首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A decreased fermentation rate due to inhibition is a significant problem for economic conversion of acid-pretreated lignocellulose hydrolysates to ethanol, since the inhibition gives rise to a requirement for separate detoxification steps. Together with acetic acid, the sugar degradation products furfural and 5-hydroxymethyl furfural are the inhibiting compounds found at the highest concentrations in hydrolysates. These aldehydes have been shown to affect both the specific growth rate and the rate of fermentation by yeast. Two strains of Saccharomyces cerevisiae with different abilities to ferment inhibiting hydrolysates were evaluated in fermentations of a dilute acid hydrolysate from spruce, and the reducing activities for furfural and 5-hydroxymethyl furfural were determined. Crude cell extracts of a hydrolysate-tolerant strain (TMB3000) converted both furfural and 5-hydroxymethyl furfural to the corresponding alcohol at a rate that was severalfold higher than the rate observed for cell extracts of a less tolerant strain (CBS 8066), thereby confirming that there is a correlation between the fermentation rate in a lignocellulosic hydrolysate and the bioconversion capacity of a strain. The in vitro NADH-dependent furfural reduction capacity of TMB3000 was three times higher than that of CBS 8066 (1,200 mU/mg protein and 370 mU/mg protein, respectively) in fed-batch experiments. Furthermore, the inhibitor-tolerant strain TMB3000 displayed a previously unknown NADH-dependent reducing activity for 5-hydroxymethyl furfural (400 mU/mg protein during fed-batch fermentation of hydrolysates). No corresponding activity was found in strain CBS 8066 (<2 mU/mg). The ability to reduce 5-hydroxymethyl furfural is an important characteristic for the development of yeast strains with increased tolerance to lignocellulosic hydrolysates.  相似文献   

2.
A decreased fermentation rate due to inhibition is a significant problem for economic conversion of acid-pretreated lignocellulose hydrolysates to ethanol, since the inhibition gives rise to a requirement for separate detoxification steps. Together with acetic acid, the sugar degradation products furfural and 5-hydroxymethyl furfural are the inhibiting compounds found at the highest concentrations in hydrolysates. These aldehydes have been shown to affect both the specific growth rate and the rate of fermentation by yeast. Two strains of Saccharomyces cerevisiae with different abilities to ferment inhibiting hydrolysates were evaluated in fermentations of a dilute acid hydrolysate from spruce, and the reducing activities for furfural and 5-hydroxymethyl furfural were determined. Crude cell extracts of a hydrolysate-tolerant strain (TMB3000) converted both furfural and 5-hydroxymethyl furfural to the corresponding alcohol at a rate that was severalfold higher than the rate observed for cell extracts of a less tolerant strain (CBS 8066), thereby confirming that there is a correlation between the fermentation rate in a lignocellulosic hydrolysate and the bioconversion capacity of a strain. The in vitro NADH-dependent furfural reduction capacity of TMB3000 was three times higher than that of CBS 8066 (1,200 mU/mg protein and 370 mU/mg protein, respectively) in fed-batch experiments. Furthermore, the inhibitor-tolerant strain TMB3000 displayed a previously unknown NADH-dependent reducing activity for 5-hydroxymethyl furfural (400 mU/mg protein during fed-batch fermentation of hydrolysates). No corresponding activity was found in strain CBS 8066 (<2 mU/mg). The ability to reduce 5-hydroxymethyl furfural is an important characteristic for the development of yeast strains with increased tolerance to lignocellulosic hydrolysates.  相似文献   

3.
The formation of toxic fermentation inhibitors such as furfural and 5-hydroxy-2-methylfurfural (HMF) during acid (pre-)treatment of lignocellulose, calls for the efficient removal of these compounds. Lignocellulosic hydrolysates can be efficiently detoxified biologically with microorganisms that specifically metabolize the fermentation inhibitors while preserving the sugars for subsequent use by the fermentation host. The bacterium Cupriavidus basilensis HMF14 was isolated from enrichment cultures with HMF as the sole carbon source and was found to metabolize many of the toxic constituents of lignocellulosic hydrolysate including furfural, HMF, acetate, formate and a host of aromatic compounds. Remarkably, this microorganism does not grow on the most abundant sugars in lignocellulosic hydrolysates: glucose, xylose and arabinose. In addition, C. basilensis HMF14 can produce polyhydroxyalkanoates. Cultivation of C. basilensis HMF14 on wheat straw hydrolysate resulted in the complete removal of furfural, HMF, acetate and formate, leaving the sugar fraction intact. This unique substrate profile makes C. basilensis HMF14 extremely well suited for biological removal of inhibitors from lignocellulosic hydrolysates prior to their use as fermentation feedstock.  相似文献   

