首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The aim of this study was to compare the kinematics in throwing with a regular weighted handball with 20% lighter and heavier balls in female experienced handball players. In total, eight joint movements during the throw were analyzed. The analysis consisted of maximal angles, angles at ball release, and maximal angular velocities of the joint movements and their timings during the throw. Results on 24 experienced female team handball players (mean age 18.2 ± 2.1 years) showed that the difference in ball weight affected the maximal ball velocity. The difference in ball release velocity was probably a result of the significant differences in kinematics of the major contributors to overarm throwing: elbow extension and internal rotation of the shoulder. These were altered when changing the ball weight, which resulted in differences in ball release velocity.  相似文献   

2.
On the basis of dynamic and kinematic data, this study identifies the type of muscle contraction in unloaded overarm throwing movements. An unloaded throw or nearly unloaded throw is defined as the throw in which the external resistance is too small (e.g., the team handball, baseball, and water polo throws as well as the tennis and badminton smashes). A special arm-force-measuring apparatus was constructed to imitate an overarm throw. Forty-two subjects were placed into 3 groups: untrained subjects, weight-trained athletes, and team handball players. The measured parameters included the velocity of the initial movement, the release velocity, the velocity of the first 50 milliseconds of the concentric phase, the force value at the moment of deceleration of the initial movement, and the impulse values during the eccentric and concentric phases of the test movement. Statistically significant higher values of the above parameters (p < 0.05) were determined in that test at which the initial speed of movement was higher. Also, the correlation coefficients of the parameters of the initial phase of the throw movement were very high (p < 0.001), especially the parameters related with the movement's first 50 milliseconds. The results support the thesis that the stretch-shortening cycle is the type of muscle contraction in unloaded overarm throws. Furthermore, it is possible to increase the throw velocity by increasing the velocity of the initial movement (i.e., by provoking higher inertia forces).  相似文献   

3.
The overarm throw of 56 female handball players was analysed cinematographically. The time courses of the ball velocity, the force on the ball, the energy flow to the ball as well as the velocities of wrist, elbow and hip were calculated. The mean ball velocity at release was 17.2 m s-1. The major part (73%) of the work on the ball appeared to be done in the last 50 ms of the throw. It is shown that high maximal segmental velocities are important pre-requisites for an optimal flow of energy to the ball during that last phase of the throw. The consecutive actions of body segments from larger proximal segments to the relatively smaller distal segments seem to be connected to intrinsic muscle properties and to a flow of energy from proximal to distal segments.  相似文献   

4.
Risk factors in throwing factors associated to little league elbow have not been adequately explored. Whether these factors also affect the players' performance is also important to elucidate while modifying throwing pattern to reduce injury. The purpose of this study was to compare the differences in throwing kinematics between youth baseball players with or without a history of medial elbow pain (MEP) and to determine the relationship between their throwing kinematics and ball speed. Fifteen players with previous MEP were matched with 15 healthy players by age, height and weight. Throwing kinematics was recorded by an electromagnetic motion analysis system. A foot switch was used for determining foot off and foot contact. Ball speed was recorded with a sports radar gun. The group with a history of MEP demonstrated less elbow flexion angle at maximum shoulder external rotation and had more lateral trunk tilt at ball release compared to the healthy group. The group with a history of MEP also had faster maximum upper torso rotation velocities, maximum pelvis rotation velocities and ball speeds. Maximum shoulder external rotation angle (r = 0.458, P = 0.011), elbow flexion angle at maximum shoulder external rotation (r = -0.637, P = 0.0003), and maximum upper torso rotation velocity (r = 0.562, P = 0.002) had significant correlation with ball speed. Findings of this study can be treated as elbow injury-related factors that clinicians and coaches can attend to when taking care of youth  相似文献   

