首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 563 毫秒
1.
We have reported that acetic acid (AcOH) intake suppresses body fat mass and up-regulates the genes involved in fatty acid oxidation, but it is not clear whether the suppression of body fat mass by AcOH administration is due to an increase in energy expenditure (EE). In this study, we investigated to determine whether a single oral administration of AcOH would increase EE in C57BL/6J mice treated with 1.5% AcOH. The AcOH treatment group had significantly higher oxygen consumption (VO2), EE, and fat oxidation (FAT) than the water treatment group. These results suggest that a single administration of AcOH increases EE, resulting in suppression of body fat mass.  相似文献   

2.
Myostatin deficiency causes dramatically increased skeletal muscle mass and reduced fat mass. Previously, myostatin-deficient mice were reported to have unexpectedly low total energy expenditure (EE) after normalizing to body mass, and thus, a metabolic cause for low fat mass was discounted. To clarify how myostatin deficiency affects the control of body fat mass and energy balance, we compared rates of oxygen consumption, body composition, and food intake in young myostatin-deficient mice relative to wild-type (WT) and heterozygous (HET) controls. We report that after adjusting for total body mass using regression analysis, young myostatin-deficient mice display significantly increased EE relative to both WT (+0.81 ± 0.28 kcal/day, P = 0.004) and HET controls (+0.92 ± 0.31 kcal/day, P = 0.005). Since food intake was not different between groups, increased EE likely accounts for the reduced body fat mass (KO: 8.8 ± 1.1% vs. WT: 14.5 ± 1.3%, P = 0.003) and circulating leptin levels (KO: 0.7 ± 0.2 ng/ml vs. WT: 1.9 ± 0.3 ng/ml, P = 0.008). Interestingly, the observed increase in adjusted EE in myostatin-deficient mice occurred despite dramatically reduced ambulatory activity levels (-50% vs. WT, P < 0.05). The absence of hyperphagia together with increased EE in myostatin-deficient mice suggests that increased leptin sensitivity may contribute to their lean phenotype. Indeed, leptin-induced anorexia (KO: -17 ± 1.2% vs. WT: -5 ± 0.3%) and weight loss (KO: -2.2 ± 0.2 g vs. WT: -1.6 ± 0.1, P < 0.05) were increased in myostatin-deficient mice compared with WT controls. We conclude that increased EE, together with increased leptin sensitivity, contributes to low fat mass in mice lacking myostatin.  相似文献   

3.
4.
Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered within restricted ranges of body mass, however, allometric EE curves exhibit ‘local linearity.’ Indeed, modern EE analysis makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses (e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the underlying ‘latent’ allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of physiological states that are not represented in the allometric EE literature but are well represented by published linear EE analyses.  相似文献   

5.
The present study was designed as a randomized, double-blind placebo (Plc)-controlled study to determine the effect of 2 wk of growth hormone administration (GH-adm.) on energy expenditure (EE) and substrate oxidation in healthy humans. Sixteen young healthy men were divided into two groups. The study consisted of two 24-h measurements (indirect calorimetry), separated by 2 wk of either Plc or GH injections (6 IU/day). At baseline, no significant differences were observed between the two groups in any of the measured anthropometric, hormonal, or metabolic parameters, neither did the parameters change over time in the Plc group. GH-adm. resulted in a 4.4% increase in 24-h EE (P < 0.05) and an increase in fat oxidation by 29% (P < 0.05). However, a decrease in the respiratory quotient was only observed in the postabsorptive phase after an overnight fast (0.84 +/- 0.1 to 0.79 +/- 0.1, P < 0.05). Furthermore, lean body mass (LBM) was increased by GH-adm. only [62.8 +/- 2.5 kg (baseline) vs. 64.7 +/- 2.4 kg (after), P < 0.001]. In conclusion, GH-adm. increases 24-h EE, which may be partly explained by increased LBM. Furthermore, GH-adm. stimulates fat combustion, especially in the postabsorptive state.  相似文献   

