are clusters of spectrin around 25 nm diameter structures which may be actin protofilaments. These networks are similar to the cytoskeletal network seen after erythrocyte membranes are extracted with detergent, and may represent the first in vitro assembly of a cytoskeletal complex resembling that of the native cell both biochemically and structurally.  相似文献   

20.
Erythrocyte membrane mechanical function is regulated by the spectrin-based membrane skeleton composed of alpha- and beta-spectrin, actin, protein 4.1R (4.1R), and adducin. Post-translational modifications of these proteins have been suggested to modulate membrane mechanical function. Indeed, beta-spectrin phosphorylation by casein kinase I has been shown to decrease membrane mechanical stability. However, the effects of the phosphorylation of skeletal proteins by protein kinase C (PKC), a serine/threonine kinase, have not been elucidated. In the present study, we explored the functional consequences of the phosphorylation of 4.1R and adducin by PKC. We identified Ser-312 in 4.1R as the PKC phosphorylation site. Using antibodies raised against phosphopeptides of 4.1R and adducin, we documented significant differences in the time course of phosphorylation of adducin and 4.1R by PKC. Although adducin was phosphorylated rapidly by the activation of membrane-bound atypical PKC by phorbol 12-myristate 13-acetate stimulation, there was a significant delay in the phosphorylation of 4.1R because of delayed recruitment of conventional PKC from cytosol to the membrane. This differential time course in the phosphorylation of 4.1R and adducin in conjunction with membrane mechanical stability measurements enabled us to document that, although phosphorylation of adducin by PKC has little effect on membrane mechanical stability, additional phosphorylation of 4.1R results in a marked decrease in membrane mechanical stability. We further showed that the phosphorylation of 4.1R by PKC results in its decreased ability to form a ternary complex with spectrin and actin as well as dissociation of glycophorin C from the membrane skeleton. These findings have enabled us to define a regulatory role for 4.1R phosphorylation in dynamic regulation of red cell membrane properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号