首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We have recently described two yeast strains that are mutated in the MRF1 gene encoding the mitochondrial release factor mRF-1. Both mutants provoke gene-specific defects in mitochondrial translational termination. In the present study we report the cloning, sequencing, as well as an analysis of residual activities of both mutant mrf1 alleles. Each allele specifies a different single amino acid substitution located one amino acid apart. The amino acid changes do not affect the level or cellular localization of the mutant proteins, since equal amounts of wild type and mutant mRF-1 were detected in the mitochondrial compartment. Over-expression of the mutant alleles in wild type and mrf1 mutant yeast strains produces a phenotype consistent with a reduced affinity of the mutant release factors for the ribosome, indicating that the mutations map in a release factor domain involved in ribosome binding. We also demonstrate that nonsense suppression caused by a mutation in the mitochondrial homolog of the E. coli small ribosomal protein S4 can be reversed by a slight over-expression of the MRF1 gene.  相似文献   

2.
3.
The termination of protein synthesis in bacteria requires two codon-specific release factors, RF-1 and RF-2. A gene for a third factor, RF-3, that stimulates the RF-1 and RF-2 activities has been isolated from the gram-negative bacteria Escherichia coli and Dichelobacter nodosus. In this work, we isolated the RF-3 gene from Salmonella typhimurium and compared the three encoded RF-3 proteins by immunoblotting and intergeneric complementation and suppression. A murine polyclonal antibody against E. coli RF-3 reacted with both S. typhimurium and D. nodosus RF-3 proteins. The heterologous RF-3 genes complemented a null RF-3 mutation of E. coli regardless of having different sequence identities at the protein level. Additionally, multicopy expression of either of these RF-3 genes suppressed temperature-sensitive RF-2 mutations of E. coli and S. typhimurium by restoring adequate peptide chain release. These findings strongly suggest that the RF-3 proteins of these gram-negative bacteria share common structural and functional domains necessary for RF-3 activity and support the notion that RF-3 interacts functionally and/or physically with RF-2 during translation termination.  相似文献   

4.
Western blot (immunoblot) analysis of Bacillus subtilis cell extracts detected two proteins that cross-reacted with monospecific polyclonal antibody raised against Escherichia coli initiation factor 2 alpha (IF2 alpha). Subsequent Southern blot analysis of B. subtilis genomic DNA identified a 1.3-kilobase (kb) HindIII fragment which cross-hybridized with both E. coli and Bacillus stearothermophilus IF2 gene probes. This DNA was cloned from a size-selected B. subtilis plasmid library. The cloned HindIII fragment, which was shown by DNA sequence analysis to encode the N-terminal half of the B. subtilis IF2 protein and 0.2 kb of upstream flanking sequence, was utilized as a homologous probe to clone an overlapping 2.76-kb ClaI chromosomal fragment containing the entire IF2 structural gene. The HindIII fragment was also used as a probe to obtain overlapping clones from a lambda gt11 library which contained additional upstream and downstream flanking sequences. Sequence comparisons between the B. subtilis IF2 gene and the other bacterial homologs from E. coli, B. stearothermophilus, and Streptococcus faecium displayed extensive nucleic acid and protein sequence homologies. The B. subtilis infB gene encodes two proteins, IF2 alpha (78.6 kilodaltons) and IF2 beta (68.2 kilodaltons); both were expressed in B. subtilis and E. coli. These two proteins cross-reacted with antiserum to E. coli IF2 alpha and were able to complement in vivo an E. coli infB gene disruption. Four-factor recombination analysis positioned the infB gene at 145 degrees on the B. subtilis chromosome, between the polC and spcB loci. This location is distinct from those of the other major ribosomal protein and rRNA gene clusters of B. subtilis.  相似文献   

5.
The gene for a sigma factor (rpoD) was cloned from Myxococcus xanthus, a soil bacterium which differentiates to form fruiting bodies upon starvation for nutrients. The DNA sequence of the gene was determined, and an open reading frame encoding a polypeptide of 708 amino acid residues (Mr = 80,391) was identified. Except for the amino-terminal sequence consisting of 100 residues, the M. xanthus sigma factor (sigma-80) showed extensive similarity with Escherichia coli sigma-70 as well as Bacillus subtilis sigma-43. In particular, the carboxy-terminal sequence of 242 residues that is known to be required for promoter recognition and core recognition showed 78 and 72% amino acid sequence identity with the E. coli and B. subtilis sigma factors, respectively. The putative RpoD protein was detected at the position of an apparent molecular weight of 86,000 by Western blot (immunoblot) analysis by using antiserum against B. subtilis sigma-43, which agreed well with the position of a vegetative sigma factor of M. xanthus previously identified by Rudd and Zusman (K. Rudd and D. R. Zusman, J. Bacteriol. 151:89-105, 1982).  相似文献   