4.
Saccharomyces cerevisiae alcohol dehydrogenases responsible for NADH-, and NADPH-specific reduction of the furaldehydes 5-hydroxymethyl-furfural (HMF) and furfural have previously been identified. In the present study, strains overexpressing the corresponding genes (mut-ADH1 and ADH6), together with a control strain, were compared in defined medium for anaerobic fermentation of glucose in the presence and absence of HMF. All strains showed a similar fermentation pattern in the absence of HMF. In the presence of HMF, the strain overexpressing ADH6 showed the highest HMF reduction rate and the highest specific ethanol productivity, followed by the strain overexpressing mut-ADH1. This correlated with in vitro HMF reduction capacity observed in the ADH6 overexpressing strain. Acetate and glycerol yields per biomass increased considerably in the ADH6 strain. In the other two strains, only the overall acetate yield per biomass was affected. When compared in batch fermentation of spruce hydrolysate, strains overexpressing ADH6 and mut-ADH1 had five times higher HMF uptake rate than the control strain and improved specific ethanol productivity. Overall, our results demonstrate that (1) the cofactor usage in the HMF reduction affects the product distribution, and (2) increased HMF reduction activity results in increased specific ethanol productivity in defined mineral medium and in spruce hydrolysate.  相似文献   

5.
The electron acceptors acetoin, acetaldehyde, furfural, and 5-hydroxymethylfurfural (HMF) were added to anaerobic batch fermentation of xylose by recombinant, xylose utilising Saccharomyces cerevisiae TMB 3001. The intracellular fluxes during xylose fermentation before and after acetoin addition were calculated with metabolic flux analysis. Acetoin halted xylitol excretion and decreased the flux through the oxidative pentose phosphate pathway. The yield of ethanol increased from 0.62 mol ethanol/mol xylose to 1.35 mol ethanol/mol xylose, and the cell more than doubled its specific ATP production after acetoin addition compared to fermentation of xylose only. This did, however, not result in biomass growth. The xylitol excretion was also decreased by furfural and acetaldehyde but was unchanged by HMF. Thus, furfural present in lignocellulosic hydrolysate can be beneficial for ethanolic fermentation of xylose. Enzymatic analyses showed that the reduction of acetoin and furfural required NADH, whereas the reduction of HMF required NADPH. The enzymatic activity responsible for furfural reduction was considerably higher than for HMF reduction and also in situ furfural conversion was higher than HMF conversion.  相似文献   

6.
王丹  王洪辉  王競  汪楠  张杰  邢建民 《生物工程学报》2013,29(10):1463-1472
利用可再生生物质特别是木质纤维素水解液来生产平台化合物丁二酸,是目前研究的热点。虽然许多研究者相继报道了木质纤维素水解液对菌株生长和丁二酸生产存在一定抑制作用,但并没有水解液中各种抑制物对菌株影响的相关动力学研究及机理研究。我们选择了两种代表性木质纤维素水解液抑制物,即糠醛和5-羟甲基糠醛,系统研究了它们对大肠杆菌的生长和丁二酸生产的影响。结果表明:糠醛和5-羟甲基糠醛的初始抑制浓度均为0.8 g/L。当糠醛浓度大于6.4 g/L,5-羟甲基糠醛浓度大于12.8 g/L时,菌株生长完全受到抑制。在最高耐受浓度下,糠醛的存在使菌株生物量比对照菌株下降77.8%,丁二酸产量下降36.1%。5-羟甲基糠醛的存在使菌株生物量比对照菌株降低13.6%,丁二酸产量降低18.3%。糠醛和5-羟甲基糠醛具有明显的协同作用。体外酶活测定表明丁二酸生产途径中关键酶磷酸烯醇式丙酮酸羧化酶、苹果酸脱氢酶、富马酸还原酶均受糠醛和5-羟甲基糠醛抑制。研究结果对丁二酸生产用纤维素水解液的预处理和脱毒工艺开发具有指导作用,有利于实现丁二酸发酵生产的工业化。  相似文献   

