首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The potential of some proinflammatory mediators to inhibit gp130-dependent STAT3 activation by enhancing suppressor of cytokine signaling (SOCS) 3 expression represents an important molecular mechanism admitting the modulation of the cellular response toward gp130-mediated signals. Thus, it is necessary to understand the mechanisms involved in the regulation of SOCS3 expression by proinflammatory mediators. In this study, we investigate SOCS3 expression initiated by the proinflammatory cytokine TNF-alpha. In contrast to IL-6, TNF-alpha increases SOCS3 expression by stabilizing SOCS3 mRNA. Activation of the MAPK kinase 6 (MKK6)/p38(MAPK)-cascade is required for TNF-alpha-mediated stabilization of SOCS3 mRNA and results in enhanced SOCS3 protein expression. In fibroblasts or macrophages deficient for MAPK-activated protein kinase 2 (MK2), a downstream target of the MKK6/p38(MAPK) cascade, basal SOCS3-expression is strongly reduced and TNF-alpha-induced SOCS3-mRNA stabilization is impaired, indicating that MK2 is crucial for the control of SOCS3 expression by p38(MAPK)-dependent signals. As a target for SOCS3 mRNA stability-regulating signals, a region containing three copies of a pentameric AUUUA motif in close proximity to a U-rich region located between positions 2422 and 2541 of the 3' untranslated region of SOCS3 is identified. One factor that could target this region is the zinc finger protein tristetraprolin (TTP), which is shown to be capable of destabilizing SOCS3 mRNA via this region. However, data from TTP-deficient cells suggest that TTP does not play an irreplaceable role in the regulation of SOCS3 mRNA stability by TNF-alpha. In summary, these data indicate that TNF-alpha regulates SOCS3 expression on the level of mRNA stability via activation of the MKK6/p38(MAPK) cascade and that the activation of MK2, a downstream target of p38(MAPK), is important for the regulation of SOCS3 expression.  相似文献   

2.
Interleukin 1beta (IL-1beta) induces expression of the inducible nitric-oxide synthase (iNOS) with concomitant release of nitric oxide (NO) from glomerular mesangial cells. These events are preceded by activation of the c-Jun NH(2)-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38(MAPK). Our current study demonstrates that overexpression of the dominant negative form of JNK1 or p54 SAPKbeta/JNK2 significantly reduces the iNOS protein expression and NO production induced by IL-1beta. Similarly, overexpression of the kinase-dead mutant form of p38alpha(MAPK) also inhibits IL-1beta-induced iNOS expression and NO production. In previous studies we demonstrated that IL-1beta can activate MKK4/SEK1, MKK3, and MKK6 in renal mesangial cells; therefore, we examined the role of these MAPK kinases in the modulation of iNOS induced by IL-1beta. Overexpression of the dominant negative form of MKK4/SEK1 decreases IL-1beta-induced iNOS expression and NO production with inhibition of both SAPK/JNK and p38(MAPK) phosphorylation. Overexpression of the kinase-dead mutant form of MKK3 or MKK6 demonstrated that either of these two mutant kinase inhibited IL-1beta-induced p38(MAPK) (but not JNK/SAPK) phosphorylation and iNOS expression. Interestingly overexpression of wild type MKK3/6 was associated with phosphorylation of p38(MAPK); however, in the absence of IL-1beta, iNOS expression was not enhanced. This study suggests that the activation of both SAPK/JNK and p38alpha(MAPK) signaling cascades are necessary for the IL-1beta-induced expression of iNOS and production of NO in renal mesangial cells.  相似文献   

3.
In inflammatory processes, the p38 mitogen-activated protein kinase (MAPK) signal transduction route regulates production and expression of cytokines and other inflammatory mediators. Tumor necrosis factor alpha (TNF-alpha) is a pivotal cytokine in rheumatoid arthritis and its production in macrophages is under control of the p38 MAPK route. Inhibition of the p38 MAPK route may inhibit production not only of TNF-alpha, but also of other inflammatory mediators produced by macrophages, and indirectly of inflammatory mediators by other cells induced by TNF-alpha stimulation. Here we investigate the effects of RWJ 67657, a p38 MAPK inhibitor, on mRNA expression and protein production of TNF-alpha and other inflammatory mediators, in monocyte-derived macrophages. A strong inhibition of TNF-alpha was seen at pharmacologically relevant concentrations of RWJ 67657, but also inhibition of mRNA expression of IL-1beta, IL-8, and cyclooxygenase-2 was shown. Furthermore, it was shown that monocyte-derived macrophages have a high constitutive production of matrix metalloproteinase 9, which is not affected by p38 MAPK inhibition. The results presented here may have important implications for the treatment of rheumatoid arthritis.  相似文献   