6.
The present study investigated whether recombinant human (rh) growth hormone (GH) combined with endurance training would have a larger effect on oxidative capacity, metabolism, and body fat than endurance training alone. Sixteen healthy, elderly women, aged 75 yr, performed closely monitored endurance training on a cycle ergometer over 12 wk. rhGH was given in a randomized, double-blinded, placebo-controlled design in addition to the training program. GH administration resulted in a doubling of serum insulin-like growth factor I levels. With endurance training, peak oxygen uptake increased by approximately 18% in both groups, whereas the marked increase in muscle citrate synthase activity was 50% larger in the GH group compared with the placebo group. In addition, only the GH group revealed an increase in muscle L-3-hydroxyacyl-CoA dehydrogenase activity. Body weight remained unchanged in both groups, but the GH group showed significant changes in body composition with a decrease in fat mass and an increase in lean body mass. Twenty-four-hour indirect calorimetry performed in four subjects showed a marked increase in energy expenditure with increased relative and absolute fat combustion in the two subjects receiving rhGH. In conclusion, rhGH adds to the effects of endurance training on muscle oxidative enzymes and causes a reduction in body fat in elderly women.  相似文献   

7.
Changes in resting energy expenditure (EE) during weight loss are said to be greater than what can be expected from changes of body mass, i.e., fat mass (FM) and fat‐free mass (FFM) but controversy persists. The primary focus of this study was to investigate whether there is a greater than predicted decrease in resting EE during weight loss in a large sample size through a systematic review. The study data were weighted and a partial residual plot followed by a multiple regression analysis was performed to determine whether FM and FFM can predict the changes of resting EE after weight loss. Another subgroup of studies from which all necessary information was available was analyzed and compared against the Harris—Benedict (HB) prediction equation to determine whether the changes in resting EE were greater than what was expected. Subjects lost 9.4 ± 5.5 kg (P < 0.01) with a mean resting EE decline of 126.4 ± 78.1 kcal/day (P < 0.01). Changes in FM and FFM explained 76.5% and 79.3% of the variance seen in absolute resting EE at baseline and post‐weight loss, respectively (P < 0.01). Analysis of the 1,450 subject subgroup indicated an ~29.1% greater than predicted decrease in resting EE when compared to the HB prediction equation (P < 0.01). This analysis does not support the notion of a greater than predicted decrease in resting EE after weight loss.  相似文献   

8.
Oleoylethanolamide (OEA) has been previously reported to regulate food intake and body weight gain when administered intraperitoneally. Nevertheless, little information is available with regard to oral administration. To assess whether oral OEA can also exert a similar effect on body fat, we fed C3H mice a high-fat diet supplemented with either 10 or 100 mg/kg body weight OEA for 4 weeks. OEA supplementation significantly lowered food intake over the 4 weeks and decreased adipose tissue mass. Plasma triglyceride levels were also significantly decreased by OEA treatment. In order to identify the potential molecular targets of OEA action, we screened the expression levels of 44 genes related to body fat mass and food intake in peripheral tissues. Adipose tissue fatty acid amide hydrolase (FAAH), intestinal fatty acid transporter/cluster of differentiation 36 and the OEA receptor G-protein-coupled receptor 119 (GPR119) were among the most OEA-responsive genes. They were also associated with reduced body fat pads regardless of the dose. Adipose FAAH was found to be primarily associated with a decrease in food intake. Our data suggest that the anti-obesity activity of OEA partially relies on modulation of the FAAH pathway in adipose tissue. Another mechanism might involve modulation of the newly discovered GPR119 OEA signaling pathway in the proximal intestine. In conclusion, our study indicates that oral administration of OEA can effectively decrease obesity in the mouse model and that modulation of the endocannabinoid fatty acid ethanolamide pathway seems to play an important role both in adipose tissue and in small intestine.  相似文献   

