首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polypeptides removed from the HeLa cell surface by mild pronase treatment rapidly inhibit protein synthesis when added to HeLa cells or cell-free translation system derived from HeLa cells. The inhibitory activity is heat stable. Protein and carbohydrate components of these polypeptides are required for inhibition of protein synthesis in vivo and in vitro. Two peaks of activity can be recovered from polyacrylamide gels, corresponding to polypeptides with molecular weights of approximately 29 000 and 41 000. Inhibition of protein synthesis in cell-free translation systems appears to be primarily an effect on elongation of polypeptide chains, whereas in the intact cell the primary target may be polypeptide chain initiation.  相似文献   

2.
Protein synthesis was inhibited in one line of interferon-treated HeLa cells (line 2) upon infection with reovirus, but not in different HeLa cells (line 1) treated in the same way. The inhibition resulted in polysome runoff, suggesting that it was due to an impairment of peptide chain initiation. Interferon induces the synthesis of a protein kinase, which is activated in cell-free systems by double-stranded RNA and phosphorylates the alpha subunit of eukaryotic initiation factor 2, thus inhibiting the initiation of protein synthesis. Therefore, we measured the level of this protein kinase in extracts prepared from the two HeLa cell lines. Cells of line 2 showed about 3-4 times more protein kinase activity than cells of line 1. The inhibition of protein synthesis upon infection with reovirus was correlated with an increased phosphorylation of the alpha subunit of eukaryotic initiation factor 2 in interferon-treated cells labeled with 32P. The kinase was presumably activated in intact cells by viral double-stranded RNA, but this activation resulted in inhibition of protein synthesis only in cells with elevated levels of the kinase.  相似文献   

3.
Inhibition of HeLa Cell Protein Synthesis by the Vaccinia Virion   总被引:42,自引:30,他引:12       下载免费PDF全文
  相似文献   

4.
Following poliovirus infection of HeLa cells, the synthesis of cellular proteins is inhibited but translation of poliovirus mRNA proceeds. The defect in the recognition of host cell mRNA may be due to a change in a cap recognition complex which, when added to an infected cell lysate, restores the ability to translate capped mRNAs. We employed immunoblotting techniques to examine initiation factors in crude lysates from uninfected and poliovirus-infected HeLa cells. Using an antiserum against eucaryotic initiation factor 3, we detected an antigen of approximate molecular weight 220,000 in uninfected cell lysates but not in infected cell lysates. Antigenically related polypeptides of 100,000 to 130,000 daltons, presumably degradation products, were detected in the infected cell lysate. The time course for degradation of the 220,000-dalton polypeptide correlates with that for inhibition of cellular protein synthesis in vivo. A portion of the population of 220,000-dalton polypeptides apparently associates with initiation factor eIF3 but is readily dissociated in buffers containing high salt. Affinity-purified antibodies against the polypeptide recognize a protein of the same size in a purified preparation of a cap binding protein complex obtained by cap-affinity chromatography. We postulate that the 220,000-dalton polypeptide is an essential component of the cap recognition complex and that its degradation in poliovirus-infected cells results in the inhibition of host cell translation. These results are in the first demonstration of a specific structural defect in an initiation factor resulting from poliovirus infection.  相似文献   

5.
6.
THE hydroxyproline and hydroxylysine in collagen are synthesized by hydroxylation of proline and lysine after these amino-acids have been incorporated into peptide linkages (for review see ref. 1). Experiments with embryonic cartilage in vitro in which the hydroxylases were intermittently inhibited demonstrated that the hydroxylations can occur after the proline-rich and lysine-rich polypeptide precursor protocollagen is released from ribosomal complexes1,2. There has been controversy, however, over the question of whether in uninhibited systems the hydroxylation of the appropriate prolyl and lysyl residues occurs while nascent polypeptide chains are still being assembled on ribosomes1,3,4.  相似文献   