5.
Strength and conditioning professionals, as well as coaches, have emphasized the importance of training the trunk and the benefits it may have on sport performance and reducing the potential for injury. However, no data on the efficacy of trunk training support such claims. The purpose of this study was to examine the maximum differential trunk rotation and maximum angular velocities of the pelvis and upper torso of participants while they performed 4 trunk exercises (seated band rotations, cross-overs, medicine ball throws, and twisters) and compare these trunk exercise kinematics with the trunk kinematics demonstrated in actual throwing performance. Nine NCAA Division I baseball players participated in this study. Each participant's trunk kinematics was analyzed while he performed 5 repetitions of each exercise in both dominant and nondominant rotational directions. Results indicated maximum differentiated rotation in all 4 trunk exercises was similar to maximum differentiated rotation (approximately 50-60 degrees) demonstrated in throwing performance. Maximum angular velocities of the pelvis and upper torso in the trunk exercises were appreciably slower (approximately 50% or less) than the angular velocities demonstrated during throwing performance. Incorporating trunk training exercises that demonstrate sufficient trunk ranges of motion and velocities into a strength and conditioning program may help to increase ball velocity and/or decrease the risk injury.  相似文献   

6.
An overarm throw in the sagittal plane was simulated using a three-segment model representing the upper arm, forearm and hand plus ball. Torque inputs at each joint were turned on at systematically varied times and maintained constant once initiated. All simulations began from identical initial conditions. The aim was to determine the sequence of onset of joint torques which gave the maximal range which the ball would travel and the maximal velocity of the ball irrespective of direction. Best throws proved to be sequential in that joint torques were turned on in a proximal to distal (P-D) temporal sequence. The P-D sequence was also demonstrated by time of peak joint angular velocities. The P-D sequence also proved to be best when segmental constants and joint torques were changed. As this sequence is a common feature of skilled throwing and striking, it is concluded that the linked segmental nature of the limb, irrespective of normal muscle characteristics, primarily predisposes the system to the use of a P-D sequence. The algebraic sign of the shoulder and elbow torques was reversed instantaneously to represent the use of antagonistic muscles. This led to increased output if performed late in the throw and in a P-D sequence. It is concluded that the use of antagonism leads to beneficial redistributions of angular velocity amongst limb segments.  相似文献   

7.
To reach the level of elite, most baseball pitchers need to consistently produce high ball velocity but avoid high joint loads at the shoulder and elbow that may lead to injury. This study examined the relationship between fastball velocity and variations in throwing mechanics within 19 baseball pitchers who were analyzed via 3-D high-speed motion analysis. Inclusion in the study required each one to demonstrate a variation in velocity of at least 1.8 m/s (range 1.8-3.5 m/s) during 6 to 10 fastball pitch trials. Three mixed model analyses were performed to assess the independent effects of 7 kinetic, 11 temporal, and 12 kinematic parameters on pitched ball velocity. Results indicated that elbow flexion torque, shoulder proximal force, and elbow proximal force were the only three kinetic parameters significantly associated with increased ball velocity. Two temporal parameters (increased time to max shoulder horizontal adduction and decreased time to max shoulder internal rotation) and three kinematic parameters (decreased shoulder horizontal adduction at foot contact, decreased shoulder abduction during acceleration, and increased trunk tilt forward at release) were significantly related to increased ball velocity. These results point to variations in an individual's throwing mechanics that relate to pitched ball velocity, and also suggest that pitchers should focus on consistent mechanics to produce consistently high fastball velocities. In addition, pitchers should strengthen shoulder and elbow musculature that resist distraction as well as improve trunk strength and flexibility to maximize pitching velocity and help prevent injury.  相似文献   