9.
The established role of ATP-responsive P2X7 receptor in inflammatory, neurodegenerative, and immune diseases is now expanding to include several aspects of metabolic dysregulation. Indeed, P2X7 receptors are involved in β cell function, insulin secretion, and liability to diabetes, and loss of P2X7 function may increase the risk of hepatic steatosis and disrupt adipogenesis. Recently, body weight gain, abnormal lipid accumulation, adipocyte hyperplasia, increased fat mass, and ectopic fat distribution have been found in P2X7 KO mice. Here, we hypothesized that such clinical picture of dysregulated lipid metabolism might be the result of altered in vivo energy metabolism. By indirect calorimetry, we assessed 24 h of energy expenditure (EE) and respiratory exchange ratio (RER) as quotient of carbohydrate to fat oxidation in P2X7 KO mice. Moreover, we assessed the same parameters in aged-matched WT counterparts that underwent a 7-day treatment with the P2X7 antagonist A804598. We found that loss of P2X7 function elicits a severe decrease of EE that was less pronounced in A804598-treated mice. In parallel, P2X7KO mice show a drastic increase of RER, thus indicating the occurrence of a greater ratio of carbohydrate to fat oxidation. Decreased EE and fat oxidation is predictive of body weight gain, which was here confirmed. Taken together, our data provide evidence that P2X7 loss of function produces defective energy homeostasis that, together with disrupted adipogenesis, might help to explain accumulation of adipose tissue and contribute to disclose the potential role of P2X7 in metabolic diseases.  相似文献   

10.
We have found natural products exhibiting lipolysis-promoting activity in subcutaneous adipocytes, which are less sensitive to hormones than visceral adipocytes. The activities and a action mechanisms of a novel plant extract of Cirsium oligophyllum (CE) were investigated in isolated adipocytes from rat subcutaneous fat, and its fat-reducing effects by peroral administration and topical application were evaluated in vivo. CE-induced lipolysis was synergistically enhanced by caffeine, a phosphodiesterase inhibitor, and was reduced by propranolol, a β adrenergic antagonist. The peroral administration of 10% CE solution to Wistar rats for 32 days reduced body weight gain, subcutaneous, and visceral fat weights by 6.6, 26.2, and 3.0%, respectively, as compared to the control group. By the topical application of 2% of this extract to rats for 7 days, weight of subcutaneous fat in the treated skin was reduced by 23.2%. This fat mass reduction was accompanied by the up-regulation of uncoupling protein 1 (UCP), a principal thermogenic mitochondrial molecule related to energy dissipating, in subcutaneous fat and UCP3 in skin except for the fat layer. These results indicate that CE promotes lipolysis via a mechanism involving the β adrenergic receptor, and affects the body fat mass. This fat reduction may be partially due to UCP up-regulation in the skin including subcutaneous fat. This is the first report showing that repeated lipolysis promotion through CE administration may be beneficial for the systematic suppression of body fat accumulation or the control of fat distribution in obesity.  相似文献   

11.
Objective: To describe the determinants, specifically age, body mass index, percentage of body fat, and physical activity (PA) level, associated with over‐ and underestimation of energy expenditure (EE) using PA records and the Stanford Seven‐Day Physical Activity Recall (7DR) compared with doubly labeled water (DLW). Research Methods and Procedures: We collected PA measures on 24 males eating a controlled diet designed to maintain body weight, and we determined EE from DLW and estimated EE from PA records and 7DR. Results: Absolute differences in the estimation of EE between DLW and PA assessment methods were greater for the 7DR (30.6 ± 9.9%) than PA records (7.9 ± 3.2%). In PA records, overestimation of EE was greater with older age and higher body fatness; EE was overestimated by 16.7% among men 50 years and older compared with only 5.3% among men <40 years of age. For percentage of body fat, EE was overestimated by 19.7% among men with a percentage of body fat ≥30% compared with only 5.6% among men with a percentage of body fat <25%. A trend for less overestimation of EE with higher levels of PA (measured by DLW/basal metabolic rate [BMR]) also was observed in the PA records. In the 7DR, the estimates of EE varied widely and no trends were observed by age, percentage of body fat, and PA levels. Discussion: Estimation of EE from the 7DR is considerably more variable than from PA records. Factors related to age and percentage of body fat influenced the accuracy of estimated EE in the PA record. Additional studies are needed to understand factors related to accurate reporting of PA behaviors, which are used to estimate EE in free‐living adults.  相似文献   

