首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transgenic potato (Solanum tuberosum cv Désirée) plants overexpressing a soybean (Glycine max) type 1 sterol methyltransferase (GmSMT1) cDNA were generated and used to study sterol biosynthesis in relation to the production of toxic glycoalkaloids. Transgenic plants displayed an increased total sterol level in both leaves and tubers, mainly due to increased levels of the 24-ethyl sterols isofucosterol and sitosterol. The higher total sterol level was due to increases in both free and esterified sterols. However, the level of free cholesterol, a nonalkylated sterol, was decreased. Associated with this was a decreased glycoalkaloid level in leaves and tubers, down to 41% and 63% of wild-type levels, respectively. The results show that glycoalkaloid biosynthesis can be down-regulated in transgenic potato plants by reducing the content of free nonalkylated sterols, and they support the view of cholesterol as a precursor in glycoalkaloid biosynthesis.  相似文献   

2.
Sterol methyltransferase 1 controls the level of cholesterol in plants   总被引:10,自引:0,他引:10  
The side chain in plant sterols can have either a methyl or ethyl addition at carbon 24 that is absent in cholesterol. The ethyl addition is the product of two sequential methyl additions. Arabidopsis contains three genes-sterol methyltransferase 1 (SMT1), SMT2, and SMT3-homologous to yeast ERG6, which is known to encode an S-adenosylmethionine-dependent C-24 SMT that catalyzes a single methyl addition. The SMT1 polypeptide is the most similar of these Arabidopsis homologs to yeast Erg6p. Moreover, expression of Arabidopsis SMT1 in erg6 restores SMT activity to the yeast mutant. The smt1 plants have pleiotropic defects: poor growth and fertility, sensitivity of the root to calcium, and a loss of proper embryo morphogenesis. smt1 has an altered sterol content: it accumulates cholesterol and has less C-24 alkylated sterols content. Escherichia coli extracts, obtained from a strain expressing the Arabidopsis SMT1 protein, can perform both the methyl and ethyl additions to appropriate sterol substrates, although with different kinetics. The fact that smt1 null mutants still produce alkylated sterols and that SMT1 can catalyze both alkylation steps shows that there is considerable overlap in the substrate specificity of enzymes in sterol biosynthesis. The availability of the SMT1 gene and mutant should permit the manipulation of phytosterol composition, which will help elucidate the role of sterols in animal nutrition.  相似文献   

3.
The well-known reduction in the permeability properties of liposomes of dimyristoylphosphatidylcholine (DMPC) by sterols has also been demonstrated for its sulfonium analog (DMPSC) in which the N+(CH3)3 group of choline is replaced by S+(CH3)2. We have now compared the effects of 25 mol% 24-methylenecholesterol and cholesterol on the initial rates of urea permeation into dipalmitoyl-PC (DPPC) and dipalmitoyl-PSC (DPPSC) liposomes above the gel-to-liquid-crystalline phase transition temperature and found a greater reduction with 24-methylenecholesterol/DPPSC than with cholesterol/DPPSC liposomes but little difference between the two sterols in DPPC liposomes. Fluorescence polarization studies, using diphenylhexatriene as a probe, show that polarization (P) values are considerably higher in DMPSC liposomes containing 20 and 30 mol% 24-methylenecholesterol than in DMPC liposomes containing 20 and 30 mol% cholesterol. Higher P values were also obtained in DMPSC liposomes containing other 24-alkyl-substituted sterols (beta-sitosterol, ergosterol and campesterol) than in DMPC liposomes containing the same sterols. Reduced permeability rates in PSC liposomes containing 24-alkyl-substituted sterols are correlated with higher polarization values, reflecting an increased degree of order and/or motion in these liposomes compared with liposomes from the corresponding PC. These results suggest that alkyl substitution at C-24 of the sterol molecule results in tighter interactions with the sulfonium analog of PC than with PC.  相似文献   