7.
On-line control of fed-batch fermentation of dilute-acid hydrolyzates   总被引:4,自引:0,他引:4  
Dilute-acid hydrolyzates from lignocellulose are, to a varying degree, inhibitory to yeast. In the present work, dilute-acid hydrolyzates from spruce, birch, and forest residue, as well as synthetic model media, were fermented by Saccharomyces cerevisiae in fed-batch cultures. A control strategy based on on-line measurement of carbon dioxide evolution (CER) was used to control the substrate feed rate in a lab scale bioreactor. The control strategy was based solely on the ratio between the relative increase in CER and the relative increase in feed rate. Severely inhibiting hydrolyzates could be fermented without detoxification and the time required for fermentation of moderately inhibiting hydrolyzates was also reduced. The feed rate approached a limiting value for inhibiting media, with a corresponding pseudo steady-state value for CER. However, a slow decrease of CER with time was found for media containing high amounts of 5-hydroxymethyl furfural (HMF). The success of the control strategy is explained by the conversion of furfural and HMF by the yeast during fed-batch operation. The hydrolyzates contained between 1.4 and 5 g/l of furfural and between 2.4 and 6.5 g/l of HMF. A high conversion of furfural was obtained (between 65-95%) at the end of the feeding phase, but the conversion of HMF was considerably lower (between 12-40%).  相似文献   

8.
Furfural and 5-hydroxymethylfurfural (HMF) are representative inhibitors generated from biomass pretreatment using dilute acid hydrolysis that interfere with yeast growth and subsequent fermentation. Few yeast strains tolerant to inhibitors are available. In this study, we report a tolerant strain, Saccharomyces cerevisiae NRRL Y-50049, which has enhanced biotransformation ability to convert furfural to furan methanol (FM), HMF to furan di-methanol (FDM), and produce a normal yield of ethanol. Our recent identification of HMF and development of protocol to synthesize the HMF metabolic conversion product FDM allowed studies on fermentation metabolic kinetics in the presence of HMF and furfural. Individual gene-encoding enzymes possessing aldehyde reduction activities demonstrated cofactor preference for NADH or NADPH. However, protein extract from whole yeast cells showed equally strong aldehyde reduction activities coupled with either cofactor. Deletion of a single candidate gene did not affect yeast growth in the presence of the inhibitors. Our results suggest that detoxification of furfural and HMF by the ethanologenic yeast S. cerevisiae strain Y-50049 likely involves multiple gene mediated NAD(P)H-dependent aldehyde reduction. Conversion pathways of furfural and HMF relevant to glycolysis and ethanol production were refined based on our findings in this study. The mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

9.
Renewable lignocellulosic materials are attractive low-cost feedstocks for bioethanol production. Furfural and 5-hydroxymethylfurfural (HMF) are among the most potent inhibitory compounds generated from acid hydrolysis of lignocelluloses to simple sugars for fermentation. In Saccharomyces cerevisiae ATCC 211239 and NRRL Y-12632 and Pichia stipitis NRRL Y-7124, furfural and HMF inhibition were determined to be dose-dependent at concentrations from 10 to 120 mM. The yeast strains were more sensitive to inhibition by furfural than HMF at the same concentration, while combined treatment of furfural and HMF synergistically suppressed cell growth. A metabolite transformed from HMF by strain NRRL Y-12632 was isolated from the culture supernatant, and conclusively identified as 2,5-bis-hydroxymethylfuran, a previously postulated HMF alcohol, with a composition of C6H8O3 and a molecular weight of 128. It is proposed that, in the presence of HMF, the yeast reduces the aldehyde group on the furan ring of HMF into an alcohol, in a similar manner as for furfural. The accumulation of this biotransformed metabolite may be less toxic to yeast cultures than HMF, as evidenced by the rapid yeast fermentation and growth rates associated with HMF conversion. The ability of yeasts to adapt to and transform furfural and HMF offers the potential for in situ detoxification of these inhibitors and suggests a genetic basis for further development of highly tolerant strains for biofuel production.  相似文献   

