首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Rijke, A.M., Jesser, W.A., Evans, S.W & Bouwman, H. 2000. Water repellency and feather structure of the Blue Swallow Hirundo atrocaerulea. Ostrich 71 (1 & 2): 143–145.

The Blue Swallow is an endangered species in southern Africa and is probably the most endangered passerine. It is restricted to escarpments with grasslands above 1 000 m where mists are frequent. It appears to forage on the wing even in thick mist raising the question of feather wettability in relation to its adaptation. Extensive physical and behaviourial adaptations are known to occur in a wide variety of birds to deal with the problem of shedding water continuously. To study the water repellency and resistance to water penetration of Blue Swallow feathers, we have examined the microscopic structure of head, back, throat, breast and abdominal feathers as well as remiges and tail feathers by transmission light microscopy. The width (2R) and separation (2D) of rami and barbules have been measured and were used to calculate the parameter (R + D)/R that serves as an indicator ofwater shedding potential. For the remiges and tail feathers the values of the (R+D)/R range from 5 to 10 which is comparable to values for other terrestrial birds. However, for body feathers the range is from 10 (head) and 35 (abdomen)-higher than previously observed for any other bird including Swifts, Apodidae. Blue Swallow feathers are thus the most effective feather yet discovered at repelling water drops. The water repellency is highest in those feathers that are relatively shielded From the direct impact of small water drops (throat, breast, abdomen, back). By contrast, the flight feathers must possess a relatively large resistance to water penetration to avoid becoming waterlogged and this is coupled to low (R+D)/R values. Values for the barbules lay between 2 and 6—the same as found for other bird families—supporting an earlier conclusion that they have little direct effect in repelling water.  相似文献   

2.
Feather mites (Astigmata) are distributed around the world, living on the feathers of birds, but their mechanisms for transmission among hosts are not fully understood. There is anecdotal evidence of feather mites attached to louseflies (Diptera: Hippoboscidae), suggesting that feather mites may use these flies as a mode of phoretic transmission among birds. Two bird-lousefly associations (alpine swift Apus melba-Crataerina melbae and feral pigeon Columba livia-Pseudolynchia canariensis) were inspected to test the hypothesis that feather mites use hippoboscid flies as major mode of transmission. Both bird species showed a high prevalence and abundance of feather mites and louseflies. However, no feather mites were found attached to the 405 louseflies inspected, although skin mites (Epidermoptidae and Cheyletiellidae) were found on louseflies collected from feral pigeons. This study suggests that feather mites do not use hippoboscid flies as a major mode of transmission among birds.  相似文献   

3.
Migratory birds have less time for moulting than sedentary birds, which may force them to produce their feathers faster at the expense of reducing feather quality. However, the effects of migration on the trade-off between moult speed and plumage quality remain to be studied in natural populations. We analysed the relationship between growth rate and quality of individual feathers, taking advantage of natural variation between migratory and sedentary populations of blackcaps Sylvia atricapilla . As predicted by life-history theory, individual blackcaps showed variable individual quality, which was revealed by positive correlations between feather growth rate and feather mass within populations. However, migrants grew up their feathers faster, producing lighter feathers than sedentary blackcaps. These results support the idea that feather growth rate and feather quality are traded against each other in blackcaps. Such a trade-off is apparently caused by different selection associated to migratory and sedentary life styles, which opens new insights into the diversification of moult patterns in birds.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 98–105.  相似文献   

4.
The distribution of feather mites (Astigmata) along the wing of passerine birds could change dramatically within minutes because of the rapid movement of mites between feathers. However, no rigorous study has answered how fine‐tuned is the pattern of distribution of feather mites at a given time. Here we present a multiscale study of the distribution of feather mites on the wing of non‐moulting blackcaps Sylvia atricapilla in a short time period and at a single locality. We found that the number and distribution of mites differed among birds, but it was extremely similar between the wings of each bird. Moreover, mites consistently avoided the first secondary feather, despite that it is placed at the centre of the feathers most used by them. Thus, our results suggest that feather mites do precise, feather‐level decisions on where to live, contradicting the current view that mites perform “mass”, or “blind” movements across wing feathers. Moreover, our findings indicate that “rare” distributions are not spurious data or sampling errors, but each distribution of mites on the wing of each bird is the outcome of the particular conditions operating on each ambient‐bird‐feather mite system at a given time. This study indicates that we need to focus on the distribution of feather mites at the level of the individual bird and at the feather level to improve our understanding of the spatial ecology of mites on the wings of birds.  相似文献   