4.
Delta22-unsaturated sterols, containing a double bond at the C-22 position in the side chain, occur specifically in fungi and plants. Here, we describe the identification and characterization of cytochrome P450s belonging to the CYP710A family as the plant C-22 desaturase. Recombinant proteins of CYP710A1 and CYP710A2 from Arabidopsis thaliana and CYP710A11 from tomato (Lycopersicon esculentum) were expressed using a baculovirus/insect system. The Arabidopsis CYP710A1 and tomato CYP710A11 proteins exhibited C-22 desaturase activity with beta-sitosterol to produce stigmasterol (CYP710A1, K(m) = 1.0 microM and kinetic constant [k(cat)] = 0.53 min(-1); CYP710A11, K(m) = 3.7 microM and k(cat) = 10 min(-1)). In Arabidopsis transgenic lines with CYP710A1 and CYP710A11 overexpression, stigmasterol levels increased by 6- to 32-fold. Arabidopsis CYP710A2 was able to produce brassicasterol and stigmasterol from 24-epi-campesterol and beta-sitosterol, respectively. Sterol profiling analyses for CYP710A2 overexpression and a T-DNA insertion event into CYP710A2 clearly demonstrated in planta that CYP710A2 was responsible for both brassicasterol and stigmasterol production. Semiquantitative PCR analyses and promoter:beta-glucuronidase transgenic approaches indicated strict tissue/organ-specific regulation for each CYP710A gene, implicating differential tissue distributions of the Delta(22)-unsaturated sterols in Arabidopsis. Our results support the possibility that the CYP710 family may encode P450s of sterol C-22 desaturases in different organisms.  相似文献   

5.
Arnqvist L  Persson M  Jonsson L  Dutta PC  Sitbon F 《Planta》2008,227(2):309-317
Sitosterol and stigmasterol are major sterols in vascular plants. An altered stigmasterol:sitosterol ratio has been proposed to influence the properties of cell membranes, particularly in relation to various stresses, but biosynthesis of stigmasterol is poorly understood. Recently, however, Morikawa et al. (Plant Cell 18:1008–1022, 2006) showed in Arabidopsis thaliana that synthesis of stigmasterol and brassicasterol is catalyzed by two separate sterol C-22 desaturases, encoded by the genes CYP710A1 and CYP710A2, respectively. The proteins belong to a small cytochrome P450 subfamily having four members, denoted by CYP710A1-A4, and are related to the yeast sterol C-22 desaturase Erg5p acting in ergosterol synthesis. Here, we report on our parallel investigation of the Arabidopsis CYP710A family. To elucidate the function of CYP710A proteins, transgenic Arabidopsis plants were generated overexpressing CYP710A1 and CYP710A4. Compared to wild-type plants, both types of transformant displayed a normal phenotype, but contained increased levels of free stigmasterol and a concomitant decrease in the level of free sitosterol. CYP710A1 transformants also displayed higher levels of esterified forms of stigmasterol, cholesterol, 24-methylcholesterol and isofucosterol. The results confirm the findings of Morikawa et al. (Plant Cell 18:1008–1022, 2006) regarding the function of CYP710A1 in stigmasterol synthesis, and show that CYP710A4 also has this capacity. Furthermore, our results suggest that an increased stigmasterol level alone is sufficient to stimulate esterification of other major sterols.  相似文献   

6.
Sterols in germinating embryos and young seedlings of longleaf pine (Pinus palustris Mill.) were identified and quantities determined for different periods after germination. Sterol analyses were performed by gas-liquid chromatography (GLC) and verified by combination of GLC-mass spectrometry. Campesterol and β-sitosterol were two major sterols which accounted for most of the sterol composition while stigmasterol was present in very small amounts. No cholesterol was revealed by GLC-mass spectrometry although there was a minor peak appearing on the sterol gas-liquid chromatograms with a retention time close to that of authentic cholesterol. By fractionation, three different forms of sterols were obtained: steryl esters, steryl glycosides, and free sterols. The sterols were mainly found in the esterified fraction, while steryl glycosides and free sterols only made up a small portion of the total sterol value. The total sterol content in general increased during seedling development, and this increase reflected mainly a change in steryl esters. The low levels of both free and glycosidic sterols remained nearly unchanged throughout the experimental germination period.  相似文献   