7.
We have investigated the effects of inhibiting protein synthesis on the overall rate of DNA synthesis and on the rate of replication fork movement in mammalian cells. In order to test the validity of using [3H]thymidine incorporation as a measure of the overall rate of DNA synthesis during inhibition of protein synthesis, we have directly measured the size and specific radioactivity of the cells' [3H]dTTP pool. In three different mammalian cell lines (mouse L, Chinese hamster ovary, and HeLa) nearly complete inhibition of protein synthesis has little effect on pool size (±26%) and even less effect on its specific radioactivity (±11%). Thus [3H]thymidine incorporation can be used to measure accurately changes in rate of DNA synthesis resulting from inhibition of protein synthesis.Using the assay of [3H]thymidine incorporation to measure rate of DNA synthesis, and the assay of [14C]leucine or [14C]valine incorporation to measure rate of protein synthesis, we have found that eight different methods of inhibiting protein synthesis (cycloheximide, puromycin, emetine, pactamycin, 2,4-dinitrophenol, the amino acid analogs canavanine and 5-methyl tryptophan, and a temperature-sensitive leucyl-transfer tRNA synthetase) all cause reduction in rate of DNA synthesis in mouse L, Chinese hamster ovary, or HeLa cells within two hours to a fairly constant plateau level which is approximately the same as the inhibited rate of protein synthesis.We have used DNA fiber autoradiography to measure accurately the rate of replication fork movement. The rate of movement is reduced at every replication fork within 15 minutes after inhibiting protein synthesis. For the first 30 to 60 minutes after inhibiting protein synthesis, the decline in rate of fork movement (measured by fiber autoradiography) satisfactorily accounts for the decline in rate of DNA synthesis (measured by [3H]thymidine incorporation). At longer times after inhibiting protein synthesis, inhibition of fork movement rate does not entirely account for inhibition of overall DNA synthesis. Indirect measurements by us and direct measurements suggest that the additional inhibition is the result of decline in the frequency of initiation of new replicons.  相似文献   

8.
The paramyxovirus simian virus 5 (SV5) establishes highly productive persistent infections of epithelial cells without inducing a global inhibition of translation. Here we show that an SV5 mutant (the P/V-CPI mutant) with substitutions in the P subunit of the viral polymerase and the accessory V protein also establishes highly productive infections like wild-type (WT) SV5 but that cells infected with the P/V-CPI mutant show an overall shutdown of both host and viral translation at late times postinfection. Reduced host and viral protein synthesis with the P/V-CPI virus was not due to lower levels of mRNA or caspase-dependent apoptosis and correlated with phosphorylation of the translation initiation factor eIF-2α. WT SV5 was a poor activator of the eIF-2α kinase protein kinase R (PKR). By contrast, the P/V-CPI mutant induced PKR phosphorylation, which correlated with the time course of translation inhibition but was independent of interferon signaling. In HeLa cells that expressed the PKR inhibitor influenza A virus NS1 or reovirus sigma3, the rate of host protein synthesis at late times after infection with the P/V-CPI mutant was restored to ~50% that of control HeLa cells. By contrast, the rates of P/V-CPI viral protein synthesis in HeLa cells expressing NS1 or sigma3 were dramatically enhanced, between 5- and 20-fold, while levels of viral mRNA were increased only slightly (NS1-expressing cells) or remained constant (sigma3-expressing cells). Similar results were found using HeLa cells where PKR levels were reduced due to knockdown by small interfering RNA. Expression of either the WT P or the WT V protein from the genome of the P/V-CPI mutant resulted in lower levels of PKR activation and rates of host and viral protein synthesis that closely matched those seen with WT SV5. Despite higher rates of translation, cells infected with the V- or P-complemented virus accumulated viral mRNAs to lower levels than that seen with the parental P/V-CPI mutant. We present a model in which the paramyxovirus P/V gene products limit induction of PKR by limiting the synthesis of aberrant viral mRNAs and double-stranded RNA and thus prevent the shutdown of translation by a mechanism that differs from that of other PKR inhibitors such as NS1 and sigma3.  相似文献   

9.
Cordycepin inhibited efficiently viral mRNA and polyadenylic acid syntheses in vaccinia virus-infected cells, but allowed the shutoff of host protein synthesis to occur. Therefore, cordycepin was used to study this shutoff in the absence of gene expression. Ribosome transit time was increased in infected cells, revealing an inhibition at the level of elongation and/or release of polypeptide chains. However, the disappearance of heavy polysomes in vaccinia virus-infected cells showed that the inhibition of host protein synthesis resulted predominantly from a block at the stage of initiation. This conclusion was confirmed by the recovery of heavy polyribosomes when low levels of cycloheximide were added to slow down ribosome release from the mRNA. Similar amounts of cellular mRNA (present in the polyribosomes) were found in vaccinia virus-infected cells and in mock-infected cels (exposed to cordycepin), showing that the cellular mRNA was not inactivated in these conditions. It was concluded that a component of the vaccinia virion inhibits, in the absence of viral RNA and polyadenylic acid syntheses, host protein synthesis at the level of initiation and, to a lesser extent, at the level of elongation (and/or release) of polypeptide chains.  相似文献   