4.
Airway smooth muscle cells (ASMC) are a source of inflammatory chemokines that may propagate airway inflammatory responses. We investigated the production of the CXC chemokine growth-related oncogene protein-alpha (GRO-alpha) from ASMC induced by cytokines and the role of MAPK and NF-kappaB pathways. ASMC were cultured from human airways, grown to confluence, and exposed to cytokines IL-1beta and TNF-alpha after growth arrest. GRO-alpha release, measured by ELISA, was increased by >50-fold after IL-1beta (0.1 ng/ml) or 5-fold after TNF-alpha (1 ng/ml) in a dose- and time-dependent manner. GRO-alpha release was not affected by the T helper type 2 cytokines IL-4, IL-10, and IL-13. IL-1beta and TNF-alpha also induced GRO-alpha mRNA expression. Supernatants from IL-1beta-stimulated ASMC were chemotactic for neutrophils; this effect was inhibited by anti-GRO-alpha blocking antibody. AS-602868, an inhibitor of IKK-2, and PD-98059, an inhibitor of ERK, inhibited GRO-alpha release and mRNA expression, whereas SP-600125, an inhibitor of JNK, reduced GRO-alpha release without effect on mRNA expression. SB-203580, an inhibitor of p38 MAPK, had no effect. AS-602868 but not PD-98059 or SP-600125 inhibited p65 DNA-binding induced by IL-1beta and TNF-alpha. By chromatin immunoprecipitation assay, IL-1beta and TNF-alpha enhanced p65 binding to the GRO-alpha promoter, which was inhibited by AS-602868. IL-1beta- and TNF-alpha-stimulated expression of GRO-alpha from ASMC is regulated by independent pathways involving NF-kappaB activation and ERK and JNK pathways. GRO-alpha released from ASMC participates in neutrophil chemotaxis.  相似文献   

5.
6.
7.
CCK-8对内毒素休克大鼠肺脏细胞因子的抑制效应   总被引:8,自引:1,他引:7  
Meng AH  Ling YL  Zhao XY  Zhang JL  Wang QH 《生理学报》2002,54(2):99-102
观察八肽胆囊收缩素(cholecystokinin-octapeptide,CCK-8)改善脂多糖(lipopolysaccharide,LPS)引起的大鼠内毒素性休克(endotoxic shock,ES)过程中血清及肺脏细胞因子的变化,探讨p38比裂素活化蛋白激酶(p38 mito-gen-activated protein kinase,p38 MAPK)的信号转导作用。用生理多道记录仪观察尾静脉注入LPS(p38 mito-gen-activated protein kinase,p38 MAPK)的信号转导作用。用生理多道记录仪观察尾静脉注入 LPS(8mg/kg i.v.)复制的SD大鼠ES模型、LPS注入前10min尾静脉注入CCK-8(40ug/kg i.v.)、单独注入CCK-8(40Uug/kg i.v.)或生理盐水(对照)的四组大鼠平均动脉血压(MAP)的改变,应用ELISA试剂盒检测血清和肺脏中炎性细胞因子(TNF-a、IL-1β和IL-6)的变化。用Western blot检测肺脏p38 MAPK的表达。结果显示:CCK-8可改善LPS引起的大鼠MAP的下降。与对照组相比,LPS可显著增加血清和肺脏TNF-a、IL-1β和IL-6含量;CCK-8可显著抑制LPS诱导的血清和肺脏TNF-a、IL-1β和IL-6的增加。CCK-8可增加ES大鼠肺脏磷酸化p38 MAPK的表达。结果提示CCK-8可改善ES大鼠MAP的降低,并对肺脏促炎性细胞因子过量产生有抑制作用,p38MAPK可能参与了其信号转导机制。  相似文献   

8.
ICAM-1 is a transmembrane glycoprotein of the Ig superfamily involved in cell adhesion. ICAM-1 is aberrantly expressed by astrocytes in CNS pathologies such as multiple sclerosis, experimental allergic encephalomyelitis, and Alzheimer's disease, suggesting a possible role for ICAM-1 in these disorders. ICAM-1 has been shown to be important for leukocyte diapedesis through brain microvessels and subsequent binding to astrocytes. However, other functional roles for ICAM-1 expression on astrocytes have not been well elucidated. Therefore, we investigated the intracellular signals generated upon ICAM-1 engagement on astrocytes. ICAM-1 ligation by a mAb to rat ICAM-1 induced mRNA expression of proinflammatory cytokines such as IL-1alpha, IL-1beta, IL-6, and TNF-alpha. Examination of cytokine protein production revealed that ICAM-1 ligation results in IL-6 secretion by astrocytes, whereas IL-1beta and IL-1alpha protein is expressed intracellularly in astrocytes. The involvement of mitogen-activated protein kinases (MAPKs) in ICAM-1-mediated cytokine expression in astrocytes was tested, as the MAPK extracellular signal-regulated kinase (ERK) was previously shown to be activated upon ICAM-1 engagement. Our results indicate that ERK1/ERK2, as well as p38 MAPK, are activated upon ligation of ICAM-1. Studies using pharmacological inhibitors demonstrate that both p38 MAPK and ERK1/2 are involved in ICAM-1-induced IL-6 expression, whereas only ERK1/2 is important for IL-1alpha and IL-1beta expression. Our data support the role of ICAM-1 on astrocytes as an inflammatory mediator in the CNS and also uncover a novel signal transduction pathway through p38 MAPK upon ICAM-1 ligation.  相似文献   

