首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveThis study aims to assess low-contrast image quality using a low-contrast object specific contrast-to-noise ratio (CNRLO) analysis for iterative reconstruction (IR) computed tomography (CT) images.MethodsA phantom composed of low-contrast rods placed in a uniform material was used in this study. Images were reconstructed using filtered back projection (FBP) and IR (Adaptive Iterative Dose Reduction 3D). Scans were performed at six dose levels: 1.0, 1.8, 3.1, 4.6, 7.1 and 13.3 mGy. Objective image quality was assessed by comparing CNRLO with CNR using a human observer test.ResultsCompared with FBP, IR yielded increased CNR at the same dose levels. The results of CNRLO and observer tests showed similarities or only marginal differences between FBP and IR at the same dose levels. The coefficient of determination for CNRLO was significantly better (R2 = 0.86) than that of CNR (R2 = 0.47).ConclusionFor IR, CNRLO could potentially serve as an objective index reflective of a human observer assessment. The results of CNRLO test indicated that the IR algorithm was not superior to FBP in terms of low-contrast detectability at the same radiation doses.  相似文献   

2.
PurposeTo determine the suitable kVp pair for optimal image quality of the virtual monochromatic images (VMIs) and iodine quantification accuracy at low concentration, using a third generation dual-source CT (DSCT).Materials and methodsMulti-energy CT phantoms with and without body rings were scanned with a DSCT using four kVp pairs (tube “A”/“B” voltage): 100/Sn150, 90/Sn150, 80/Sn150 and 70/Sn150 kVp. The reference mAs was adjusted to obtain a CTDIvol close to 11 mGy. HU values accuracy (RMSDHU), noise (SD) and contrast-to-noise ratio (CNR) of iodine inserts of 0.5, 1, 2 and 5 mg/mL concentrations were assessed on VMIs at 40/50/60/70 keV. Iodine quantification accuracy was assessed using the RMSDiodine and iodine bias (IBiodine).ResultsThe RMSDHU decreased when the tube “A” voltage increased. The mean noise value increased significantly with tube “A” voltage (p < 0.001) but decreased between 80/Sn150 and 90/Sn150 kVp for the small phantom (1.1 ± 0.1%; p = 0.047). The CNR significantly decreased with tube “A” voltage (p < 0.001), except between 80/Sn150 and 90/Sn150 kVp for all inserts and between 90/Sn150 kVp and 100/Sn150 kVp for the 1.0 and 0.5 mg/mL inserts in the large phantom. In the small phantom, no significant difference was found between 80/Sn150 kVp and 90/Sn150 kVp for all inserts and between 80/Sn150, 90/Sn150 and 100/Sn150 kVp for the 1 and 0.5 mg/mL inserts. The RMSDiodine and IBiodine decreased as the tube “A” voltage of the kVp pair increased.ConclusionThe kVp pair of 70/Sn150 led to better image quality in VMIs and sufficient iodine accuracy.  相似文献   

3.
PurposeTo study the feasibility of using an iterative reconstruction algorithm to improve previously reconstructed CT images which are judged to be non-diagnostic on clinical review. A novel rapidly converging, iterative algorithm (RSEMD) to reduce noise as compared with standard filtered back-projection algorithm has been developed.Materials and methodsThe RSEMD method was tested on in-silico, Catphan®500, and anthropomorphic 4D XCAT phantoms. The method was applied to noisy CT images previously reconstructed with FBP to determine improvements in SNR and CNR. To test the potential improvement in clinically relevant CT images, 4D XCAT phantom images were used to simulate a small, low contrast lesion placed in the liver.ResultsIn all of the phantom studies the images proved to have higher resolution and lower noise as compared with images reconstructed by conventional FBP. In general, the values of SNR and CNR reached a plateau at around 20 iterations with an improvement factor of about 1.5 for in noisy CT images. Improvements in lesion conspicuity after the application of RSEMD have also been demonstrated. The results obtained with the RSEMD method are in agreement with other iterative algorithms employed either in image space or with hybrid reconstruction algorithms.ConclusionsIn this proof of concept work, a rapidly converging, iterative deconvolution algorithm with a novel resolution subsets-based approach that operates on DICOM CT images has been demonstrated. The RSEMD method can be applied to sub-optimal routine-dose clinical CT images to improve image quality to potentially diagnostically acceptable levels.  相似文献   