12.
The effect of single and combined action of nickel and pesticide (diazinon) on enzymes activity (glutathione S-transferase, catalase and acetylcholinesterase) in the digestive tract, body wall and fat body as well as basic growth parameters (life span and body mass) of Spodoptera exigua were investigated under laboratory conditions. The experiment was carried out on two nickel treated groups [300 (NiI) and 900 (NiII) mg Ni kg(-1) dry weight of the culture medium] and a control group. The results showed that mortality of caterpillars in NiII group was higher (51.1%) when compare with the controls. The body mass of the caterpillars in the NiI group was higher by 20% than in the control group, and the body mass of the pupae in the NiII group was lower by 22% than in the control group. Exposure to nickel influenced AChE, GST and catalase activity in the body wall (increase up to 66%) and GI tract, while in the fat body the above-mentioned activity remained unchanged. The pesticide application caused a strong, about 70% reduction in AChE activity in GI tract, while in case of GST activity pesticide treatment resulted in multidirectional response depending on the organ. Nickel pre-treatment affects the susceptibility to pesticide, which is manifested in a lower activity of GST and catalase in the fat body (from 26 to 36%), when compare with the other experimental groups.  相似文献   

13.
Objective: To test the hypothesis that low adiponectin is associated with low fat oxidation in humans. Research Methods and Procedures: We measured plasma adiponectin concentrations in 75 healthy, nondiabetic Pima Indians (age, 28 ± 7 years; 55 men and 20 women; body fat, 29.7 ± 7.5%) and 18 whites [(age, 33 ± 8 years; 14 men and 4 women; body fat, 28.2 ± 10.8% (means ± SD)] whose body composition was measured by DXA and 24-hour energy expenditure (24-hour EE) by a respiratory chamber. Respiratory quotient (an estimate of whole-body carbohydrate/lipid oxidation rate) was calculated over 24 hours (24-hour RQ). Results: Before correlational analyses, waist-to-thigh ratio (WTR) and percentage of body fat (PFAT) were adjusted for age, sex, and race; 24-hour EE was adjusted for fat mass and fat-free mass, and 24-hour RQ were adjusted for energy balance. Plasma adiponectin concentrations were negatively correlated with WTR (r = −0.42, p < 0.0001) and PFAT (r = −0.46, p < 0.0001). There was no correlation between plasma adiponectin concentrations and 24-hour RQ, (r = 0.09, p = 0.36) before or after adjustment for PFAT (r = 0.001, p = 0.99, respectively, partial correlation), and no correlation was found between plasma adiponectin concentrations and 24-hour EE (r = −0.12, p = 0.27). Discussion: Our cross-sectional data do not suggest physiological concentrations of fasting plasma adiponectin play a role in the regulation of whole-body fat oxidation or energy expenditure in resting conditions. Whether administration of adiponectin to individuals with low levels of this hormone will increase their fat oxidation rates/energy expenditure remains to be established.  相似文献   

14.
Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA in the ranking order PPARalpha > PPARdelta > PPARgamma. Expression of PPARgamma target genes in adipose tissue was unaffected by TTA treatment, whereas the hepatic expression of PPARalpha-responsive genes encoding enzymes involved in fatty acid uptake, transport, and oxidation was induced. This was accompanied by increased hepatic mitochondrial beta-oxidation and a decreased fatty acid/ketone body ratio in plasma. These findings indicate that PPARalpha-dependent mechanisms play a pivotal role, but additionally, the involvement of PPARalpha-independent pathways is conceivable. Taken together, our results suggest that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity.  相似文献   

15.
The portacaval anastamosis (PCA) rat is a model to examine nutritional consequences of portosystemic shunting in cirrhosis. Alterations in body composition and mechanisms of diminished fat mass following PCA were examined. Body composition of male Sprague-Dawley rats with end-to-side PCA and pair-fed sham-operated (SO) controls were studied 3 wk after surgery by chemical carcass analysis (n=8 each) and total body electrical conductivity (n=6 each). Follistatin, a myostatin antagonist, or vehicle was administered to PCA and SO rats (n=8 in each group) to examine whether myostatin regulated fat mass following PCA. The expression of lipogenic and lipolytic genes in white adipose tissue (WAT) was quantified by real-time PCR. Body weight, fat-free mass, fat mass, organ weights, and food efficiency were significantly lower (P < 0.001) in the PCA than SO rats. Adipocyte size and triglyceride content of epididymal fat in PCA rats were significantly lower (P < 0.01) than in SO rats. Myostatin expression was higher in the WAT of PCA compared with SO rats and was accompanied by an increase in phospho-AMP kinase Thr(172). Follistatin increased whole body fat and WAT mass, adipocyte size, and expression of lipogenic genes in WAT in PCA, but not in SO rats. Myostatin and phospho-AMP kinase protein and lipolytic gene expression were lower with follistatin. We conclude that PCA results in loss of fat mass due to an increased expression of myostatin in adipose tissue with lower lipogenic and higher fatty acid oxidation gene expression.  相似文献   