10.
Polypeptide synthesis programmed by poly(U) and globin mRNA has been studied in cell-free extracts from wheat germ. A two-step reaction with a preincubation at high Mg++ levels followed by a second step carried out after a shift to a low Mg++ concentration and the addition of labeled amino acids is described. Under these conditions the initiation of polyphenylalanine synthesis can be blocked without affecting the elongation of polypeptide chains. This procedure allows the selective inhibition of polypeptide synthesis initiation without using any drug or antibiotic.  相似文献   

11.
A poliovirus type 2 Lansing mutant was constructed by inserting 6 base pairs into the 2Apro region of an infectious cDNA clone, resulting in the addition of a leucine and threonine into the polypeptide sequence. The resulting small-plaque mutant, 2A-2, had a reduced viral yield in HeLa cells and synthesized viral proteins inefficiently. Infection with the mutant did not lead to specific inhibition of host cell protein synthesis early in infection, and this defect was attributed to a failure to induce cleavage of the cap-binding complex protein p220. At late times after infection with the mutant virus, both cellular and viral protein syntheses were severely inhibited. To explain this global inhibition of protein synthesis, the phosphorylation state of the alpha subunit of eucaryotic initiation factor 2 (eIF-2 alpha) was examined. eIF-2 alpha was phosphorylated in both R2-2A-2- and wild-type-virus-infected cells, indicating that poliovirus does not encode a function that blocks phosphorylation of eIF-2 alpha. The kinetics and extent of eIF-2 alpha phosphorylation correlated with the production of double-stranded RNA in infected cells, suggesting that eIF-2 alpha is phosphorylated by P1/eIF-2 alpha kinase. When HeLa cells were infected with R2-2A-2 in the presence of 2-aminopurine, a protein kinase inhibitor, much higher virus titers were produced, cleavage of p220 occurred, and host cell protein synthesis was specifically inhibited. Since phosphorylation of eIF-2 alpha was not inhibited by 2-aminopurine, we propose that 2-aminopurine rescues the ability of R2-2A-2 to induce cleavage of p220 by inhibition of a second as yet unidentified kinase.  相似文献   

12.
Ricin toxin, which consists of two distinct polypeptide moieties, A and B chains, is cytotoxic to the cultured macrophage cell line, J774A.1. Ricin is a protein synthesis inhibitor, and incubating macrophages for 4 hours with ricin (1 pM to 10 nM) in standard medium containing calcium and magnesium inhibited 3H-leucine incorporation into protein (97%, at 1 nM ricin). However, in Ca2+-free medium, protein synthesis was inhibited only 19%. EGTA pretreatment (to deplete intracellular calcium) also partly protected cells from protein synthesis inhibition, in spite of added calcium (2 mM) in the incubation medium. Decreased toxicity in the absence of extracellular calcium resulted from decreased toxin binding. Adding or deleting Mg2+ did not affect protein synthesis or binding of 125I-ricin in cultured macrophages. We conclude that calcium is required for ricin to exert its inhibitory effect on protein synthesis in cultured macrophages.  相似文献   

13.
The interferon-inducible, double-stranded RNA (dsRNA)-dependent protein kinase which phosphorylates an endogenous HeLa 69 kilodalton polypeptide or exogenous initiation factor eIF2 was inhibited during vaccinia virus infection. High interferon doses (20,000 reference units per ml) did not prevent this inhibition. The inhibition required protein synthesis but not viral DNA synthesis during infection, suggesting that an early vaccinia virus gene function was responsible. An active dsRNA-dependent protein kinase could be recovered from an inactive extract by purification on polyinosinate X polycytidylate-cellulose. An inhibitor of the protein kinase, therefore, must be present in the inactive extract. Similar results have been obtained with mouse L929 cells. At early time points of infection, the protein kinase in cell extracts required exogenous dsRNA for activity. This argues against endogenous viral dsRNA and activation of the kinase in the intact cell. At late time points of infection (when vaccinia virus dsRNA was almost certainly formed), the inhibitor of the kinase is present. Accordingly, it seems unlikely that the kinase played any role in the interferon-mediated inhibition of virus growth observed in these cells under these particular conditions.  相似文献   