10.
Industrial Saccharomyces cerevisiae strains able to utilize xylose have been constructed by overexpression of XYL1 and XYL2 genes encoding the NADPH-preferring xylose reductase (XR) and the NAD+-dependent xylitol dehydrogenase (XDH), respectively, from Pichia stipitis. However, the use of different co-factors by XR and XDH leads to NAD+ deficiency followed by xylitol excretion and reduced product yield. The furaldehydes 5-hydroxymethyl-furfural (HMF) and furfural inhibit yeast metabolism, prolong the lag phase, and reduce the ethanol productivity. Recently, genes encoding furaldehyde reductases were identified and their overexpression was shown to improve S. cerevisiae growth and fermentation rate in HMF containing media and in lignocellulosic hydrolysate. In the current study, we constructed a xylose-consuming S. cerevisiae strain using the XR/XDH pathway from P. stipitis. Then, the genes encoding the NADH- and the NADPH-dependent HMF reductases, ADH1-S110P-Y295C and ADH6, respectively, were individually overexpressed in this background. The performance of these strains, which differed in their co-factor usage for HMF reduction, was evaluated under anaerobic conditions in batch fermentation in absence or in presence of HMF. In anaerobic continuous culture, carbon fluxes were obtained for simultaneous xylose consumption and HMF reduction. Our results show that the co-factor used for HMF reduction primarily influenced formation of products other than ethanol, and that NADH-dependent HMF reduction influenced product formation more than NADPH-dependent HMF reduction. In particular, NADH-dependent HMF reduction contributed to carbon conservation so that biomass was produced at the expense of xylitol and glycerol formation.  相似文献   

11.
12.
Zhang Y  Han B  Ezeji TC 《New biotechnology》2012,29(3):345-351
The ability of fermenting microorganisms to tolerate furan aldehyde inhibitors (furfural and 5-hydroxymethyl furfural (HMF)) will enhance efficient bioconversion of lignocellulosic biomass hydrolysates to fuels and chemicals. The effect of furfural and HMF on butanol production by Clostridium acetobutylicum 824 was investigated. Whereas specific growth rates, μ, of C. acetobutylicum in the presence of furfural and HMF were in the range of 15-85% and 23-78%, respectively, of the uninhibited Control, μ increased by 8-15% and 23-38% following exhaustion of furfural and HMF in the bioreactor. Using high performance liquid chromatography and spectrophotometric assays, batch fermentations revealed that furfural and HMF were converted to furfuryl alcohol and 2,5-bis-hydroxymethylfuran, respectively, with specific conversion rates of 2.13g furfural and 0.50g HMF per g (biomass) per hour, by exponentially growing C. acetobutylicum. Biotransformation of these furans to lesser inhibitory compounds by C. acetobutylicum will probably enhance overall fermentation of lignocellulosic hydrolysates to butanol.  相似文献   

13.
Hydrolysate of Jerusalem artichoke was applied for the production of l-lactic acid by immobilized Lactococcus lactis cells in a fibrous bed bioreactor system. Preliminary experiments had indicated that the high quality hydrolysate, which was derived from the 40min acid treatment at 95°C and pH 1.8, was sufficient to support the cell growth and synthesis of l-lactic acid. With the addition of 5g/l yeast extract, the fermentative performance of free cell system was evidently improved. After the basal settlement of hydrolysate based fermentation, the batch mode and the fed-batch mode fermentation were carried out in the free cell system and the fibrous bed bioreactor system, respectively. In all cases the immobilized cells presented the superior ability to produce l-lactic acid. The comparison of batch mode and fed-batch mode also indicated that the growth-limiting feeding strategy could reduce the lag phase of fermentation process and enhance the production of l-lactic acid. The achieved maximum concentration of l-lactic acid was 142g/l in the fed-batch mode. Subsequent repeated-batch fermentation of the fibrous bed bioreactor system had further exhibited the persistence and stability of this system for the high production of l-lactic acid in a long term. Our work suggested the great potential of the fibrous bed bioreactor system and hydrolysate of J. artichoke in the economical production of l-lactic acid at industrial scale.  相似文献   