5.
Insulation is an essential component of nest structure that helps provide incubation requirements for birds. Many species of waterfowl breed in high latitudes where rapid heat loss can necessitate a high energetic input from parents and use down feathers to line their nests. Common eider Somateria mollissima nest down has exceptional insulating properties but the microstructural mechanisms behind the feather properties have not been thoroughly examined. Here, we hypothesized that insulating properties of nest down are correlated to down feather (plumule) microstructure. We tested the thermal efficiency (fill power) and cohesion of plumules from nests of two Icelandic colonies of wild common eiders and compared them to properties of plumules of wild greylag goose Anser anser. We then used electron microscopy to examine the morphological basis of feather insulating properties. We found that greylag goose down has higher fill power (i.e. traps more air) but much lower cohesion (i.e. less prone to stick together) compared to common eider down. These differences were related to interspecific variation in feather microstructure. Down cohesion increased with the number of barbule microstructures (prongs) that create strong points of contact among feathers. Eider down feathers also had longer barbules than greylag goose down feathers, likely increasing their air‐trapping capacity. Feather properties of these two species might reflect the demands of their contrasting evolutionary history. In greylag goose, a temperate, terrestrial species, plumule microstructure may optimize heat trapping. In common eiders, a diving duck that nests in arctic and subarctic waters, plumule structure may have evolved to maximize cohesion over thermal insulation, which would both reduce buoyancy during their foraging dives and enable nest down to withstand strong arctic winds.  相似文献   

6.
The distribution of feather mites (Astigmata) along the wing of passerine birds could change dramatically within minutes because of the rapid movement of mites between feathers. However, no rigorous study has answered how fine-tuned is the pattern of distribution of feather mites at a given time. Here we present a multiscale study of the distribution of feather mites on the wing of non-moulting blackcaps Sylvia atricapilla in a short time period and at a single locality. We found that the number and distribution of mites differed among birds, but it was extremely similar between the wings of each bird. Moreover, mites consistently avoided the first secondary feather, despite that it is placed at the centre of the feathers most used by them. Thus, our results suggest that feather mites do precise, feather-level decisions on where to live, contradicting the current view that mites perform "mass", or "blind" movements across wing feathers. Moreover, our findings indicate that "rare" distributions are not spurious data or sampling errors, but each distribution of mites on the wing of each bird is the outcome of the particular conditions operating on each ambient-bird-feather mite system at a given time. This study indicates that we need to focus on the distribution of feather mites at the level of the individual bird and at the feather level to improve our understanding of the spatial ecology of mites on the wings of birds.  相似文献   

7.
Dinosaurs with fossilized filamentous integument structures are usually preserved in a highly flattened state. Several different feather types have been described on this basis, but the two-dimensional preservation of specimens during fossilization makes the identification of single feather structures difficult due to overlapping feather structures in vivo. Morphological comparison with the diversity of recent feather types is therefore absolutely vital to avoid misinterpretation. To simulate the preservation process, a cadaver of recent Carduelis spinus (European siskin) was flattened in a printing press. Afterwards, the structure of the plumage was compared with the morphology of a single body feather from the same specimen. In comparison with the single feather, the body plumage of the flattened bird looked rather filamentous. It was almost impossible to identify single structures, and in their place, various artefacts were produced. The investigation of plumage in a specimen of the Mesozoic bird Confuciusornis sanctus reveals similar structures. This indicates that flattening of specimens during fossilization amplifies the effect of overlapping among feathers and also causes a loss of morphological detail which can lead to misinterpretations. The results are discussed in connection with some dubious feather morphologies in recently described theropods and basal birds. Based on recent feather morphology, the structure of so-called proximal ribbon-like pennaceous feathers (PRPFs) found in many basal birds is reinterpreted. Furthermore, the morphology of a very similar-looking feather type found in the forelimb and tail of an early juvenile oviraptorosaur is discussed and diagnosed as the first feather generation growing out of the feather sheath. Thus, the whole plumage of this theropod might represent neoptile plumage.  相似文献   