9.
10.
Regulation of cytokine and chemokine expression in microglia may have implications for CNS inflammatory disorders. In this study we examined the role of the cyclopentenone PG 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) in microglial inflammatory activation in primary cultures of human fetal microglia. 15d-PGJ(2) potently inhibited the expression of microglial cytokines (IL-1, TNF-alpha, and IL-6). We found that 15d-PGJ(2) had differential effects on the expression of two alpha-chemokines; whereas the Glu-Lys-Arg (ELR)(-) chemokine IFN-inducible protein-10/CXCL10 was inhibited, the ELR(+) chemokine IL-8/CXCL8 was not inhibited. These findings were shown in primary human microglia and the human monocytic cells line THP-1 cells, using diverse cell stimuli such as bacterial endotoxin, proinflammatory cytokines (IL-1 and TNF-alpha), IFN-beta, and HIV-1. Furthermore, IL-8/CXCL8 expression was induced by 15d-PGJ(2) alone or in combination with TNF-alpha or HIV-1. Combined results from EMSA, Western blot analysis, and immunocytochemistry showed that 15d-PGJ(2) inhibited NF-kappaB, Stat1, and p38 MAPK activation in microglia. Adenoviral transduction of super-repressor IkappaBalpha, dominant negative MKK6, and dominant negative Ras demonstrated that NF-kappaB and p38 MAPK were involved in LPS-induced IFN-inducible protein 10/CXCL10 production. Interestingly, although LPS-induced IL-8/CXCL8 was dependent on NF-kappaB, the baseline or 15d-PGJ(2)-mediated IL-8/CXCL8 production was NF-kappaB independent. Our results demonstrate that 15d-PGJ(2) has opposing effects on the expression of two alpha-chemokines. These data may have implications for CNS inflammatory diseases.  相似文献   

11.
Thymic stromal lymphopoietin (TSLP) is a novel cytokine that triggers dendritic cell-mediated T helper (Th)-2 inflammatory responses. Previous studies have demonstrated that human airway smooth muscle cells (HASMC) play a critical role in initiating or perpetuating airway inflammation by producing chemokines and cytokines. In this study, we first evaluated the expression of TSLP in primary HASMC and investigated how proinflammatory cytokines (TNF-alpha and IL-1beta) and Th-2 cytokines (IL-4, IL-9) regulate TSLP production from HASMC. TSLP mRNA and protein were assessed by real-time RT-PCR, ELISA, and immunofluorescence from primary HASMC cultures. Primary HASMC express constitutive level of TSLP. Incubation of HASMC with IL-1 or TNF-alpha resulted in a significant increase of TSLP mRNA and protein release from HASMC. Furthermore, combination of IL-1beta and TNF-alpha has an additive effect on TSLP release by HASMC. Primary HASMC pretreated with inhibitors of p38 or p42/p44 ERK MAPK, but not phosphatidylinositol 3-kinase, showed a significant decrease in TSLP release on IL-1beta and TNF-alpha treatment. Furthermore, TSLP immunoreactivity was present in ASM bundle from chronic obstructive pulmonary disease (COPD) and to lesser degree in normal subjects. Taken together, our data provide the first evidence of IL-1beta- and TNF-alpha-induced TSLP expression in HASMC via (p38, p42/p44) MAPK signaling pathways. Our results raise the possibility that HASMC may play a role in COPD airway inflammation via TSLP-dependent pathway.  相似文献   