6.
A strain of Bacillus species which produced an enzyme named glutaryl 7-ACA acylase which converts 7 beta-(4-carboxybutanamido)cephalosporanic acid (glutaryl 7-ACA) to 7-amino cephalosporanic acid (7-ACA) was isolated from soil. The gene for the glutaryl 7-ACA acylase was cloned with pHSG298 in Escherichia coli JM109, and the nucleotide sequence was determined by the M13 dideoxy chain termination method. The DNA sequence revealed only one large open reading frame composed of 1,902 bp corresponding to 634 amino acid residues. The deduced amino acid sequence contained a potential signal sequence in its amino-terminal region. Expression of the gene for glutaryl 7-ACA acylase was performed in both E. coli and Bacillus subtilis. The enzyme preparations purified from either recombinant strain of E. coli or B. subtilis were shown to be identical with each other as regards the profile of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were composed of a single peptide with the molecular size of 70 kDa. Determination of the amino-terminal sequence of the two enzyme preparations revealed that both amino-terminal sequences (the first nine amino acids) were identical and completely coincided with residues 28 to 36 of the open reading frame. Extracellular excretion of the enzyme was observed in a recombinant strain of B. subtilis.  相似文献   

7.
The lon gene of Escherichia coli encodes the ATP-dependent serine protease La and belongs to the family of sigma 32-dependent heat shock genes. In this paper, we report the cloning and characterization of the lon gene from the gram-positive bacterium Bacillus subtilis. The nucleotide sequence of the lon locus, which is localized upstream of the hemAXCDBL operon, was determined. The lon gene codes for an 87-kDa protein consisting of 774 amino acid residues. A comparison of the deduced amino acid sequence with previously described lon gene products from E. coli, Bacillus brevis, and Myxococcus xanthus revealed strong homologies among all known bacterial Lon proteins. Like the E. coli lon gene, the B. subtilis lon gene is induced by heat shock. Furthermore, the amount of lon-specific mRNA is increased after salt, ethanol, and oxidative stress as well as after treatment with puromycin. The potential promoter region does not show similarities to promoters recognized by sigma 32 of E. coli but contains sequences which resemble promoters recognized by the vegetative RNA polymerase E sigma A of B. subtilis. A second gene designated orfX is suggested to be transcribed together with lon and encodes a protein with 195 amino acid residues and a calculated molecular weight of 22,000.  相似文献   

8.
Structure of a Bacillus subtilis endo-beta-1,4-glucanase gene.   总被引:15,自引:1,他引:14       下载免费PDF全文
The nucleotide sequence of the portion of a Bacillus subtilis (strain PAP115) 3 kb Pst I fragment which contains an endo-beta-1, 4-glucanase gene has been determined. This gene encodes a protein of 499 amino acid residues (Mr = 55,234) with a typical B. subtilis signal peptide. Escherichia coli which has been transformed with this gene produces an extracellular endoglucanase with an amino-terminus corresponding to the thirtieth encoded amino acid residue. The gene is preceded by a cryptic reading frame with a rho-independent terminator structure, and itself has such a structure in the immediate 3'-flanking region. We have also identified, in the 5'-flanking region, nucleotide sequences which resemble promoter elements recognized by Bacillus RNA polymerase E sigma 43. Comparison of the encoded amino acid sequence to other known beta-glucanases reveals a small region of similarity to the encoded protein of the Clostridium thermocellum celB gene. These similar regions may contain substrate-binding and/or catalytic sites.  相似文献   

9.
The Bacillus subtilis gene encoding glutamine phosphoribosylpyrophosphate amidotransferase (amidophosphoribosyltransferase) was cloned in pBR322. This gene is designated purF by analogy with the corresponding gene in Escherichia coli. B. subtilis purF was expressed in E. coli from a plasmid promoter. The plasmid-encoded enzyme was functional in vivo and complemented an E. coli purF mutant strain. The nucleotide sequence of a 1651-base pair B. subtilis DNA fragment was determined, thus localizing the 1428-base pair structural gene. A primary translation product of 476 amino acid residues was deduced from the DNA sequence. Comparison with the previously determined NH2-terminal amino acid sequence indicates that 11 residues are proteolytically removed from the NH2 terminus, leaving a protein chain of 465 residues having an NH2-terminal active site cysteine residue. Plasmid-encoded B. subtilis amidophosphoribosyltransferase was purified from E. coli cells and compared to the enzymes from B. subtilis and E. coli. The plasmid-encoded enzyme was similar in properties to amidophosphoribosyltransferase obtained from B. subtilis. Enzyme specific activity, immunological reactivity, in vitro lability to O2, Fe-S content, and NH2-terminal processing were virtually identical with amidophosphoribosyltransferase purified from B. subtilis. Thus E. coli correctly processed the NH2 terminus and assembled [4Fe-4S] centers in B. subtilis amidophosphoribosyltransferase although it does not perform these maturation steps on its own enzyme. Amino acid sequence comparison indicates that the B. subtilis and E. coli enzymes are homologous. Catalytic and regulatory domains were tentatively identified based on comparison with E. coli amidophosphoribosyltransferase and other phosphoribosyltransferase (Argos, P., Hanei, M., Wilson, J., and Kelley, W. (1983) J. Biol. Chem. 258, 6450-6457).  相似文献   