4.
PurposeAnti-scatter grids suppress the scatter substantially thus improving image contrast in radiography. However, its active use in cone-beam CT for the purpose of improving contrast-to-noise ratio (CNR) has not been successful mainly due to the increased noise related to Poisson statistics of photons. This paper proposes a sparse-view scanning approach to address the above issue.MethodCompared to the conventional cone-beam CT imaging framework, the proposed method reduces the number of projections and increases exposure in each projection to enhance image quality without an additional cost of radiation dose to patients. For image reconstruction from sparse-view data, an adaptive-steepest-descent projection-onto-convex-sets (ASD POCS) algorithm regularized by total-variation (TV) minimization was adopted. Contrast and CNR with various scattering conditions were evaluated in projection domain by a simulation study using GATE. Then we evaluated contrast, resolution, and image uniformity in CT image domain with Catphan phantom. A head phantom with soft-tissue structures was also employed for demonstrating a realistic application. A virtual grid-based estimation and reduction of scatter has also been implemented for comparison with the real anti-scatter grid.ResultsIn the projection domain evaluation, contrast and CNR enhancement was observed when using an anti-scatter grid compared to the virtual grid. In the CT image domain, the proposed method produced substantially higher contrast and CNR of the low-contrast structures with much improved image uniformity.ConclusionWe have shown that the proposed method can provide high-quality CBCT images particularly with an increased contrast of soft-tissue at a neutral dose for image-guidance.  相似文献   

5.
PurposeIn radiotherapy, accurate calculation of patient radiation dose is very important for good clinical outcome. In the presence of metallic implants, the dose calculation accuracy could be compromised by metal artefacts generated in computed tomography (CT) images of patients. This study investigates the influence of metal-induced CT artefacts on MC dose calculations in a pelvic prosthesis phantom.MethodsA pelvic phantom containing unilateral Ti prosthesis was CT-scanned and accurate Hounsfield unit (HU) values were assigned to known materials of the phantom as opposed to HU values produced through the artefact CT images of the phantom. Using the DOSXYZnrc MC code, dose calculations were computed in the phantom model constructed from the original CT images containing the artefacts and artefact-free images made from the exact geometry of the phantom with known materials. The dose calculations were benchmarked against Gafchromic EBT3 film measurements using 15 MeV electron and 10 MV photon beams.ResultsThe average deviations between film and MC dose data decreased from 3 ± 2% to 1 ± 1% and from about 6 ± 2% to 3 ± 1% for the artefact and artefact-free phantom models against film data for the electron and photon fields, respectively.ConclusionsFor the Ti prosthesis phantom, the presence of metal-induced CT artefacts could cause dose inaccuracies of about 3%. Construction of an artefact-free phantom model made from the exact geometry of the phantom with known materials to overcome the effect of artefacts is advantageous compared to using CT data directly of which the exact tissue composition is not well-known.  相似文献   