8.
Gluteus maximus muscle function and the origin of hominid bipedality   总被引:1,自引:0,他引:1  
Bipedality not only frees the hands for tool use but also enhances tool use by allowing use of the trunk for leverage in applying force and thus imparting greater final velocity to tools. Since the weight and acceleration of the trunk and forelimbs on the hindlimbs must be counteracted by muscles such as m. gluteus maximus that control pelvic and trunk movements, it is suggested that the large size of the cranial portion of the human gluteus maximus muscle and its unique attachment to the dorsal ilium (which is apparent in the Makapan australopithecine ilium) may have contributed to the effectiveness with which trunk movement was exploited in early hominid foraging activities. To test this hypothesis, the cranial portions of both right and left muscles were investigated in six human subjects with electromyography during throwing, clubbing, digging, and lifting. The muscles were found to be significantly recruited when the trunk is used in throwing and clubbing, initiating rotation of the pelvis and braking it as trunk rotation ceases and the forelimb accelerates. They stabilize the pelvis during digging and exhibit marked and prolonged activity when the trunk is maintained in partial flexion during lifting of heavy objects.  相似文献   

9.
In order to identify biomotor structures in elite female handball players, factor structures of morphological characteristics and basic motor abilities, and of variables evaluating situation motor abilities of elite female handball players (n = 53) were determined first, followed by determination of differences and relations of the morphological, motor and specific motor space according to handball performance. Factor analysis of 16 morphological measures produced three morphological factors, i.e. factor of absolute voluminosity, i.e. mesoendomorphy, factor of longitudinal skeleton dimensionality, and factor of transverse hand dimensionality. Factor analysis of 15 motor variables yielded five basic motor dimensions, i.e. factor of agility, factor of throwing explosive strength, factor of running explosive strength (sprint), factor of jumping explosive strength and factor of movement frequency rate. Factor analysis of 5 situation motor variables produced two dimensions: factor of specific agility with explosiveness and factor of specific precision with ball manipulation. Analysis of variance yielded greatest differences relative to handball performance in the factor of specific agility and throwing strength, and the factor of basic motoricity that integrates the ability of coordination (agility) with upper extremity throwing explosiveness and lower extremity sprint (30-m sprint) and jumping (standing triple jump). Considering morphological factors, the factor of voluminosity, i.e. mesoendomorphy, which is defined by muscle mass rather than adipose tissue, was found to contribute significantly to the players'performance. Results of regression analysis indicated the handball performance to be predominantly determined by the general specific motor factor based on specific agility and explosiveness, and by the morphological factor based on body mass and volume, i.e. muscle mass. Concerning basic motor abilities, the factor of movement frequency rate, which is associated with the ability of ball manipulation, was observed to predict significantly the handball players' performance.  相似文献   

10.
In order to identify biomotor structures in elite female handball players, factor structures of morphological characteristics and basic motor abilities of elite female handball players (N = 53) were determined first, followed by determination of relations between the morphological-motor space factors obtained and the set of criterion variables evaluating situation motor abilities in handball. Factor analysis of 14 morphological measures produced three morphological factors, i.e. factor of absolute voluminosity (mesoendomorph), factor of longitudinal skeleton dimensionality, and factor of transverse hand dimensionality. Factor analysis of 15 motor variables yielded five basic motor dimensions, i.e. factor of agility, factor of jumping explosive strength, factor of throwing explosive strength, factor of movement frequency rate, and factor of running explosive strength (sprint). Four significant canonic correlations, i.e. linear combinations, explained the correlation between the set of eight latent variables of the morphological and basic motor space and five variables of situation motoricity. First canonic linear combination is based on the positive effect of the factors of agility/coordination on the ability of fast movement without ball. Second linear combination is based on the effect of jumping explosive strength and transverse hand dimensionality on ball manipulation, throw precision, and speed of movement with ball. Third linear combination is based on the running explosive strength determination by the speed of movement with ball, whereas fourth combination is determined by throwing and jumping explosive strength, and agility on ball pass. The results obtained were consistent with the model of selection in female handball proposed (Srhoj et al., 2006), showing the speed of movement without ball and the ability of ball manipulation to be the predominant specific abilities, as indicated by the first and second linear combination.  相似文献   