10.
Biotin synthetase (BS) catalyses the biotransformation of dethiobiotin (DTB) to biotin. Here we report the cloning, characterization and expression of the gene encoding BS of Bacillus sphaericus. A recombinant plasmid pSB01, containing an 8.2-kb DNA fragment from B. sphaericus, was isolated by phenotypic complementation of an Escherichia coli bioB strain. Nucleotide sequence analysis of this fragment and N-terminal sequence determination of the recombinant protein product revealed that the bioB gene of B. sphaericus consists of a 996-bp open reading frame which is closely associated with at least one other gene. E. coli cells transformed with a bioB expression vector performed efficient bioconversion of DTB to biotin under defined culture conditions. Biotin production from transformed Bacillus subtilis and B. sphaericus recombinant strains was also demonstrated. Comparison of the amino acid sequences of BS from E. coli and B. sphaericus revealed extensive similarity.  相似文献   

11.
The gene for an alkaline endoglucanase from the alkalophilic Bacillus sp. KSM-64 was cloned into the HindIII site of pBR322 and expressed in Escherichia coli HB101. The nucleotide sequence of a 4.1-kb region of the HindIII insert had two open reading frames, ORF-1 and ORF-2. The protein deduced from ORF-1 was composed of 244 amino acids with an M(r) of 27,865. Subcloning analysis proved that the alkaline endoglucanase was encoded by ORF-2 (822 amino acids with an M(r) of 91,040). Upstream from ORF-2, there were three consensus like sequences of the sigma A-type promoter of Bacillus subtilis, a putative Shine-Dalgarno sequence (AGGAGGT), and a catabolite repression operator-like sequence (TGTAAGCGGTTAACC). The HindIII insert was subcloned into a shuttle vector, pHY300PLK, and the encoded alkaline endoglucanase gene was highly expressed both in E. coli and B. subtilis. One of the three promoter-like sequences in ORF-2 could be suitable for high levels of enzyme expression in both host organisms.  相似文献   

12.
Sequence analysis of the Bacillus subtilis argC promoter region   总被引:6,自引:0,他引:6  
M C Smith  A Mountain  S Baumberg 《Gene》1986,49(1):53-60
  相似文献   

13.
The protein synthesis initiation factor, IF2, in Bacillus subtilis has previously been characterized as being present in two forms, alpha and beta, of molecular mass 79 and 68 kDa, respectively, on the basis of their cross-reaction with anti-E. coli IF2 antibodies and by the DNA sequence of the gene for IF2, infBB.su. In this work we have cloned infBB.su in E. coli cells. Two proteins of molecular mass identical to the B. subtilis IF2 alpha and -beta were over-expressed and purified using a new three-step ion-exchange chromatography procedure. The N-terminal amino acid sequence of the two proteins was determined and the results confirmed that the two forms were IF2 alpha and -beta, both encoded by the infB gene. The N-terminal amino acid sequence determined for IF2 beta is Met94-Gln-Asn-Asn-Gln-Phe. The presence of methionine at position 94 shows that this form is, in fact, the result of a second translational initiation in infBB.su mRNA, since the codon at amino acid position 94 is GUG, which is the normal codon for valine, but also known to be an initiator codon. This is a new example of the unusual tandem translation in E. coli of an open mRNA reading frame.  相似文献   

14.
枯草芽孢杆菌渗透压调节基因proB的克隆和表达   总被引:8,自引:0,他引:8  
用PCR扩增的方法从耐盐的枯草杆菌中克隆出一个13kb长的DNA片段,经功能检测,证明正向插入片段与大肠杆菌的脯氨酸营养缺陷特性(proB-)能够营养互补。含有该重组质粒的大肠杆菌DH5α在基本培养基上的耐盐能力从2%提高至4%。通过引物步行法测定了该插入片段的核苷酸序列。利用DNAsis软件进行序列分析发现,该片段第122~1235bp核苷酸编码一个由370个氨基酸组成的蛋白质分子,其上游存在非典型的-10区,典型的-35区和核糖体结合位点,起始密码子处有最佳翻译起始效率的侧翼核苷酸序列。将其与Genebank中的已知基因的序列和编码的氨基酸序列进行同源性比较,结果表明该片段与枯草杆菌168的核苷酸序列、氨基酸序列的同源性分别为81%和90%。证明该基因确实是一个proB基因。通过与三十个不同种属微芽生物proB基因的氨基酸序列比较,发现该蛋白存在有可能与形成酶的活性中心和三维结构有密切关系的几个绝对保守的区域。  相似文献   