6.
PurposeTo compare the effective dose (ED) and image quality (IQ) of O-arm cone-beam CT (Medtronic, Minneapolis, MN, USA) and Airo multi-slice CT (Brainlab AG, Munich, Germany) for intraoperative-CT (i-CT) in spinal surgery.MethodsThe manufacturer-defined protocols available in the O-arm and Airo systems for three-dimensional lumbar spine imaging were compared.Organ dose was measured both with thermo-luminescent dosimeters and GafChromic films in the Alderson Radiation Therapy anthropomorphic phantom.A subjective analysis was performed by neurosurgeons to compare the clinical IQ of the anthropomorphic phantom images acquired with the different i-CT systems and imaging protocols.Image uniformity, noise, contrast-to-noise-ratio (CNR), and spatial resolution were additionally assessed with the Catphan 504 phantom.ResultsO-arm i-CT caused 56% larger ED than Airo due to the high definition (HD) imaging protocol.The noise was larger for O-arm images leading to a lower CNR than that measured for Airo. Moreover, scattering and beam hardening effects were observed in the O-arm images. Better spatial resolution was measured for the O-arm system (9 lp/cm) than for Airo (4 lp/cm).For all the investigated protocols, O-arm was found to be better for identifying anatomical features important for accurate pedicle screw positioning.ConclusionsAccording to phantom measurements, the HD protocol of O-arm offered better clinical IQ than Airo but larger ED. The larger noise of O-arm images did not compromise the clinical IQ while the superior spatial resolution of this system allowed a better visibility of anatomical features important for pedicle screw positioning in the lumbar region.  相似文献   

7.
PurposeTo demonstrate a method of simulating mammography images of the CDMAM phantom and to investigate the coefficient of variation (CoV) in the threshold gold thickness (tT) measurements associated with use of the phantom.MethodsThe noise and sharpness of Hologic Dimensions and GE Essential mammography systems were characterized to provide data for the simulation. The simulation method was validated by comparing the tT results of real and simulated images of the CDMAM phantom for three different doses and the two systems. The detection matrices produced from each of 64 images using CDCOM software were randomly resampled to create 512 sets of 8, 16 and 32 images to estimate the CoV of tT. Sets of simulated images for a range of doses were used to estimate the CoVs for a range of diameters and threshold thicknesses.ResultsNo significant differences were found for tT or the CoV between real and simulated CDMAM images. It was shown that resampling from 256 images was required for estimating the CoV. The CoV was around 4% using 16 images for most of the phantom but is over double that for details near the edge of the phantom.ConclusionsWe have demonstrated a method to simulate images of the CDMAM phantom for different systems at a range of doses. We provide data for calculating uncertainties in tT. Any future review of the European guidelines should take into consideration the calculated uncertainties for the 0.1 mm detail.  相似文献   

8.
9.
PurposeWe compare image quality parameters derived from phantom images taken on three commercially available radiotherapy CT simulators. To make an unbiased evaluation, we assured images were obtained with the same surface dose measured using XR-QA2 model GafChromic™ film placed at the imaging phantom surface for all three CT-simulators.MethodsRadiotherapy CT simulators GE LS 16, Philips Brilliance Big Bore, and Toshiba Aquilion LB were compared in terms of spatial resolution, low contrast detectability, image uniformity, and contrast to noise ratio using CATPHAN-504 phantom, scanned with Head and Pelvis protocols. Dose was measured at phantom surface, with CT scans repeated until doses on all scanners were within 2%.ResultsIn terms of spatial resolution, the GE simulator appears slightly better, while Philips CT images are superior in terms of SNR for both scanning protocols. The CNR results show that Philips CT images appear to be better, except for high Z material, while Toshiba appears to fit in between the two simulators.ConclusionsWhile the image quality parameters for three RT CT simulators show comparable results, the scanner bore size is of vital importance in various radiotherapy applications. Since the image quality is a function of a large number of confounding parameters, any loss in image quality due to scanner bore size could be compensated by the appropriate choice of scanning parameters, including the exposure and by balancing between the additional imaging dose to the patient and high image quality required in highly conformal RT techniques.  相似文献   