7.
T G Golos  J F Strauss 《Biochemistry》1988,27(9):3503-3506
Exposure of cultured human granulosa cells to 8-bromoadenosine cyclic 3',5'-phosphate (8-bromo-cAMP) resulted in a rapid increase in the content of the mRNA for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, a rate-limiting enzyme in the de novo synthesis of cholesterol. HMG-CoA reductase mRNA levels increased within 2 h of stimulation and remained elevated for at least 6 h. Treatment of granulosa cells with 25-hydroxycholesterol, a soluble cholesterol analogue, in combination with aminoglutethimide to block conversion of cellular sterols to pregnenolone, resulted in suppression of HMG-CoA reductase mRNA. When cells were stimulated with 8-bromo-cAMP in the presence of 25-hydroxycholesterol and aminoglutethimide, the increase in HMG-CoA reductase mRNA provoked by the tropic agent was markedly attenuated. This indicates that 8-bromo-cAMP raises HMG-CoA reductase mRNA levels indirectly by accelerating steroidogenesis and depleting cellular sterol pools, thus relieving sterol-mediated negative feedback of HMG-CoA reductase gene expression. 25-Hydroxycholesterol in the presence of aminoglutethimide suppressed low-density lipoprotein (LDL) receptor mRNA, but 8-bromo-cAMP effected a significant stimulation of LDL receptor mRNA levels when added with hydroxysterol and aminoglutethimide. These findings reveal differential regulation of HMG-CoA reductase and LDL receptor mRNAs in the presence of sterol negative feedback.  相似文献   

8.
The norbornenodiazetine plant growth regulator tetcyclacis, when applied to roots of Avena sativa, caused a substantial increase in the cholesterol content of the shoots. Amounts of the C-24 alkylated sterols campesterol, stigmasterol and sitosterol all declined. A similar alteration in the sterol profile was observed for a plasma membrane preparation from the shoots. Changes in the sterol composition of root tissue were much less pronounced.  相似文献   

9.
3beta-Hydroxy sterols occurring at a concentration of at least 0.001% of the sterol mixtures of Pseudoplexaura porosa and Plexaura homomalla have been fractionated using a series of refined techniques and subsequently analyzed using combined gas chromatography-mass spectrometry (GC-MS) in the development of a procedure for examining the minor and trace components of marine sterol mixtures. A total of 49 sterols were found which spanned a molecular weight range of 274 to 440. In addition delta4-3-keto analogs of cholesterol, 24-methylcholesterol and gorgosterol were found in the extracts of P. homomalla. Initial separation of various natural sterol-containing conjugates and free sterols was found to have a number of advantages. Fractional digitonin precipitation and alumina column chromatography were found to possess greater sterol separation abilities than previously recognized. Many of the minor sterols were found to possess novel structures including a series of short side chain sterols, 19-nor sterols, 5beta-stanols and 4-monomethyl sterols for which structure elucidation work is continuing.  相似文献   

10.
Free and esterified sterols of eggs of the root-knot nematodes Meloidogyne incognita races 2 and 3 and M. arenaria race 1 were isolated and identified by gas-liquid chromatography-mass spectrometry. The major sterols of eggs of each race were 24-ethylcholesterol (33.4-38.8% of total sterol), 24-ethylcholestanol (18.3-25.3%), 24-methylcholesterol (8.6-11.7%), 24-methylcholestanol (7.7-12.5%), and cholesterol (4.6-11.6%). Consequently, the major metabolic transformation performed by Meloidogyne females or eggs upon host sterols appeared to be saturation of the sterol nucleus. The free and esterified sterols of the same race did not differ appreciably, except for a slight enrichment of the steryl esters in cholesterol. Although the sterol composition of Meloidogyne eggs differed from that of other life stages of other genera of plant-parasitic nematodes, the three Meloidogyne races could not be distinguished from each other by their egg sterols. Ecdysteroids, compounds with hormonal function in insects, were not detected by radioimmunoassay in the Meloidogyne eggs either as free ecdysteroids or as polar conjugates.  相似文献   

11.
W D Nes  S H Xu  W F Haddon 《Steroids》1989,53(3-5):533-558
The sterol composition of two ascomycetous fungi, Saccharomyces cerevisiae and Gibberella fujikuroi, was examined by chromatographic (TLC, GLC, and HPLC) and spectral (MS and 1H-NMR) methods. Of notable importance was that both fungi produced cholesterol and a homologous series of long chain fatty alcohols (C22 to C30). In addition to ergosterol two novel sterols, ergosta-5,7, 9(11), 22-tetraenol and ergosterol endoperoxide, were isolated as minor compounds in growth-arrested cultures of yeast and in mycelia of G. fujikuroi. 24-Ethylidenelanosterol was also detected in mycelia of G. fujikuroi. A shift in sterol biosynthesis was observed by treatment with 24 (RS), 25-epiminolanosterol (an inhibitor of the S-adenosylmethionine C-24 transferase) and by monitoring the sterol composition at various stages of development. The results are interpreted to imply that the genes for 24-desalkyl, e.g., cholesterol, and 24-alkyl sterols, e.g., 24 beta- methyl cholesterol and 24-ethyl cholesterol, are distributed (but not always expressed) generally throughout the fungi but the occurrence of one or another compounds is influenced by the fitness (structure and amount) for specific sterols to act functionally during fungal ontogeny; sterol fitness is coordinated with Darwinian selection pressures.  相似文献   