15.
J G Moffat  K M Timms  C N Trotman  W P Tate 《Biochimie》1991,73(7-8):1113-1120
There are two major domains of interaction between the Escherichia coli release factors (RF-1 and RF-2) and each subunit of the ribosome. RF-2 has a binding domain on the shoulder and lower head region of the small subunit at the small lobe distant from the decoding site. This is in close proximity to one of the domains on the large subunit which includes the body dimer of L7/L12 and L11. The other domains of interaction, at the decoding site on the small subunit, and at the peptidyltransferase centre of the large subunit of the ribosome, are some distance from the first two, although the evidence for direct contact with the ribosome is less comprehensive. The release factors may therefore have two distinct structural domains, and in support of this concept RF-1 and RF-2 can both be cleaved into two fragments by papain. Region-specific antibodies, and antibodies against defined peptide within the RF sequences have given an indication that a significant part of an interacting RF molecule is in close proximity to the ribosome surface, confirming an observation by immunoelectron microscopy which suggested that the RF penetrates deeply into the cleft between the two subunits. A region of highly conserved primary sequence between the two release factors from E coli is also conserved in those from B subtilis suggesting it forms an important structural or functional domain. Antibodies against peptides from the N-terminal end of this region strongly inhibit binding of the RF to the ribosome.  相似文献   

16.
17.
18.
By using a DNA fragment of Escherichia coli ffh as a probe, the Bacillus subtilis ffh gene was cloned. The complete nucleotide sequence of the cloned DNA revealed that it contained three open reading frames (ORFs). Their order in the region, given by the gene product, was suggested to be ORF1-Ffh-S16, according to their similarity to the gene products of E. coli, although ORF1 exhibited no significant identity with any other known proteins. The orf1 and ffh genes are organized into an operon. Genetic mapping of the ffh locus showed that the B. subtilis ffh gene is located near the pyr locus on the chromosome. The gene product of B. subtilis ffh shared 53.9 and 32.6% amino acid identity with E. coli Ffh and the canine 54-kDa subunit of signal recognition particle, respectively. Although there was low amino acid identity with the 54-kDa subunit of mammalian signal recognition particle, three GTP-binding motifs in the NH2-terminal half and amphipathic helical cores in the COOH-terminus were conserved. The depletion of ffh in B. subtilis led to growth arrest and drastic morphological changes. Furthermore, the translocation of beta-lactamase and alpha-amylase under the depleted condition was also defective.  相似文献   

19.
A single release factor has been isolated and partially purified from rat mitochondria. It requires ethanol in addition to the specific termination codon when assayed in a heterologous system with Escherichia coli ribosomes. The factor recognizes the codons UAA and UAG but not UGA, and therefore it has been designated mtRF-1. A factor of the bacterial RF-2 type, which in E. coli recognizes UGA, or of the mammalian type, which recognizes all three termination codons, has not been detected in mitochondria. The absence of a factor responding to UGA accommodates the use of this codon as a signal for tryptophan in the rat mitochondrial genetic code. The mtRF-1 could translate all of the known termination codons in the rat mitochondrial genome. It does not respond to AGG and AGA which in bovine and human mitochondrial DNA code for termination but which in rat mitochondria may not code for either an amino acid or for termination.  相似文献   

20.
The precursor of Bacillus subtilis alpha-amylase contains an NH2-terminal extension of 41 amino acid residues as the signal sequence. The E. coli beta-lactamase structural gene was fused with the DNA for the promoter and signal sequence regions. Activity of beta-lactamase was expressed and more than 95% of the activity was secreted into the culture medium. DNA fragments coding for short signal sequences 28, 31, and 33 amino acids from the initiator Met were prepared and fused with the beta-lactamase structural gene. The sequences of 31 and 33 amino acid residues with Ala COOH-terminal amino acid were able to secrete active beta-lactamase from B. subtilis cells. However beta-lactamase was not secreted into the culture medium by the shorter signal sequence of 28 amino acid residues, which was not cleaved. Molecular weight analysis of the extracellular and cell-bound beta-lactamase suggested that the signal peptide of B. subtilis alpha-amylase was the first 31 amino acids from the initiator Met. The significance of these results was discussed in relation to the predicted secondary structure of the signal sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号