10.
IntroductionAn in-house developed tool was implemented and validated to investigate the skin surface, hepatic dome, and target displacement for stereotactic ablative radiotherapy (SABR) of thoracic/abdominal lesions using a Surface Guided Radiation Therapy (SGRT) system combined with 4D- images.Materials and methodsFourteen consecutive patients with tumors near the hepatic dome undergoing SABR treatments were analyzed. For each patient, a planning 4D-CT and five 4D-CBCT images were acquired. The C-RAD technology was also used to register/monitor the position of the skin reference point (SRP) as an external marker representative of patient breathing. The 4D images were imported in the developed tool, and the absolute maximum height (Pmax,dome) of the hepatic dome on the ten respiratory phases was semi-automatically detected. Similarly, the contour of the skin surface was extracted in correspondence with the SRP position. The tool has been validated using an ad hoc modified moving phantom with pre-selected amplitudes and numbers of cycles. The Pearson correlation coefficients and Bland-Altman plots were calculated.ResultsThere was a strong correlation between the skin motion amplitude based on 4D-CBCT and the C-RAD in all the patients (0.90 ± 0.08). Similarly, the mean ± SD of Pearson correlation coefficients of skin and Pmax,dome movements registered by 4D-CT and 4D-CBCT were 0.90 ± 0.05 and 0.94 ± 0.05, respectively. The mean ± SD of Pearson correlation coefficients comparing the skin and Pmax,dome displacements within each imaging modality were 0.88 ± 0.05 and 0.90 ± 0.05 for 4D-CT and 4D-CBCT, respectively. The SRP displacement during the set-up imaging and the treatment delivery were similar in all the investigated patients. Similar results were obtained for the ad hoc modified phantom in the preliminary validation phase.ConclusionThe strong correlation between the tumor/ hepatic dome and skin displacements confirms that the SGRT approach can be considered appropriate for intra- and inter-fraction motion management in SABR therapy.  相似文献   

11.
Some new structural type inhibitors of urease, i.e. 2,5-disubstituted-1,3,4-oxadiazoles (4a–e) and 4,5-disubstituted-1,2,4-triazole-3-thiones (5a–e) were synthesized in two steps from mandelic acid hydrazides (2a–e) and aryl isothiocyantes. The hydrazides in turn were synthesized from mandelic acid via esterification. Compounds 4a–e and 5a–e were evaluated against jack bean urease. Compounds 4d, 5b, and 5d were found to be more potent, with IC50 values of 16.1?±?0.12?µM, 18.9?±?0.188?µM, and 16.7?±?0.178?µM, respectively, when compared to the standard (thiourea; IC50?=?21.0?±?0.011?µM). These compounds may be subjected to further investigations for the development of antiulcer drugs.  相似文献   

12.

Purpose

To determine by objective methods the minimum number of spectral-domain optical coherence tomographic (SD-OCT) images to average to obtain the clearest retinal image.

Methods

SD-OCT Images were obtained from 9 healthy eyes and also from a phantom eye model. The SD-OCT images were obtained by averaging 1, 5, 20, 60, and 100 B-scan images. The reflectivity (mean gray value) of the different retinal layers was evaluated in these images. The image quality was evaluated by the size of the standard deviations (SDs) and the contrast-to-noise ratios (CNRs). A phantom eye model made by TiO2 silicone plates was also examined.

Results

The SDs decreased significantly when the number of images averaged increased from 1 to 5 and also from 5 to 20 (P<0.05, post hoc Tukey''s honestly significant difference tests). The SD of the automatic real time averaging of 1 (ART = 1) and ART = 5 were significantly larger than the SD of ART = 100 (P<0.05). The SDs of all other averaged numbers were not significantly larger than that of ART = 100. The CNR increased with an increase in the number of images averaged, and there was a significant increase between ART = 1 to 5 and between ART = 5 to 20 (P<0.05). No significant differences in the CNR was observed between ART = 5, ART = 20 and ART = 60. Similar results were obtained with the phantom eye model.