16.
The positive correlation between leptin and body fat mass has caused some investigators to speculate that leptin resistance contributes to obesity. Loss of ovarian function in human and rat is associated with increased fat mass gain and increased circulating leptin levels. To study whether ovariectomy produces leptin resistance, Sprague-Dawley female rats were ovariectomized or sham operated and injected with leptin for 35 days. Ovariectomy (OVX) produced hyperphagia and increased gain in both lean and fat mass. Daily leptin injections initially decreased food intake significantly, but feeding gradually increased to a stable level by day 16 and remained at that level for the duration of study. Body composition analysis indicated that chronic injection of leptin to OVX rats dramatically decreased (P < 0.05) fat mass [30 +/- 2 (SE) g, vehicle, to 3 +/- 1 g, leptin]. Using indirect calorimetry, we observed that OVX did not change energy expenditure or total level of fuel utilization. Leptin administration increased fat utilization and prevented reduction in calorie expenditure that is typically associated with food restriction. Leptin treatment to OVX rats decreased plasma triglyceride, free fatty acid, and insulin concentrations, whereas glucose concentration was normal. Withdrawal of leptin triggered hyperphagia, indicating that leptin biology remained throughout the duration of the chronic treatment. The same dose of leptin produced qualitatively similar data in sham-operated rats. Thus we concluded that the loss of ovarian function in rats is not associated with a change in leptin sensitivity.  相似文献   

17.
The thermic effect of food (TEF) is an important physiological determinant of total daily energy expenditure (EE) and energy balance. TEF is believed to be mediated in part by sympathetic nervous system activation and consequent beta-adrenergic receptor (beta-AR) stimulation of metabolism. TEF is greater in habitually exercising than in sedentary adults, despite similar postprandial sympathetic nervous system activation. We determined whether augmented TEF in habitually exercising adults is associated with enhanced peripheral thermogenic responsiveness to beta-AR stimulation. In separate experiments in 22 sedentary and 29 habitually exercising adults, we measured the increase in EE (indirect calorimetry, ventilated hood) during beta-AR stimulation (intravenous isoproterenol: 6, 12, and 24 ng x kg fat-free mass(-1) x min(-1)) and EE before and after a liquid meal (40% of resting EE; 53% carbohydrate, 32% fat, 15% protein). The increase in EE during incremental isoproterenol administration was greater (P = 0.01) in habitual exercisers (0.34 +/- 0.03, 0.54 +/- 0.04, 0.81 +/- 0.05 kJ/min; means +/- SE) than in sedentary adults (0.26 +/- 0.03, 0.40 +/- 0.03, 0.64 +/- 0.04 kJ/min). The area under the TEF response curve was also greater (P = 0.04) in habitual exercisers (160 +/- 9 kJ) than in sedentary adults (130 +/- 11 kJ) and was positively related to beta-AR thermogenic responsiveness (r = 0.32, P = 0.02). We conclude that TEF is related to beta-AR thermogenic responsiveness and that the greater TEF in habitual exercisers is attributable in part to their augmented beta-AR thermogenic responsiveness. Our results also suggest that peripheral thermogenic responsiveness to beta-AR stimulation is a physiological determinant of TEF and hence energy balance in healthy adult humans.  相似文献   