12.
Phycomyces is a fungal producer of beta-carotene and other beneficial metabolites. Several erg mutants of Phycomyces, originally selected to study the effects of membrane alteration on physiological responses, have now been used to gain information about sterol biosynthesis in filamentous fungi. One mutant, H23, and its progeny were found to be blocked at episterol C-5 dehydrogenase and did not produce ergosterol or any other sterol with a conjugated Delta(5,7) diene system. This mutant showed abnormal phototropism, which was correlated with the altered sterol composition. Another mutant, H25, seems to be a regulatory mutant. All analyzed mutants synthesized ergosta-7,22,24(28)-trien-3beta-ol, demonstrating for the first time that the sterol C-22 dehydrogenase of Phycomyces is capable of recognizing sterols with a 24(28) unsaturated side chain. New evidence regarding the biogenesis of neoergosterol and phycomysterols, the potential sparking function of cholesterol, as well as the regulation of sterol biosynthesis in this fungus is also reported. Given these results, a pathway for sterol biosynthesis in Phycomyces is proposed.  相似文献   

13.
Ruan B  Lai PS  Yeh CW  Wilson WK  Pang J  Xu R  Matsuda SP  Schroepfer GJ 《Steroids》2002,67(13-14):1109-1119
Yeast produce traces of aberrant sterols by minor alternative pathways, which can become significant when normal metabolism is blocked by inhibitors or mutations. We studied sterols generated in the absence of the delta(8)-delta(7) isomerase (Erg2p) or delta(5) desaturase (Erg3p) by incubating three mutant strains of Saccharomyces cerevisiae with 5 alpha-cholest-8-en-3beta-ol, 8-dehydrocholesterol (delta(5,8) sterol), or isodehydrocholesterol (delta(6,8) sterol), together with the corresponding 3 alpha-3H isotopomer. Nine different incubations gave altogether 16 sterol metabolites, including seven delta(22E) sterols formed by action of the yeast C-22 desaturase (Erg5p). These products were separated by silver-ion high performance liquid chromatography (Ag(+)-HPLC) and identified by gas chromatography-mass spectrometry, nuclear magnetic resonance spectroscopy, and radio-Ag(+)-HPLC. When delta(8)-delta(7) isomerization was blocked, exogenous delta(8) sterol underwent desaturation to delta(5,8), delta(6,8), and delta(8,14) sterols. Formation of delta(5,8) sterol was strongly favored over delta(6,8) sterol, but both pathways are essentially dormant under normal conditions of sterol synthesis. The delta(5,8) sterol was metabolically almost inert except for delta(22) desaturation, whereas the delta(6,8) sterol was readily converted to delta(5,7), delta(5,7,9(11)), and delta(7,9(11)) sterols. The combined results indicate aberrant metabolic pathways similar to those in mammalian systems. However, delta(5,7) sterol undergoes only slight isomerization or desaturation in yeast, an observation that accounts for the lower levels of delta(5,8) and delta(5,7,9(11)) sterols in wild-type yeast compared to Smith-Lemli-Opitz individuals.  相似文献   

14.
The sterol compositions of 14 species of marine diatoms were determined by gas chromatography and gas chromatography-mass spectrometry. A variety of sterol profiles were found. The sterols 24-methylcholesta-5,22E-dien-3β-ol, cholest-5-en-3β-ol, and 24-methylcholesta-5,24(28)-dien-3β-ol, previously described as the most common sterols found in diatoms, were major sterols in only a few of the species. In light of this and other recent data, it is clear that these three sterols are not typical constituents of many diatom species. Most of the centric species examined had 24-methylcholesta-5,24(28)-dien-3β-ol and 24-methylcholest-5-en-3β-ol as two of their major sterols. The exception was Rhizosolenia setigera, which possessed cholesta-5,24-dien-3β-ol as its single major sterol. In contrast to the centric species, the pennate diatoms examined did not have any particular sterols common to most species. Minor levels ofΔ7-sterols, rarely found in large amounts in diatoms, were found in four species. C29sterols were found in many species; seven contained 24-ethylcholest-5-en-3β-ol and three contained 24-ethylcholesta-5,22E-dien-3β-ol, reinforcing previous suggestions that C29 sterols are not restricted to higher plants and macroalgae. 24-Ethylcholesta-5,22E-dien-3β-ol may prove to be useful for taxonomy of the genus Amphora and the order Thalassiophysales. A major sterol of Fragilaria pinnata was the uncommon algal sterol 23,24-dimethylcholesta-5,22E-dien-3β-ol. Cholesta-5,24-dien-3β-ol was the only sterol found in the culture of Nitzschia closterium. This differed from previous reports of 24-methylcholesta-5,22E-dien-3β-ol as the single major sterol in N. closterium. Two C28 sterols possessing an unusual side chain were found in Thalassi-onema nitzschioides, a C28:2 sterol (16%) and a C28:1 sterol in lower abundance (2.5%), which may be 23-methylcholesta-5,22E-dien-3β-ol and 23-methyl-5α-cholest-22E-en-3β-ol, respectively. The species Cylindrotheca fusiformis, T. nitzschioides, and Skeletonema sp. may be useful as direct sources of cholesterol in mariculture feeds due to their moderate to high content of this sterol.  相似文献   