8.
Feather pecking is a problem in commercial laying hens, particularly in loose-housing systems, where many hens can be affected by only a few feather peckers. In addition, feather pecking can become an even larger problem if it spreads throughout the flock. There are several possible ways that feather pecking may spread. The simplest way is that one hen may damage the feathers of a hen, and another hen may find the damaged feathers an attractive pecking target. The aim of this experiment was to determine if damaged feathers were feather-pecked more than undamaged feathers on the same body area, and to determine whether some types of feather-body area manipulations were preferred over others as pecking stimuli. Manipulations involved damaging the feathers on the rump, tail or belly of different hens, with two or three levels of severity of manipulation at each body area. Sixteen groups of 11 Lohmann Brown hens between 26 and 28 weeks were observed with the recipient, the feather pecker and the body area that was pecked all being recorded. The feather pecks were classified separately as either gentle or severe. Damaged feathers received significantly more severe feather pecks than undamaged feathers. There were also more gentle feather pecks to damaged feathers, although this did not reach statistical significance. The feather-body area manipulations that received the greatest number of severe feather pecks were the tail feathers when they were cut very short, the rump feathers when they were trimmed, and the rump when feathers were removed. These results support the suggestion that feather pecking does indeed spread through flocks by damaged feathers becoming an attractive target for feather-pecking behaviour. An unexpected result of performing the feather manipulations was an outbreak of cannibalism in half of the experimental groups. Even though there was no visible damage to the skin of the hens after having the feathers manipulated, 13 of the 16 attacked hens were wounded on the part of the body where the feathers had been damaged in some way.  相似文献   

9.
Potentially, pathogenic bacteria are one of the main infective agents against which a battery of chemical and physical barriers has evolved in animals. Among these are the secretions by the exocrine uropygial gland in birds. The antimicrobial properties of uropygial secretions may prevent colonization and growth of microorganisms on feathers, skin and eggshells. However, uropygial gland secretions also favour the proliferation of feather mites that feed on secretions and microorganisms living on feathers that would otherwise reach eggshells during incubation if not consumed by feather mites. Therefore, at the interspecific level, uropygial gland size (as an index of volume of uropygial secretion) should be positively related to eggshell bacterial load (i.e. the risk of egg infection), whereas eggshell bacterial loads may be negatively related to abundance of feather mites eating bacteria. Here, we explore these previously untested predictions in a comparative framework using information on eggshell bacterial loads, uropygial gland size, diversity and abundance of feather mites and hatching success of 22 species of birds. The size of the uropygial gland was positively related to eggshell bacterial loads (mesophilic bacteria and Enterobacteriaceae), and bird species with higher diversity and abundance of feather mites harboured lower bacterial density on their eggshells (Enterococcus and Staphylococcus), in accordance with the hypothesis. Importantly, eggshell bacterial loads of mesophilic bacteria, Enterococcus and Enterobacteriaceae were negatively associated with hatching success, allowing us to interpret these interspecific relationships in a functional scenario, where both uropygial glands and mutualistic feather mites independently reduce the negative effects of pathogenic bacteria on avian fitness.  相似文献   