Conclusions

Although the image quality of the SD-OCT images of the retina improved with an increase in the number of images averaged, it does not improve significantly by averaging more than 20 images.  相似文献   

13.
PurposeIORT with mobile linear accelerators is a well-established modality where the dose rate and, therefore, the dose per pulse are very high. The constancy of the dosimetric parameters of the accelerator has to be checked daily. The aim of this work is to develop a phantom with embedded detectors to improve both accuracy and efficiency in the daily test of an IORT linac at the surgery room.MethodsThe developed phantom is manufactured with transparent polymethyl methacrylate (PMMA), allocating 6 parallel-plate chambers: a central one to evaluate the on-axis beam output, another on-axis one placed at a fixed depth under the previous one to evaluate the energy constancy and four off-axis chambers to evaluate the flatness and symmetry. To analyse the readings a specific application has been developed.ResultsFor all chambers and energies, the mean saturation and polarization corrections were smaller than 0.7%. The beam is monitored at different levels of the clinical beam. Output, energy constancy and flatness correlate very well with the correspondent values with the complete applicator. During the first six months of clinical use the beam dosimetric parameters showed excellent stability.ConclusionsA phantom has been developed with embedded parallel plate chambers attached to the upper applicator part of an IORT linac. The phantom allows a very efficient setup reducing the time to check the parameters. It provides complete dosimetric information (output, energy and flatness) with just one shot and using ionization chambers with minimum saturation effect, as this highly pulsed beam requires.  相似文献   

14.
PurposeTo develop a new automatic exposure control (AEC) technique based on the contrast-to-noise ratio (CNR) and provide constant lesion detectability.MethodsLesion detectability is affected by factors such as image noise, lesion contrast, and lesion size. We performed ROC analysis to assess the relationship between the optimum CNR and the lesion diameter at various levels of lesion contrast. We then developed a CNR-based AEC algorithm based on lesion detectability. Using CNR- based AEC algorithm, we performed visual evaluation of low-contrast detectability by 5 radiologists on a low-contrast module of the Catphan phantom, a contrast-difference level of 1.0% (difference in the CT number = 10 HU), and objects 3.0–9.0 mm in diameter.ResultsOn step-and-shoot scans the mean detection fraction with CNR-based AEC remained almost constant from 88 to 99 % regardless of the lesion size. We observed the same trend on helical scans, the mean detection fraction with CNR-based AEC exhibited a high score from 91 to 100%. Although CNR-based AEC maintains higher CNR for smaller size or lower contrast lesion, radiation dose on 3 mm lesion resulted in about 13 times larger than that of 9 mm lesion size. CTDIvol for the CNR-based AEC technique changed dramatically with the SDZ from 7.5 to 100.0 mGy for step-and-shoot scans and from 9.1 to 121.5 mGy for helical scans.ConclusionsFrom the viewpoint of ROC analysis-based CNR for lesion detection, CNR-based AEC potentially provide image quality advantages for clinical implementation.  相似文献   

15.
PurposeTo develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP).Methods and materialsA QA phantom was developed for carrying out daily, monthly and annual QA tasks including: imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of 15 (60 × 60 × 5 mm3) kV-energy tissue equivalent solid water slabs. The phantom can incorporate optically stimulated luminescence dosimeters (OSLD), Mosfet or film. One slab, with inserts and another slab with hole patterns are particularly designed for image QA.ResultsOutput constancy measurement results showed daily variations within 3%. Using the Mosfet in phantom as target, results showed that the difference between TPS calculations and measurements was within 5%. Annual QA results for the Percentage depth dose (PDD) curves, lateral beam profiles, beam flatness and beam profile symmetry were found consistent with results obtained at commissioning. PDD curves obtained using film and OSLDs showed good agreement. Image QA was performed monthly, with image-quality parameters assessed in terms of CBCT image geometric accuracy, CT number accuracy, image spatial resolution, noise and image uniformity.ConclusionsThe results show that the developed QA phantom can be employed as a tool for comprehensive performance evaluation of the SARRP. The study provides a useful reference for development of a comprehensive quality assurance program for the SARRP and other similar small animal irradiators, with proposed tolerances and frequency of required tests.  相似文献   