15.
Plants and certain protists use cycloeucalenol cycloisomerase (EC ) to convert pentacyclic cyclopropyl sterols to conventional tetracyclic sterols. We used a novel complementation strategy to clone a cycloeucalenol cycloisomerase cDNA. Expressing an Arabidopsis thaliana cycloartenol synthase cDNA in a yeast lanosterol synthase mutant provided a sterol auxotroph that could be genetically complemented with the isomerase. We transformed this yeast strain with an Arabidopsis yeast expression library and selected sterol prototrophs to obtain a strain that accumulated biosynthetic ergosterol. The novel phenotype was conferred by an Arabidopsis cDNA that potentially encodes a 36-kDa protein. We expressed this cDNA (CPI1) in Escherichia coli and showed by gas chromatography-mass spectrometry that extracts from this strain isomerized cycloeucalenol to obtusifoliol in vitro. The cDNA will be useful for obtaining heterologously expressed protein for catalytic studies and elucidating the in vivo roles of cyclopropyl sterols.  相似文献   

16.
SUMMARY Two sterols in autopsied whole lung specimens obtained from Pneumocystis carinii pneumonia patients were detected by gas-liquid chromatography and their structures were elucidated by mass spectrometry and nuclear magnetic resonance spectrometry. Both were in the lanosterol series; the C31 sterol, with a methyl group at C-24, was identified as euphorbol, and the more abundant C32 sterol, with an ethyl group at C-24, is given the trivial name pnemocysterol.  相似文献   

17.
Synthesis of ergosterol is demonstrated in the GL7 mutant of Saccharomyces cerevisiae. This sterol auxotroph has been thought to lack the ability to synthesize sterols due both to the absence of 2,3-oxidosqualene cyclase and to a heme deficiency eliminating cytochrome P-450 which is required in demethylation at C-14. However, when the medium sterol was 5 alpha-cholestan-3 beta-ol, 5 alpha-cholest-8(14)-en-3 beta-ol, or 24 beta-methyl-5 alpha-cholest-8(14)-en-3 beta-ol, sterol synthesis was found to proceed yielding 1-3 fg/cell of ergosterol (24 beta-methylcholesta-5,7,22E-trien-3 beta-ol). Ergosterol was identified by mass spectroscopy, gas and high performance liquid chromatography, ultraviolet spectroscopy, and radioactive labeling from [3H]acetate. Except for some cholest-5-en-3 beta-ol (cholesterol) which was derived from the 5 alpha-cholestan-3 beta-ol, the stanol and the two 8(14)-stenols were not significantly metabolized confirming the absence of an isomerase for migration of the double bond from C-8(14) to C-7. Drastic reduction of ergosterol synthesis to not more than 0.06 fg/cell was observed when the medium sterol either had a double bond at C-5, as in the case of cholesterol, or could be metabolized to a sterol with such a bond. Thus, both 5 alpha-cholest-8(9)-en-3 beta-ol and 5 alpha-cholest-7-en-3 beta-ol (lathosterol) were converted to cholesta-5,7-dien-3 beta-ol (7-dehydrocholesterol), and the presence of the latter dienol depressed the level of ergosterol. The most attractive of the possible explanations for our observations is the assumption of two genetic compartments for synthesis of sterols, one of which has and one of which has not been affected by the two mutations. The ability, despite the mutations, to synthesize small amounts of ergosterol which could act to regulate the cell cycle may also explain why this mutant can grow aerobically with cholesterol (acting in the bulk membrane role) as the sole exogenous sterol.  相似文献   