14.
Lignocellulose hydrolysate is an abundant substrate for bioethanol production. The ideal microorganism for such a fermentation process should combine rapid and efficient conversion of the available carbon sources to ethanol with high tolerance to ethanol and to inhibitory components in the hydrolysate. A particular biological problem are the pentoses, which are not naturally metabolized by the main industrial ethanol producer Saccharomyces cerevisiae. Several recombinant, mutated, and evolved xylose fermenting S. cerevisiae strains have been developed recently. We compare here the fermentation performance and robustness of eight recombinant strains and two evolved populations on glucose/xylose mixtures in defined and lignocellulose hydrolysate-containing medium. Generally, the polyploid industrial strains depleted xylose faster and were more resistant to the hydrolysate than the laboratory strains. The industrial strains accumulated, however, up to 30% more xylitol and therefore produced less ethanol than the haploid strains. The three most attractive strains were the mutated and selected, extremely rapid xylose consumer TMB3400, the evolved C5 strain with the highest achieved ethanol titer, and the engineered industrial F12 strain with by far the highest robustness to the lignocellulosic hydrolysate.  相似文献   

15.
This study investigated the detoxification of a dilute acid pretreated Ponderosa pine slurry using the polyelectrolyte polyethyleneimine (PEI). The addition of polyelectrolyte to remove enzymatic and/or fermentation inhibitory compounds, that is, acetic acid, furfural, and 5-hydroxymethylfurfural (HMF), was performed either before or after enzymatic hydrolysis to determine the optimal process sequence. Negligible acetic acid, glucose, and xylose were removed regardless of where in the process the polymer addition was made. Maximum furfural and HMF separation was achieved with the addition of PEI to a clarified pre-enzymatic hydrolysis liquor, which showed that 88.3% of furfural and 66.4% of HMF could be removed. On the other hand, only 23.1% and 13.4% of furfural and HMF, respectively, were removed from a post-enzymatic hydrolysis sample; thus, the effects of enzymes, glucose, and wood solids on inhibitor removal were also investigated. The presence of solid particles >0.2 μm and unknown soluble components <10 kDa reduced inhibitory compound removal, but the presence of elevated glucose levels and enzymes (cellulases) did not affect the separation. The fermentability of detoxified versus undetoxified hydrolysate was also investigated. An ethanol yield of 92.6% of theoretical was achieved with Saccharomyces cerevisiae fermenting the detoxified hydrolyzate, while no significant ethanol was produced in the undetoxified hydrolyzate. These results indicate that PEI may provide a practical alternative for furan removal and detoxification of lignocellolosic hydrolysates, and that application before enzymatic hydrolysis minimizes separation interferences.  相似文献   

16.
Low-molecular weight aliphatic acids, furaldehydes and a broad range of different aromatic compounds are known to inhibit the fermentation of lignocellulose hydrolysates by yeasts. In this work, a cocktail of different lignocellulose-derived inhibitors was used to compare the inhibitor resistance of eleven different industrial and laboratory Saccharomyces cerevisiae strains and two Zygosaccharomyces strains. The inhibitor cocktail was composed of two aliphatic acids, formic and acetic acid, two furaldehydes, furfural and 5-hydroxymethylfurfural (HMF), and two aromatic compounds, cinnamic acid and coniferyl aldehyde. Fermentations were performed under oxygen-limited conditions and with different levels (100, 75, 50, 25 and 0%) of the inhibitor cocktail present. The ethanol yield on initial glucose, the volumetric and specific ethanol productivity, the biomass yield and the glucose consumption rates were used as criteria for the performance of the strains. The results revealed major differences in inhibitor resistance between yeast strains within the same species. The ethanol yield of the S. cerevisiae strain that was least affected decreased only with 10% at an inhibitor cocktail concentration of 100%, while the decrease in ethanol yield for the most sensitive S. cerevisiae strain was more than 50% already at an inhibitor cocktail concentration of 25%. Ethanol formation was generally less affected than growth and ethanol yield less than ethanol productivity. The two most resistant strains were an S. cerevisiae strain isolated from a spent sulphite liquor plant and one of the laboratory S. cerevisiae strains. Additional fermentations with either HMF or coniferyl aldehyde revealed that the degree of resistance of different yeast strains was highly dependent on the inhibitor used. A mutant strain of S. cerevisiae displaying enhanced resistance against coniferyl aldehyde compared with the parental strains was identified.  相似文献   