16.
PurposeThe objective of this study was to assess synthesized effective atomic number (Zeff) values with a new developed tissue characteristic phantom and contrast material of varying iodine concentrations using single-source fast kilovoltage switching dual-energy CT (DECT) scanner.MethodsA newly developed multi energy tissue characterisation CT phantom and an acrylic phantom with various iodine concentrations of were scanned using single-source fast kilovoltage switching DECT (GE-DECT) scanner. The difference between the measured and theoretical values of Zeff were evaluated. Additionally, the difference and coefficient of variation (CV) values of the theoretical and measured values were compared with values obtained with the Canon-DECT scanner that was analysed in our previous study.ResultsThe average Zeff difference in the Multi-energy phantom was within 4.5%. The average difference of the theoretical and measured Zeff values for the acrylic phantom with variation of iodine concentration was within 3.3%. Compared to the results for the single-source Canon-DECT scanner used in our previous study, the average difference and CV of the theoretical and measured Zeff values obtained with the GE-DECT scanner were markedly smaller.ConclusionsThe accuracy of the synthesized Zeff values with GE-DECT had a good agreement with the theoretical Zeff values for the Multi-Energy phantom. The GE-DECT could reduce the noise and the accuracy of the Zeff values than that with Canon-DECT for the varying iodine concentrations of contrast medium.Advances in knowledgeThe accuracy and precision of the Zeff values of the contrast medium with the GE-DECT could be sufficient with human equivalent materials.  相似文献   

17.
PurposeTo develop a phantom for methodological radiomic investigation on Magnetic Resonance (MR) images of female patients affected by pelvic cancer.MethodsA pelvis-shaped container was filled with a MnCl2 solution reproducing the relaxation times (T1, T2) of muscle surrounding pelvic malignancies. Inserts simulating multi-textured lesions were embedded in the phantom. The relaxation times of muscle and tumour were measured on an MR scanner on healthy volunteers and patients; T1 and T2 of MnCl2 solutions were evaluated with a relaxometer to find the concentrations providing a match to in vivo relaxation times. Radiomic features were extracted from the phantom inserts and the patients’ lesions. Their repeatability was assessed by multiple measurements.ResultsMuscle T1 and T2 were 1128 (806–1378) and 51 (40–65) ms, respectively. The phantom reproduced in vivo values within 13% (T1) and 12% (T2). T1 and T2 of tumour tissue were 1637 (1396–2121) and 94 (79–101) ms, respectively. The phantom insert best mimicking the tumour agreed within 7% (T1) and 24% (T2) with in vivo values. Out of 1034 features, 75% (95%) had interclass correlation coefficient greater than 0.9 on T1 (T2)-weighted images, reducing to 33% (25%) if the phantom was repositioned. The most repeatable features on phantom showed values in agreement with the features extracted from patients’ lesions.ConclusionsWe developed an MR phantom with inserts mimicking both relaxation times and texture of pelvic tumours. As exemplified with repeatability assessment, such phantom is useful to investigate features robustness and optimise the radiomic workflow on pelvic MR images.  相似文献   