11.
Joint range of motion and physical capacities have been shown to change with age in both throwing athletes and non-athletes. The age of professional baseball pitchers could span from late teens to mid-40s. However, the effects of age on the pitching kinematics among professional baseball pitchers are still unknown. In this study, 67 healthy professional baseball pitchers were tested using a 3D motion analysis system. Their mean age was 23.7+/-3.3 years (range 18.8-34.4). The 12 pitchers more than one standard deviation older than the mean (i.e., older than 27.0 years) were categorized into the older group, and the 10 pitchers more than one standard deviation younger than the mean (i.e., younger than 20.4 years) were defined as the younger group. In all, 18 kinematic variables (14 position and 4 velocity) were calculated, and Student's t-tests were used to compare the variables between the two groups. Six position variables were found to be significantly different between the two groups. At the instant of lead foot contact, the older group had a shorter stride, a more closed pelvis orientation, and a more closed upper trunk orientation. The older group also produced less shoulder external rotation during the arm cocking phase, more lead knee flexion at ball release, and less forward trunk tilt at ball release. Ball velocity and body segment velocity variables showed no significant differences between the two groups. Thus, differences in specific pitching kinematic variables among professional baseball pitchers of different age groups were not associated with significant differences in ball velocities between groups. The current results suggest that both biological changes and technique adaptations occur during the career of a professional baseball pitcher.  相似文献   

12.
A three-dimensional, six-segment model was applied to the pitching motion of three professional pitchers to analyze the kinematics and kinetics of the hips, upper trunk, humerus and forearm plus hand of both the upper limbs. Subjects were filmed at 250 frames per second. An inverse dynamics approach and angular momentum principle with respect to the proximal endpoint of a rigid segment were employed in the analysis. Results showed considerable similarities between subjects in the kinetic control of trunk rotation about the spine's longitudinal axis, but variability in the control of trunk lean both to the side and forward. The kinetics of the throwing shoulder and elbow joint were comparable between subjects, but the contribution of the non-throwing upper limb was minimal and variable. The upper trunk rotators played a key role in accelerating the ball to an early, low velocity near stride foot contact. After a brief pause they resumed acting strongly in a positive direction, though not enough to prevent trunk angular velocity slowing, as the musculature of the arm applied a load at the throwing shoulder. The interaction moment from the proximal segments assisted the forearm extensor in slowing flexion and producing rapid elbow extension near ball release. The temporal onset of muscular torques was not in a strictly successive proximal-to-distal sequence.  相似文献   

13.
To determine the effects of 6-weeks of heavy-resistance training on physical fitness and serum hormone status in adolescents (range 14-16 years old) 19 male handball players were divided into two different groups: a handball training group (NST, n = 10), and a handball and heavy-resistance strength training group (ST, n = 9). A third group of 4 handball goalkeepers of similar age served as a control group (C, n = 4). After the 6-week training period, the ST group showed an improvement in maximal dynamic strength of the leg extensors (12.2%; P < 0.01) and the upper extremity muscles (23%; P < 0.01), while no changes were observed in the NST and C groups. Similar differences were observed in the maximal isometric unilateral leg extension forces. The height of the vertical jump increased in the NST group from 29.5 (SD 4) cm to 31.4 (SD 5) cm (P < 0.05) while no changes were observed in the ST and C groups. A significant increase was observed in the ST group in the velocity of the throwing test [from 71.7 (SD 7) km x h(-1) to 74.0 (SD 7) km x h(-1); P < 0.001] during the 6-week period while no changes were observed in the NST and C groups. During a submaximal endurance test running at 11 km x h(-1), a significant decrease in blood lactate concentration occurred in the NST group [from 3.3 (SD 0.9) mmol x l(-1) to 2.4 (SD 0.8) mmol x l(-1); P < 0.01] during the experiment, while no change was observed in the ST or C groups. Finally, a significant increase (P < 0.01) was noted in the testosterone:cortisol ratio in the C group, while the increase in the NST group approached statistical significance (P < 0.08) and no changes in this ratio occurred in the ST group. The present findings suggested that the addition of 6-weeks of heavy resistance training to the handball training resulted in gains in maximal strength and throwing velocity but it compromised gains in leg explosive force production and endurance running. The tendency for a compromised testosterone:cortisol ratio observed in the ST group could have been associated with a state of overreaching or overtraining.  相似文献   