17.
Cost-effective conversion of lignocellulose hydrolysate to optically pure lactic acid is commercially attractive but very challenging. Bacillus coagulans JI12 was isolated from natural environment and used to produce L-lactic acid (optical purity?>?99.5 %) from lignocellulose sugars and acid hydrolysate of oil palm empty fruit bunch (EFB) at 50 °C and pH 6.0 without sterilization of the medium. In fed-batch fermentation with 85 g/L initial xylose and 55 g/L xylose added after 7.5 h, 137.5 g/L lactic acid was produced with a yield of 98 % and a productivity of 4.4 g/L?h. In batch fermentation of a sugar mixture containing 8.5 % xylose, 1 % glucose, and 1 % L-arabinose, the lactic acid yield and productivity reached 98 % and 4.8 g/L?h, respectively. When EFB hydrolysate was used, 59.2 g/L of lactic acid was produced within 9.5 h at a yield of 97 % and a productivity of 6.2 g/L?h, which are the highest among those ever reported from lignocellulose hydrolysates. These results indicate that B. coagulans JI12 is a promising strain for industrial production of L-lactic acid from lignocellulose hydrolysate.  相似文献   

18.
19.
Lignocellulose pretreatment produces various toxic inhibitors that affect microbial growth, metabolism, and fermentation. Zymomonas mobilis is an ethanologenic microbe that has been demonstrated to have potential to be used in lignocellulose biorefineries for bioethanol production. Z. mobilis biofilm has previously exhibited high potential to enhance ethanol production by presenting a higher viable cell number and higher metabolic activity than planktonic cells or free cells when exposed to lignocellulosic hydrolysate containing toxic inhibitors. However, there has not yet been a systematic study on the tolerance level of Z. mobilis biofilm compared to planktonic cells against model toxic inhibitors derived from lignocellulosic material. We took the first insight into the concentration of toxic compound (formic acid, acetic acid, furfural, and 5‐HMF) required to reduce the metabolic activity of Z. mobilis biofilm and planktonic cells by 25% (IC25), 50% (IC50), 75% (IC75), and 100% (IC100). Z. mobilis strains ZM4 and TISTR 551 biofilm were two‐ to three fold more resistant to model toxic inhibitors than planktonic cells. Synergetic effects were found in the presence of formic acid, acetic acid, furfural, and 5‐HMF. The IC25 of Z. mobilis ZM4 biofilm and TISTR 551 biofilm were 57 mm formic acid, 155 mm acetic acid, 37.5 mm furfural and 6.4 mm 5‐HMF, and 225 mm formic acid, 291 mm acetic acid, 51 mm furfural and 41 mm 5‐HMF, respectively. There was no significant difference found between proteomic analysis of the stress response to toxic inhibitors of Z. mobilis biofilm and planktonic cells on ZM4. However, TISTR 551 biofilms exhibited two proteins (molecular chaperone DnaK and 50S ribosomal protein L2) that were up‐regulated in the presence of toxic inhibitors. TISTR 551 planktonic cells possessed two types of protein in the group of 30S ribosomal proteins and motility proteins that were up‐regulated.  相似文献   

20.
Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors   总被引:1,自引:0,他引:1  
One major barrier to the economic conversion of biomass to ethanol is inhibitory compounds generated during biomass pretreatment using dilute acid hydrolysis. Major inhibitors such as furfural and 5-hydroxymethylfurfural (HMF) inhibit yeast growth and subsequent fermentation. The ethanologenic yeast Saccharomyces cerevisiae demonstrated a dose-dependant inhibition by the inhibitors and has the potential to transform furfural and HMF into less toxic compounds of furfuryl alcohol and 2,5-bis-hydroxymethylfuran (also termed as furan-2,5-dimethanol (FDM)), respectively. For a sustainable and cost-competitive biomass-to-ethanol industry, it is important to develop more tolerant yeast strains that can, in situ, detoxify the inhibitors and produce ethanol. This study summarizes current knowledge and our understanding of the inhibitors furfural and HMF and discusses metabolic conversion pathways of the inhibitors and the yeast genomic expression response to inhibitor stress. Unlike laboratory strains, gene expression response of the ethanologenic yeast to furfural and HMF was not transient, but a continued dynamic process involving multiple genes at the genome level. This suggests that during the lag phase, ethanologenic yeasts undergo a genomic adaptation process in response to the inhibitors. The findings to date provide a strong foundation for future studies on genomic adaptation and manipulation of yeast to aid more robust strain design and development.The mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号