14.
《Seminars in Virology》1993,4(4):209-215
Poliovirus infection of HeLa cells in culture causes rapid inhibition of host cell protein synthesis, while viral proteins are synthesized at high levels. This inhibition correlates with the inactivation of eukaryotic initiation factor 4F (eIF-4F), by proteolytic cleavage of its γ-subunit, p220. eIF-4F is required for the translation of capped mRNAs. Poliovirus RNA is uncapped and is translated by a cap independent mechanism. The poliovirus protease, 2Apro, is required for p220 cleavage, but induces this cleavage indirectly by activating a host protease that catalyzes p220 cleavage. Eukaryotic initiation factor 3 is also required for p220 cleavage, but its role in the cleavage reaction is unknown.  相似文献   

15.
ODC induction by fresh medium added to stationary, medium-depleted, confluent cultures has been studied in transformed HeLa and CHO cells, and in normal human fibroblasts as an indicator of the resumption of cell multiplication. The transformed HeLa cell displays a more easily reversed G1 block, a higher peak ODC level, and a shorter time period for achievement of the peak ODC value than does the normal fibroblast. Low concentrations of microtubule depolymerizing agents like colchicine suppress ODC induction almost completely in the normal fibroblast, but hardly at all in the HeLa or CHO cells. Both transformed cells occasionally reveal a superinduction of ODC at very low colchicine levels (10?8-10?7 M) and a more variable response to such agents than does the normal fibroblast. Higher concentrations of colchicine suppress ODC induction in all cells. Experiments with actinomycin D and cycloheximide indicate that the principal colchicine action involves inhibition at the level of protein or mRNA synthesis, rather than inactivation of the already synthesized enzyme. These experiments are provisionally interpreted as an indication that a microtubular system is needed to reinitiate certain steps associated with growth in G1-blocked, normal cells, and that a second microtubular action terminating enzyme biosynthesis may exist. This microtubular control is defective in the transformed cells here studied. Specific microtubular actions necessary for initiation and termination of protein syntheses may occur throughout the cell reproductive cycle, and in the course of normal differentiation processes.  相似文献   

16.
A cell-free system from cultured Chinese hamster ovary cells has been developed, which translates endogenous mRNAs, exogenous natural mRNAs, and synthetic polynucleotide templates. The analysis of most of the reactions involved in initiation, elongation, and termination of protein synthesis can be carried out in this system. The postmitochondrial fraction, containing ribosomal 40 and 60 S subunits, 80 S ribosomes, polysomes, and cytosol proteins, incorporates amino acids into protein. The preparation is capable of recycling endogenous mRNA by initiating protein synthesis on polysomal mRNA, and of initiating protein synthesis on exogenous templates. When endogenous mRNA is degraded with micrococcal nuclease, polysomes are no longer evident and protein synthesis is markedly depended on added mRNA, ATP, GTP, and a nucleoside triphosphate-generating system. Amino acid incorporation is linear for over 2 h, polysomes containing nascent polypeptide chains are reformed and, with time, most of the protein synthesized is released into the media. Gel electrophoretic analysis of the product formed in response to globin mRNA indicates that most of the radioactivity migrates as a single peak, in the region corresponding to globin. Comparison of the electrophoretic pattern obtained from labeled Chinese hamster ovary cells with that from incubations of cell extract and Chinese hamster ovary mRNA indicates that essentially all of the polypeptides formed by the intact cell are synthesized by the cell-free system. Sucrose gradient centrifugation of incubations containing mRNA-depleted extract and [35S]methionine, in the absence of added mRNA, is used to detect initiation intermediates in the formation of the [40 S Met-tRNAf] complex and, with added natural mRNA plus cycloheximide, to detect intermediates in the formation of the 80 S initiation complex. Chain elongation reactions are measured by the incorporation of [3H]phenylalanine into polyphenylalanine in extracts supplemented with poly(U), or by the formation of nascent polypeptide chains on polysomes with natural mRNA. Chain termination is measured by analyzing the amount of radioactive protein released into the cytosol.  相似文献   