18.
PurposeTo investigate the biophysical meaning of Diffusion Kurtosis Imaging (DKI) parameters via correlations with the perfusion parameters obtained from a long Dynamic Contrast Enhanced MRI scan, in head and neck (HN) cancer.MethodsTwenty two patients with newly diagnosed HN tumor were included in the present retrospective study. Some patients had multiple lesions, therefore a total of 26 lesions were analyzed. DKI was acquired using 5b values at 0, 500, 1000,1500 and 2000 s/mm2. DCE-MRI was obtained with 130 dynamic volumes, with a temporal resolution of 5 s, to achieve a long scan time (>10 min). The apparent diffusion coefficient Dapp and apparent diffusional kurtosis Kapp were calculated voxel-by-voxel, removing the point at b value = 0 to eliminate possible perfusion effects on the parameter estimations. The transfer constants Ktrans and Kep, ve, and the histogram-based entropy (En) and interquartile range (IQR) of each DCE-MRI parameter were quantified. Correlations between all variables were investigated by the Spearman’s Rho correlation test.ResultsModerate relationships emerged between Dapp and Kep (Rho =  − 0.510, p = 0.009), and between Dapp and ve (Rho = 0.418, p = 0.038). En(Kep) was significantly related to Kapp (Rho = 0.407, p = 0.043), while IQR(Kep) showed an inverse association with Dapp (Rho = -0.422, p = 0.035).ConclusionsA weak to intermediate correlation was found between DKI parameters and both Kep and ve. The kurtosis was associated to the intratumoral heterogeneity and complexity of the capillary permeability, expressed by En(Kep).  相似文献   

19.
PurposeThe aim of this work was to extend an in-vivo dosimetry (IVD) method, previously developed by the authors for 3D-conformal radiotherapy, to step and shoot IMRT treatments for pelvic tumors delivered by Elekta linacs.Materials and methodsThe algorithm is based on correlation functions to convert EPID transit signals into in-vivo dose values at the isocenter point, Diso. The EPID images were obtained by the so-called “IMRT Dosimetric Weighting” mode as a superposition of many segment fields. This way each integral dosimetric image could be acquired in about 10 s after the end of beam delivery and could be processed while delivering the successive IMRT beams. A specific algorithm for Diso reconstruction especially featured for step and shoot IMRT was implemented using a fluence inhomogeneity index, FI, introduced to describe the degree of beam modulation with respect to open beams. A γ-analysis of 2D-EPID images obtained day to day, resulted rapid enough to verify the plan delivery reproducibility.ResultsFifty clinical IMRT beams, planned for patients undergoing radiotherapy of pelvic tumors, were used to irradiate a homogeneous phantom. For each beam the agreement between the reconstructed dose, Diso, and the TPS computed dose, Diso,TPS, was well within 5%, while the mean ratio R = Diso/Diso,TPS resulted for 250 tests equal to 1.006 ± 0.036. The same beams were checked in vivo, i.e. during patient treatment delivery, obtaining 500 tests whose average R ratio resulted equal to 1.011 ± 0.042. The γ-analysis of the EPID images with 5% 3 mm criteria supplied 85% of the tests with pass rates γmean ≤ 0.5 and Pγ<1 ≥ 90%.  相似文献   

20.
PurposeDiagnostic positron emission tomography and computed tomography (PET/CT) images can be fused to the planning CT images by a deformable image registration (DIR). The aim of this study was to evaluate the standardized uptake value (SUV) and target delineation on deformed PET images.MethodsWe used a cylindrical phantom and removable inserts of four spheres (16–38 mm in diameter) and three ellipsoids with a volume equal to the 38-mm-diameter sphere (S38) in each. S38 was filled with 18F-fluorodeoxyglucose activity, and then PET/CT images were acquired. The contours of S38 were generated using original PET images by PET auto-segmentation (PET-AS) methods of (1) SUV2.5, (2) 40% of maximum SUV (SUV40%max), and (3) gradient-based (GB), and were deformed to the other inserts by DIR. We compared the volumes and the SUVmax with the generated contours using the deformed PET images.ResultsThe SUVmax was slightly decreased by DIR; the mean absolute difference was −0.10 ± 0.04. For SUV2.5 and SUV40%max, the differences in S38 volumes between the original and deformed PET images were less than 5%, regardless of deformation type. For the GB, the contoured volumes obtained from deformed PET images were larger than those of the original PET images for the deformation type of ellipsoids. When the S38 was deformed to the 16-mm-diameter sphere, the maximum volume difference was −22.8%.ConclusionsAlthough SUV fluctuations by DIR were negligible, the target delineation on deformed PET images by the GB should be carefully considered owing to the distortion of intensity profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号