10.
11.
Down feathers are the first feather types that appear in both the phylogenetic and the ontogenetic history of birds. Although it is widely acknowledged that the primary function of downy elements is insulation, little is known about the interspecific variability in the structural morphology of these feathers, and the environmental factors that have influenced their evolution. Here, we collected samples of down and afterfeathers from 156 bird species and measured key morphological characters that define the insulatory properties of the downy layer. We then tested if habitat and climatic conditions could explain the observed between-species variation in down feather structure. We show that habitat has a very strong and clearly defined effect on down feather morphology. Feather size, barbule length and nodus density all decreased from terrestrial toward aquatic birds, with riparian species exhibiting intermediate characters. Wintering climate, expressed as windchill (a combined measure of the ambient temperature and wind speed) had limited effects on down morphology, colder climate only being associated with higher nodus density in dorsal down feathers. Overall, an aquatic lifestyle selects for a denser plumulaceous layer, while the effect of harsh wintering conditions on downy structures appear limited. These results provide key evidence of adaptations to habitat at the level of the downy layer, both on the scale of macro- and micro-elements of the plumage. Moreover, they reveal characters of convergent evolution in the avian plumage and mammalian fur, that match the varying needs of insulation in terrestrial and aquatic modes of life.  相似文献   

12.
There is increasing evidence of adaptive preferential investment during moult in those feather tracts that are more advantageous for fitness. In this study, we assessed whether, after the manual removal of two functionally different flight feathers (one primary and one rectrix), birds from two common passerine species (Eurasian Blackcap Sylvia atricapilla and European Robin Erithacus rubecula) favoured the regeneration of primary (supposedly the most functionally important feathers) over rectrix feathers. Our results did not show differences between replaced primary and rectrix feathers in their final length, but demonstrated that the gap left by the loss of the primary feather was filled earlier, suggesting that a rapid repair of the most essential feather tracts is also evolutionarily advantageous during the adventitious replacement of plumage.  相似文献   

13.
Corticosterone (CORT) is seasonally modulated in many passerines, with plasma CORT concentrations lowest during the prebasic molt when all feathers are replaced. To explain why, we proposed that the birds downregulate natural CORT release during molt in order to avoid CORT's degradative effects on proteins and its inhibition of protein synthesis. If CORT exerted these effects during molt, it could slow protein deposition during feather production and potentially result in a longer period of degraded flight performance. To test this hypothesis, either empty or CORT-filled silastic implants were inserted into captive European starlings (Sturnus vulgaris) and white-crowned sparrows (Zonotrichia leucophrys) undergoing induced (feather replacement after plucking) and natural molts. We then measured the rate of feather re-growth by regularly measuring the length of primary, secondary, and tail feathers. CORT implanted birds showed a significantly decreased rate of feather growth compared to control animals. Basal CORT concentrations of induced molt and non-molting birds were also compared but no difference was noted. The results suggest a tradeoff; a complete set of new feathers may be more important to the survival of a bird than the ability of CORT to respond maximally to a stressor.  相似文献   

14.
During moult, stressors such as malaria and related haemosporidian parasites (e.g. Plasmodium and Haemoproteus) could affect the growth rate and quality of feathers, which in turn may compromise future reproduction and survival. Recent advances in molecular methods to study parasites have revealed that co‐infections with multiple parasites are frequent in bird–malaria parasite systems. However, there is no study of the consequences of co‐infections on the moult of birds. In house martins Delichon urbica captured and studied at a breeding site in Europe during 11 yr, we measured the quality and the growth rate of tail feathers moulted in the African winter quarters in parallel with the infection status of blood parasites that are also transmitted on the wintering ground. Here we tested if the infection with two haemosporidian parasite lineages has more negative effects than a single lineage infection. We found that birds with haemosporidian infection had lower body condition. We also found that birds co‐infected with two haemosporidian lineages had the lowest inferred growth rate of their tail feathers as compared with uninfected and single infected individuals, but co‐infections had no effect on feather quality. In addition, feather quality was negatively correlated with feather growth rate, suggesting that these two traits are traded‐off against each other. We encourage the study of haemosporidian parasite infection as potential mechanism driving this trade‐off in wild populations of birds.  相似文献   