14.
The aim of this study was to investigate the relationships between basic body and specific hand anthropometric parameters with some specific and non-specific throw test results in young male handball and basketball players. The subjects included 34 handball and 38 basketball players of the 10-11 years old age group, 39 handball and 22 basketball players of the 12-13 years old age group and 39 handball players of the 14-15 years old age group. Body height and body mass, arms' span, height with outstretched hands and sitting height were the basic anthropometric parameters to be measured. For hand anthropometry, 15 specific hand parameters were measured using the method presented by Visnapuu & Jürim?e (2007). Stepwise multiple regression analysis indicated that medicine ball throw results in the youngest age group are highly dependent on the body height (handball players) and body mass (basketball players). In the middle age group, the most important parameter from the hand anthropometry is TL (handball) or height with outstretched hands (basketball). In the oldest group of handball players, the medicine ball throw results were dependent on the P2 from hand anthropometry and sitting height. Quite different anthropometric parameters appeared to influence the handball or basketball throw results. In the youngest age group, most important were body height (handball) or LFL (basketball). In the middle age group, the most important was height with outstretched hands and in the oldest handball players LFL and sitting height. Handball or basketball pass on speed depended on the combination of body mass and FS5 and body height with height with outstretched hands (even 61.40%, R2 x 100) in the oldest age group. The results of passing the handball or basketball on precision were dependent on body height and P3 or P1 among basketball players in the youngest group. In the middle age group the combination of FS3 and body mass and LFL and height with outstretched hands were the most influential. Anthropometric parameters influence on the passing of the ball on speed or precision is lower in handball players compared with basketball players. Our conclusion is that the basic anthropometric parameters are slightly more important than hand anthropometry that influenced different throw tests results in young handball and basketball players.  相似文献   

15.
Observation of complex whole body movements suggests that the nervous system coordinates multiple operational subsystems using some type of hierarchical control. When comparing two forward translating tasks performed with and without backward angular impulse, we have learned that both trunk-leg coordination and reaction force-time characteristics are significantly different between tasks. This led us to hypothesize that differences in trunk-leg coordination and reaction force generation would induce between-task differences in the control of the lower extremity joints during impulse generation phase of the tasks. Eight highly skilled performers executed a series of forward jumps with and without backward rotation (reverse somersault and reverse timer, respectively). Sagittal plane kinematics, reaction forces, and electromyograms of lower extremity muscles were acquired during the take-off phase of both tasks. Lower extremity joint kinetics were calculated using inverse dynamics. The results demonstrated between-task differences in the relative angles between the lower extremity segments and the net joint forces/reaction force and the joint angular velocity profiles. Significantly less knee extensor net joint moments and net joint moment work and greater hip extensor net joint moments and net joint moment work were observed during the push interval of the reverse somersault as compared to the reverse timer. Between-task differences in lower extremity joint kinetics were regulated by selectively activating the bi-articular muscles crossing the knee and hip. These results indicate that between-task differences in the control of the center of mass relative to the reaction force alters control and dynamics of the multijoint lower extremity subsystem.  相似文献   