17.
The synthesis of individual proteins in the mouse plasmacytoma cell MPC-11 is differentially inhibited when the rate of polypeptide chain initiation is reduced by exposure of cells to hypertonic medium. The synthesis of immunoglobulin G light and heavy chain polypeptides is 3.5 to 4-fold and 1.5 to 2-fold more resistant, respectively, than the synthesis of non-immunoglobulin G proteins when total protein synthesis is reduced by ~90%. In contrast, when polypeptide chain elongation is inhibited, the synthesis of the light and heavy chains is not more resistant than the synthesis of non-immunoglobulin G proteins.The results with MPC-11 cells suggests that: (1) under standard growth conditions the relative synthesis of individual proteins is determined mainly, but not exclusively, by the relative amounts of the individual messenger RNA species present in the cell; (2) under conditions where the overall rate of polypeptide chain initiation is reduced the relative synthesis of individual proteins becomes more dependent upon the intrinsic ability of their corresponding mRNAs to form functional mRNA-ribosome initiation complexes.  相似文献   

18.
Subjecting a HeLa cell suspension culture to an increase in incubation temperature (from 37 degrees to 42 degrees C) results in the rapid cessation of polypeptide chain synthesis followed by a gradual increase in the synthesis of a class of polypeptides referred to as the heat-shock proteins. It has been proposed that the initial, rapid shutoff of protein synthesis (less than 20 min) is due to the phosphorylation of initiation factor eIF-2 in its alpha subunit, a modification known to result in the inhibition of polypeptide synthesis. Using an in vitro translation system derived from heat-shocked HeLa cells grown in suspension culture, we were unable to find any evidence implicating eIF-2 alpha phosphorylation in the initial shutoff of translation during the heat shock response. These results suggest that the rapid inhibition of protein synthesis observed under heat shock conditions is mediated by a mechanism(s) other than eIF-2 alpha phosphorylation.  相似文献   

19.
To investigate the inhibition of DNA replication by tumor promoters, we incubated HeLa cells with 12-O-tetradecanoylphorbol-13-acetate (TPA; 10?8 to 10?5 g/ml) and quantified DNA synthesis on alkaline sucrose gradients. TPA was found to selectively inhibit replicon initiation without affecting DNA chain elongation in replicons that had already initiated. No inhibition of DNA synthesis was seen when cells were exposed to the nonpromoting derivative of TPA, 4-α-phorbol 12,13-didecanoate. Superoxide dismutase did not prevent the TPA-induced inhibition of initiation.  相似文献   

20.
The ectopic production of the glycopeptide hormone human placental choriogonadotropin by HeLa65 cells was measured by radioimmunoassay with antiserum against the β-subunit of choriogonadotropin and with the 125I-labelled β-subunit as a tracer antigen. Choriogonadotropin synthesis was markedly (500-fold) stimulated by sodium butyrate. Kinetic studies and the use of an inhibitor of protein synthesis, cycloheximide, indicated that protein synthesis was required for this induction. Investigation of the efficiency of 22 aliphatic short-chain fatty acids and derivatives in causing increased choriogonadotropin synthesis by HeLa cells showed stringent structural requirements. Induction of choriogonadotropin synthesis in HeLa cells was not restricted to butyrate. Other aliphatic acids (propionate, isobutyrate, valerate and hexanoate) were also capable of inducing choriogonadotropin synthesis at 10–50% of the efficiency of butyrate. Hydroxy derivatives of monocarboxylate inducers, related mono- and di-carboxylic acids, alcohols, amines, ketones, esters and sulphoxide were ineffective in increasing choriogonadotropin production by HeLa cells. A saturated C4 straight-chain acid without substituent hydroxyl groups but with a methyl group at one end and a carboxyl moiety at the other appeared to be most efficient in activating choriogonadotropin production. A second clonal line of HeLa cells, HeLa71, showed a higher constitutive synthesis of choriogonadotropin than HeLa65 cells, which was also markedly increased by butyrate. Butyrate and other aliphatic monocarboxylate inducers of choriogonadotropin synthesis inhibited HeLa-cell growth and DNA synthesis. This inhibition of DNA replication may be related to the mechanism of choriogonadotropin synthesis, since two well-characterized anti-neoplastic inhibitors of DNA synthesis, hydroxyurea and 1-β-d-arabinofuranosylcytosine, also stimulated a 300-fold increase in choriogonadotropin synthesis in HeLa cells and were synergistic with butyrate in promoting choriogonadotropin synthesis. Thus activation in tumour cells of genes normally expressed by foetal tissue and the consequent ectopic synthesis of polypeptide hormones may require neither cell division nor DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号