18.
Cytochrome P450 (CYP) 27A1 is a key enzyme in both the acidic and neutral pathways of bile acid biosynthesis accepting cholesterol and ring-hydroxylated sterols as substrates introducing a (25R)26-hydroxy and ultimately a (25R)26-acid group to the sterol side-chain. In human, mutations in the CYP27A1 gene are the cause of the autosomal recessive disease cerebrotendinous xanthomatosis (CTX). Surprisingly, Cyp27a1 knockout mice (Cyp27a1−/−) do not present a CTX phenotype despite generating a similar global pattern of sterols. Using liquid chromatography – mass spectrometry and exploiting a charge-tagging approach for oxysterol analysis we identified over 50 cholesterol metabolites and precursors in the brain and circulation of Cyp27a1−/− mice. Notably, we identified (25R)26,7α- and (25S)26,7α-dihydroxy epimers of oxysterols and cholestenoic acids, indicating the presence of an additional sterol 26-hydroxylase in mouse. Importantly, our analysis also revealed elevated levels of 7α-hydroxycholest-4-en-3-one, which we found increased the number of oculomotor neurons in primary mouse brain cultures. 7α-Hydroxycholest-4-en-3-one is a ligand for the pregnane X receptor (PXR), activation of which is known to up-regulate the expression of CYP3A11, which we confirm has sterol 26-hydroxylase activity. This can explain the formation of (25R)26,7α- and (25S)26,7α-dihydroxy epimers of oxysterols and cholestenoic acids; the acid with the former stereochemistry is a liver X receptor (LXR) ligand that increases the number of oculomotor neurons in primary brain cultures. We hereby suggest that a lack of a motor neuron phenotype in some CTX patients and Cyp27a1−/− mice may involve increased levels of 7α-hydroxycholest-4-en-3-one and activation PXR, as well as increased levels of sterol 26-hydroxylase and the production of neuroprotective sterols capable of activating LXR.  相似文献   

19.
The first committed step in the conversion of cycloartenol into Delta(5) C24-alkyl sterols in plants is catalyzed by an S-adenosyl-methionine-dependent sterol-C24-methyltransferase type 1 (SMT1). We report the consequences of overexpressing SMT1 in tobacco (Nicotiana tabacum), under control of either the constitutive carnation etched ring virus promoter or the seed-specific Brassica napus acyl-carrier protein promoter, on sterol biosynthesis in seed tissue. Overexpression of SMT1 with either promoter increased the amount of total sterols in seed tissue by up to 44%. The sterol composition was also perturbed with levels of sitosterol increased by up to 50% and levels of isofucosterol and campesterol increased by up to 80%, whereas levels of cycloartenol and cholesterol were decreased by up to 53% and 34%, respectively. Concomitant with the enhanced SMT1 activity was an increase in endogenous 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, from which one can speculate that reduced levels of cycloartenol feed back to up-regulate 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and thereby control the carbon flux into sterol biosynthesis. This potential regulatory role of SMT1 in seed sterol biosynthesis is discussed.  相似文献   

20.
Trypanosoma brucei (TB) cultured in rat blood, bovine serum, or lipid-depleted serum generated distinct differences in cholesterol availability. Whereas cell proliferation of the parasite was relatively unaffected by cholesterol availability, the ratios of cellular ergostenols to cholesterol varied from close to unity to 3 orders of magnitude different with cholesterol as the major sterol (>99%) of bloodstream form cells. In the procyclic form cultured with lipid-depleted serum, 15 sterols at 52 fg/cell were identified by GC-MS. The structures of these sterols reveal a nonconventional ergosterol pathway consistent with the novel product diversity catalyzed by the recently cloned sterol methyltransferase (SMT). A potent transition state analog of the TB SMT C24 alkylation reaction, 25-azalanosterol (25-AL; inhibition constant Ki = 39 nM), was found to inhibit the growth of the procyclic and bloodstream forms at an IC(50) of approximately 1 microM. This previously unrecognized catalyst-specific inhibition of cell growth was unmasked further using the 25-AL-treated procyclic form, which, compared with control cultures, caused a change in cellular sterol content from ergostenols to cholesterol. However, growth of the bloodstream form disrupted by 25-AL was not rescued by cholesterol absorption from the host, suggesting an essential role for ergosterol (24-methyl sterol) in cell proliferation and that the SMT can be a new enzyme target for drug design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号