12.
Intestinal mucosal cells and invading leukocytes produce inappropriate levels of cytokines and chemokines in human colitis. However, smooth muscle cells of the airway and vasculature also synthesize cytokines and chemokines. To determine whether human colonic myocytes can synthesize proinflammatory mediators, strips of circular smooth muscle and smooth muscle cells were isolated from human colon. Myocytes and muscle strips were stimulated with 10 ng/ml of IL-1beta, TNF-alpha, and IFN-gamma, respectively. Expression of mRNA for IL-1beta, IL-6, IL-8, and cyclooxygenase-2 (COX-2) was induced within 2 h and continued to increase for 8-12 h. Regulated on activation, normal T cell-expressed and -secreted (RANTES) mRNA expression was slower, appearing at 8 h and increasing linearly through 20 h. Expression of all five mRNAs was inhibited by 0.1 microM MG-132, a proteosome inhibitor that blocks NF-kappaB activation. Expression of IL-1beta, IL-6, IL-8, and COX-2 mRNA was reduced by 30 microM PP1, an Src family tyrosine kinase inhibitor, and by 25 microM SB-203580, a p38 MAPK inhibitor. MAPK/extracellular regulated kinase-1 inhibitor PD-98059 (25 microM) was much less effective. In conclusion, human colonic smooth muscle cells can synthesize and secrete interleukins (IL-1beta and IL-6) and chemokines (IL-8 and RANTES) and upregulate expression of COX-2. Regulation of cytokine, chemokine, and COX-2 mRNA depends on multiple signaling pathways, including Src-family kinases, extracellular regulated kinase, p38 MAPKs, and NF-kappaB. SB-203580 was a consistent, efficacious inhibitor of inflammatory gene expression, suggesting an important role of p38 MAPK in synthetic functions of human colonic smooth muscle.  相似文献   

13.
14.
15.
16.
Two key features of atherosclerotic plaques that precipitate acute atherothrombotic vascular occlusion ("vulnerable plaques") are abundant inflammatory mediators and macrophages with excess unesterified, or "free," cholesterol (FC). Herein we show that FC accumulation in macrophages leads to the induction and secretion of two inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6). The increases in TNF-alpha and IL-6 mRNA and protein were mediated by FC-induced activation of the IkappaB kinase/NF-kappaB pathway as well as activation of MKK3/p38, Erk1/2, and JNK1/2 mitogen-activated protein kinases (MAPK). Activation of IkappaB kinase and JNK1/2 was needed for the induction of both cytokines. However, MKK3/p38 signaling was specifically involved in TNF-alpha induction, and Erk1/2 signaling was required for IL-6. Most interestingly, activation of all of the signaling pathways and induction of both cytokines required cholesterol trafficking to the endoplasmic reticulum (ER). The CHOP branch of the unfolded protein response, an ER stress pathway, was required for Erk1/2 activation and IL-6 induction. In contrast, one or more other ER-related pathways were responsible for activation of p38, JNK1/2, and IkappaB kinase/NF-kappaB and for the induction of TNF-alpha. These data suggest a novel scenario in which cytokines are induced in macrophages by endogenous cellular events triggered by excess ER cholesterol rather than by exogenous immune cell mediators. Moreover, this model may help explain the relationship between FC accumulation and inflammation in vulnerable plaques.  相似文献   

17.
18.
19.
The initial step in an immune response toward a viral infection is the induction of inflammatory cytokines. This innate immune response is mediated by expression of a variety of cytokines exemplified by TNF-alpha and IL-1beta. A key signal for the recognition of intracellular viral infections is the presence of dsRNA. Viral infections and dsRNA treatment can activate several signaling pathways including the protein kinase R pathway, mitogen-activated protein kinase (MAPK) pathways, and NF-kappaB, which are important in the expression of inflammatory cytokines. We previously reported that activation of protein kinase R was required for dsRNA induction of TNF-alpha, but not for IL-1beta. In this study, we report that activation of the p38 MAPK pathway by respiratory viral infections is necessary for induction of inflammatory cytokines in human bronchial epithelial cells. Inhibition of p38 MAPK by two different pharmacological inhibitors showed that expression of both TNF-alpha and IL-1beta required activation of this signaling pathway. Interestingly, inhibition of NF-kappaB did not significantly reduce viral induction of either cytokine. Our data show that, during the initial infections of epithelial cells with respiratory viruses, activation of the p38 MAPK pathway is associated with induction of inflammation, and NF-kappaB activation may be less important than previously suggested.  相似文献   

20.
Periodontal ligament (PDL) cells are fibroblasts that play key roles in tissue integrity, periodontal inflammation and tissue regeneration in the periodontium. The periodontal tissue destruction in periodontitis is mediated by host tissue-produced inflammatory cytokines, including interleukin-1β (IL-1β). Here, we report the expression of G protein-coupled receptor 30 (GPR30, also known as G protein-coupled estrogen receptor 1 GPER) in human PDL cells and its regulation by IL-1β. IL-1β-induced GPR30 expression in human PDL cells leads to the activation of multiple signaling pathways, including MAPK, NF-κB and PI3K. In contrast, genistein, an estrogen receptor ligand, postpones the activation of MAPKs induced by IL-1β. Moreover, the inhibition of GPR30 by G15, a GPR30-specific antagonist, eliminates this delay. Thus, genistein plays a role in the regulation of MAPK activation via GPR30, and GPR30 represents a novel target regulated by steroid hormones in PDL cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号