18.
JENSEN, MICHAEL D, DONALD HENSRUD, PETER C. O'BRIEN, AND SØREN NIELSEN. Collection and interpretation of plasma leptin concentration data in humans. Obes Res. Objective: To reassess the relationship between body fat and plasma leptin concentrations when a) replicate measures of leptin are made; b) energy intake is controlled at isoenergetic levels before the study; and c) body fat and percent body fat are measured with dual energy X-ray absorptiometry (DXA). Research Methods and Procedures: Two separate studies were conducted. In the first study, four plasma samples were collected for measurement of leptin over 30 minutes on a single day in 43 lean and obese men and women. For the second study, plasma samples were collected on four consecutive days from a group of 50 lean and obese men and women. Percent body fat (and body fat mass) was related to log-transformed mean plasma leptin concentrations using linear regression analysis; multiple linear regression analysis was used to determine whether there was an effect of gender on this relationship, and the analysis of Choi was used to examine whether percent body fat or body fat mass better predicts plasma leptin concentrations. Results: For the first study, percent body fat was highly correlated (r = 0. 96, p<O. OOOl) with log-transformed mean leptin concentrations. No difference in the relationship between leptin and percent body fat in men and women was detected. The second study confirmed this observation; the relationship between In leptin and percent body fat was virtually identical (r = 0. 93, p<0. 001). Analysis of the pooled data suggests that percent body fat is a better predictor of plasma leptin concentration than body fat mass. The use of multiple (as opposed to a single) leptin measurements did not significantly improve the leptinhody fat relationship. Discussion: When robust body composition techniques and diet control measures are taken into consideration, the relationship between In plasma leptin concentrations and percent body fat is not different in men and women.  相似文献   

19.
A combination of selenium (Se) with other trace element is associated with partially modulate fatty acid distribution as well as reduction of the body weight and feed efficiency. To investigate whether or not Se treatment has an impact on lipid metabolism, we examined the levels of lipid metabolism-related factors, including abdominal fat, adiponectin, cholesterol, very long chain dehydrogenase (VLCAD), and medium chain acyl-CoA dehydrogenase (MCAD) in 20-week-old Otsuka Long-Evans Tokushima Fatty (OLETF) rats following sodium selenite treatment for 2?weeks. Herein, we observed that (a) Se treatment induced insulin-like effects by lowering the serum glucose level in rats; (b) Se-treated rats showed significance values decreases in abdominal fat mass, adipocyte size, and adiponectin, which are associated with lipid metabolism; (c) Se treatment led to reduced levels of cholesterol, triglycerides, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) cholesterol; (d) fat tissue in Se-treated rats displayed significantly lower expression of adipocyte marker genes along with increased expression of VLCAD and MCAD; and (e) fatty liver formation and ??-oxidation gene expression were both significantly reduced in liver tissue of Se-treated rats. Therefore, our results suggest that Se may induce inhibition of adipocyte hypertrophy and abdominal fat accumulation along with suppression of fatty liver formation by the differential regulation of the gene expression for fatty acid ??-oxidation in the OLETF model.  相似文献   

20.
While it has been proposed that Shc family of adaptor proteins may influence aging by regulating insulin signaling and energy metabolism, the overall impact of Shc proteins on whole body energy metabolism has yet to be elucidated. Thus, the purpose of this study was to determine the influence of Shc proteins and aging on whole body energy metabolism in a mouse model under ambient conditions (22°C) and acute cold exposure (12°C for 24 hours). Using indirect respiration calorimetry, we investigated the impact of Shc proteins and aging on EE and substrate utilization (RQ) in p66 Shc−/− (ShcKO) and wild-type (WT) mice. Calorimetry measurements were completed in 3, 15, and 27 mo mice at 22°C and 12°C. At both temperatures and when analyzed across all age groups, ShcKO mice demonstrated lower 24 h total EE values than that of WT mice when EE data was expressed as either kJ per mouse, or adjusted by body weight or crude organ mass (ORGAN) (P≤0.01 for all). The ShcKO mice also had higher (P<0.05) fed state RQ values than WT animals at 22°C, consistent with an increase in glucose utilization. However, Shc proteins did not influence age-related changes in energy expenditure or RQ. Age had a significant impact on EE at 22°C, regardless of how EE data was expressed (P<0.05), demonstrating a pattern of increase in EE from age 3 to 15 mo, followed by a decrease in EE at 27 mo. These results indicate a decline in whole body EE with advanced age in mice, independent of changes in body weight (BW) or fat free mass (FFM). The results of this study indicate that both Shc proteins and aging should be considered as factors that influence energy expenditure in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号