15.
We used observations of male eastern bluebirds captured twice within a breeding season to test whether changes in structural coloration are related to feather abrasion. Between first and second broods, the UV chroma and brightness of feathers decreased, while hue shifted towards longer wavelengths. Observed changes were greatest for feathers on the head, least for feathers on the rump, and intermediate for feathers on the back. For head feathers, we found a significant correlation between reduction in barb length and UV chroma. Plumage coloration at first capture was correlated with change in UV chroma such that the most ornamented males tended to lose more coloration. Moreover, the magnitude of UV color change was positively related to the number of days between color measurements.To test whether these changes were caused by abrasive properties of the nesting sites, we randomly increased or decreased the abrasiveness of nesting‐box entrances by attaching sand paper or smooth plastic tape. The type of box entrance had no signicant effect on either coloration or barb length change. Our results suggest that feather abrasion is a factor in the seasonal color changes of bluebirds.  相似文献   

16.
We investigated how exogenous and endogenous glucocorticoids affect feather replacement in European starlings (Sturnus vulgaris) after approximately 56% of flight feathers were removed. We hypothesized that corticosterone would retard feather regrowth and decrease feather quality. After feather regrowth began, birds were treated with exogenous corticosterone or sham implants, or endogenous corticosterone by applying psychological or physical (food restriction) stressors. Exogenous corticosterone had no impact on feather length and vane area, but rectrices were lighter than controls. Exogenous corticosterone also decreased inter-barb distance for all feathers and increased barbule number for secondaries and rectrices. Although exogenous corticosterone had no affect on rachis tensile strength and stiffness, barbicel hooking strength was reduced. Finally, exogenous corticosterone did not alter the ability of Bacillus licheniformis to degrade feathers or affect the number of feathers that failed to regrow. In contrast, endogenous corticosterone via food restriction resulted in greater inter-barb distances in primaries and secondaries, and acute and chronic stress resulted in greater inter-barb distances in rectrices. Food-restricted birds had significantly fewer barbules in primaries than chronic stress birds and weaker feathers compared to controls. We conclude that, although exogenous and endogenous corticosterone had slightly different effects, some flight feathers grown in the presence of high circulating corticosterone are lighter, potentially weaker, and with altered feather micro-structure.  相似文献   

17.
Avian neoptile feathers are defined as the first feather generation, which covers the chick after hatching, and usually described as simple structures consisting of numerous downy barbs which are radially symmetrically arranged and come together in a short calamus. In contrast, in some birds (e.g., Anas platyrhynchos, Dromaius novaehollandiae) the neoptile feathers have a prominent rhachis, and therefore display clear bilateral symmetry. Because the symmetrical variety found in neoptile feathers is poorly understood, their morphology was studied in a more comprehensive and phylogenetic approach. Neoptile body feathers from over 22 bird species were investigated using light microscopy, SEM, and MicroCT. Characters such as an anterior–posterior axis, a central rhachis, medullary cells, and structure of the calamus wall were defined and mapped onto recent phylogenetic hypotheses for extant birds. It can be shown that bilaterally symmetric neoptile feathers (with a solid calamus wall) were already present in the stem lineage of crown‐group birds (Neornithes). In contrast, simple radially symmetric neoptile feathers (with a fragile calamus wall) are an apomorphic character complex for the clade Neoaves. The simple morphology of this feather type may be the result of a reduced period of development during embryogenesis. To date, embryogenesis of neoptile feathers from only a few bird species was used as a model to reconstruct feather evolution. Because this study shows that the morphology of neoptile feathers is more diverse and even shows a clear phylogenetic signal, it is necessary to expand the spectrum of “model organisms” to species with bilaterally symmetric neoptile feathers and compare differences in the frequency of feather development from a phylogenetic point of view. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
Feathers are the most complex epidermal derivatives among vertebrates. The present review deals with the origin of feathers from archosaurian reptiles, the cellular and molecular aspects of feather morphogenesis, and focus on the synthesis of keratins and associated proteins. Feathers consist of different proteins among which exists a specialized group of small proteins called beta-keratins. Genes encoding these proteins in the chick genome are distributed in different chromosomes, and most genes encode for feather keratins. The latter are here recognized as proteins associated with the keratins of intermediate filaments, and functionally correspond to keratin-associated proteins of hairs, nails and horns in mammals. These small proteins possess unique properties, including resistance and scarce elasticity, and were inherited and modified in feathers from ancestral proteins present in the scales of archosaurian progenitors of birds. The proteins share a common structural motif, the core box, which was present in the proteins of the reptilian ancestors of birds. The core box allows the formation of filaments with a different molecular mechanism of polymerization from that of alpha-keratins. Feathers evolved after the establishment of a special morphogenetic mechanism gave rise to barb ridges. During development, the epidermal layers of feathers fold to produce barb ridges that produce the ramified structure of feathers. Among barb ridge cells, those of barb and barbules initially accumulate small amounts of alpha-keratins that are rapidly replaced by a small protein indicated as “feather keratin”. This 10 kDa protein becomes the predominant form of corneous material of feathers. The main characteristics of feather keratins, their gene organization and biosynthesis are similar to those of their reptilian ancestors. Feather keratins allow elongation of feather cells among supportive cells that later degenerate and leave the ramified microstructure of barbs. In downfeathers, barbs are initially independent and form plumulaceous feathers that rest inside a follicle. Stem cells remain in the follicle and are responsible for the regeneration of pennaceous feathers. New barb ridges are produced and they merge to produce a rachis and a flat vane. The modulation of the growth pattern of barb ridges and their fusion into a rachis give rise to a broad variety of feather types, including asymmetric feathers for flight. Feather morphogenesis suggests possible stages for feather evolution and diversification from hair-like outgrowths of the skin found in fossils of pro-avian archosaurians.  相似文献   