16.
Quantification of rehabilitation progress is necessary for accurately assessing clinical treatments. A three-dimension (3D) upper extremity (UE) kinematic model was developed to obtain joint angles of the trunk, shoulder and elbow using a Vicon motion analysis system. Strict evaluation confirmed the system's accuracy and precision. As an example of application, the model was used to evaluate the upper extremity movement of eight hemiparetic stroke patients with spasticity, while completing a set of reaching tasks. Main outcome measures include kinematic variables of movement time, range of motion, peak angular velocity, and percentage of reach where peak velocity occurs. The model computed motion patterns in the affected and unaffected arms. The unaffected arm showed a larger range of motion and higher angular velocity than the affected arm. Frequency analysis (power spectrum) demonstrated lower frequency content for elbow angle and angular velocity in the affected limb when compared to the unaffected limb. The model can accurately quantify UE arm motion, which may aid in the assessment and planning of stroke rehabilitation, and help to shorten recovery time.  相似文献   

17.
It is a well-known fact that a dramatic improvement in the range of any projective throw can be achieved by increasing the release velocity. In this paper a simple model of a competitor with an implement (hammer or discus) in the turns is considered. The thrower is regarded as a rigid body, and the implement as a point mass. The transverse velocity component of the implement at the release moment is maximized. For finding the optimal distance of the implement from the axis of rotation optimal control theory is applied. According to the proposed model, the optimal hammer throwing technique requires constant and maximal distance of the implement from the axis of rotation, followed by the rapid shortening of the distance immediately prior to the release. In the discus throw, however, this shortening is useless.  相似文献   

18.
Throwing velocity in overarm throwing is of major importance in sports like baseball, team handball, javelin, and water polo. The purpose of this literature review was to give an overview of the effect of different training programs on the throwing velocity in overarm throwing, provide a theoretical framework that explains findings, and give some practical applications based on these findings. The training studies were divided into 4 categories: (a) specific resistance training with an overload of velocity, (b) specific resistance training with an overload of force, (c) specific resistance training with a combination of overload of force and velocity, and (d) general resistance training according to the overload of force. Each category is presented and discussed.  相似文献   

19.
The present study used synchronized motion analysis to investigate the activity of hip and trunk muscles during deep-water running (DWR) relative to land walking (LW) and water walking (WW). Nine healthy men performed each exercise at self-determined slow, moderate, and fast paces, and surface electromyography was used to investigate activity of the adductor longus, gluteus maxima, gluteus medius, rectus abdominis, oblique externus abdominis, and erector spinae. The following kinematic parameters were calculated: the duration of one cycle, range of motion (ROM) of the hip joint, and absolute angles of the pelvis and trunk with respect to the vertical axis in the sagittal plane. The percentages of maximal voluntary contraction (%MVC) of each muscle were higher during DWR than during LW and WW. The %MVC of the erector spinae during WW increased concomitant with the pace increment. The hip joint ROMs were larger in DWR than in LW and WW. Forward inclinations of the trunk were apparent for DWR and fast-paced WW. The pelvis was inclined forward in DWR and WW. In conclusion, the higher-level activities during DWR are affected by greater hip joint motion and body inclinations with an unstable floating situation.  相似文献   

20.
This study examined lower extremity joint moments during walk and turn with different turn angles and pivot feet. Seven young adults (age 21+/-1.3 yrs) were asked to walk at a self-selected speed (1.35+/-0.15 m/s) and to turn to the right using right (spin turn) and left (step turn) pivot feet at turn angles of 0 degrees (walking straight), 45 degrees, and 90 degrees. Video and forceplate systems were employed for kinematic and kinetic data collection. Inverse dynamics approach was used to compute joint moments using segmental kinematics, ground reaction forces, and moments. The participants decreased their forward speed by increasing the ankle plantar flexion moment as the turn angle increased. The peak ankle plantar flexion moment during the braking phase increased with increasing turn angle for both spin and step turns. Ankle invertor moments were observed only in spin turns, suggesting that more ankle muscles are involved in spin turns than in step turns. The turn angle had a significant effect on the transverse plane moment profiles at the different lower extremity joints. The results suggest that the loading patterns of different anatomical structures in the lower extremity are affected by both turn angle and pivot foot during walk and turn actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号