19.
The ring-necked parakeet (RNP), Psittacula krameri, is an invasive species in Great Britain (GB) which is undergoing rapid population expansion in the wild. Although it has been suggested that RNPs could be a potential source of infectious disease, little research has been done on the pathogens infecting this species in GB. Psittacine beak and feather disease (PBFD), caused by beak and feather disease virus (BFDV), is an important infectious disease of psittacines, including captive RNPs, in GB and elsewhere. A wild RNP with marked feather abnormalities observed in an urban garden in London was euthanased and examined post mortem. Plucked contour feathers and pooled liver and spleen were PCR-positive for BFDV DNA. Histopathological examination of affected skin demonstrated BFDV-compatible lesions. A feather from another RNP from a different location also was PCR-positive for BFDV. This is the first report of PBFD in a wild free-living bird in GB. BFDV only affects psittacines; therefore, there is no known risk to native British birds. The presence of BFDV in free-living RNPs, however, could pose a disease threat to captive psittacines. Further work is required to determine the distribution and impact of BFDV infection in free-living RNPs in GB. Whether this case represents sporadic disease associated with established endemic infection or the index case of an emergent disease is currently unknown.  相似文献   

20.
Alistair Dawson 《Ibis》2004,146(3):493-500
In many species of birds there is a close relationship between the end of breeding and the start of moult. Late-breeding birds therefore often start to moult late, but then moult more rapidly. This is an adaptive mechanism mediated by decreasing day lengths that allows late-breeding birds to complete moult in time. This study asked how these birds complete moult of the primary feathers more rapidly, and the consequences of this on the mass of primary feathers. Common Starlings Sturnus vulgaris were induced to moult rapidly in one of two ways. In the first experiment, one group was exposed to artificially decreasing photoperiods from the start of moult, whereas the control group remained on a constant long photoperiod. The second experiment was a more realistic simulation. Two groups were allowed to moult in an outdoor aviary. One group started to moult at the normal time. In the other, the start of moult was delayed by 3 weeks with an implant of testosterone. The duration of moult was significantly reduced in both the group experiencing artificially decreasing photoperiods and the group in which the start of moult was delayed. The faster moult rate was achieved by moulting more feathers concurrently. The rate of increase in length of each of the primary feathers, and their final length, did not differ between groups. The rate at which total new primary feather mass was accumulated was greater in more rapidly moulting birds, but this was insufficient to compensate for the greater numbers of feathers being grown concurrently. Consequently, the rate of increase in mass of individual feathers, and the final feather mass, were less in the rapidly moulting birds. A 3-week delay in the start of moult is not an unrealistic scenario. That this caused a measurable decrease in feather mass suggests that late-breeding birds are indeed likely to suffer a real decrease in the quality of plumage grown during the subsequent moult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号