首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nucleolar GTP-binding protein (NGP-1) is overexpressed in various cancers and proliferating cells, but the functional significance remains unknown. In this study, we show that NGP-1 promotes G1 to S phase transition of cells by enhancing CDK inhibitor p21Cip-1/Waf1 expression through p53. In addition, our results suggest that activation of the cyclin D1-CDK4 complex by NGP-1 via maintaining the stoichiometry between cyclin D1-CDK4 complex and p21 resulted in hyperphosphorylation of retinoblastoma protein at serine 780 (p-RBSer-780) followed by the up-regulation of E2F1 target genes required to promote G1 to S phase transition. Furthermore, our data suggest that ribosomal protein RPL23A interacts with NGP-1 and abolishes NGP-1-induced p53 activity by enhancing Mdm2-mediated p53 polyubiquitination. Finally, reduction of p-RBSer-780 levels and E2F1 target gene expression upon ectopic expression of RPL23a resulted in arrest at the G1 phase of the cell cycle. Collectively, this investigation provides evidence that NGP-1 promotes cell cycle progression through the activation of the p53/p21Cip-1/Waf1 pathway.  相似文献   

3.
4.
Cellular stresses, including growth factor deprivation, inflammatory cytokines or viral infection promote RAX/PACTdependent activation of the double-stranded RNA-dependent protein kinase, PKR, to phosphorylate eIF2α, resulting in translation inhibition and apoptosis. In addition, PKR has been reported to regulate p53, STAT1 and NFκB. Here, we report that RAX/PACT interacts with the SUMO E2 ligase Ubc9 to stimulate p53-Ubc9 association and reversible p53 sumoylation on lysine 386. In addition, expression of RAX/PACT in a variety of cell lines promotes p53 stability and activity to increase p53 target gene expression. Significantly, while the expression of RAX/PACT, PKR or p53 alone has little effect on the cell cycle of p53-null H1299 cells, co-expression of p53 with either RAX/PACT or PKR promotes a 25–35% increase of cells in G1. In contrast, co-expression of RAX/PACT with the sumoylation-deficient p53(K386R) mutant or with the desumoylase SENP1 fails to induce such a G1 arrest. Furthermore, co-expression of p53, RAX/PACT and the dominantnegative PKR(K296R) mutant inhibits RAX/PACT-induced, p53-dependent G1 growth arrest and expression of RAX/PACT in pkr+/+ but not pkr-/- MEF cells promotes p53 and p21 expression following gamma irradiation. Significantly, p53 stability is decreased in cells with reduced RAX/PACT or PKR following doxorubicin treatment, and expression of exogenous RAX/ PACT promotes phosphorylation of wild-type but not p53(K386R) on serine 392. Collectively, results indicate that, in response to stress, the RAX/PACT-PKR signaling pathway may inhibit p53 protein turnover by a sumoylation-dependent mechanism with promotion of p53 phosphorylation and translational activation leading to G1 cell cycle arrest.  相似文献   

5.
6.
Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G0/G1 cell cycle arrest and increased levels of the CDK inhibitor p27kip1 and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-({4-[2-(E)-styrylphenoxy]butanoyl}-l-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G0/G1 cell cycle phase arrest and increased levels of p27kip1 in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G0 state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.  相似文献   

7.
8.
Targeting DNA repair with poly(ADP-ribose) polymerase (PARP) inhibitors has shown a broad range of anti-tumor activity in patients with advanced malignancies with and without BRCA deficiency. It remains unclear what role p53 plays in response to PARP inhibition in BRCA-proficient cancer cells treated with DNA damaging agents. Using gene expression microarray analysis, we find that DNA damage response (DDR) pathways elicited by veliparib (ABT-888), a PARP inhibitor, plus topotecan comprise the G1/S checkpoint, ATM and p53 signaling pathways in p53-wild-type cancer cell lines and BRCA1, BRCA2 and ATR pathway in p53-mutant lines. In contrast, topotecan alone induces the G1/S checkpoint pathway in p53 wild-type lines and not in p53-mutant cells. These responses are coupled with G2/G1 checkpoint effectors p21CDKN1A upregulation, and Chk1 and Chk2 activation. The drug combination enhances G2 cell cycle arrest, apoptosis and a marked increase in cell death relative to topotecan alone in p53-wild-type and p53-mutant or -null cells. We also show that the checkpoint kinase inhibitor UCN-01 abolishes the G2 arrest induced by the veliparib and topotecan combination and further increases cell death in both p53-wild-type and -mutant cells. Collectively, PARP inhibition by veliparib enhances DDR and cell death in BRCA-proficient cancer cells in a p53-dependent and -independent fashion. Abrogating the cell cycle arrest induced by PARP inhibition plus chemotherapeutics may be a strategy in the treatment of BRCA-proficient cancer.Key words: DNA damaging agent, G2 arrest, microarray, PARP inhibition, p53, topotecan, veliparib (ABT-888)  相似文献   

9.
10.
Cellular stresses, including growth factor deprivation, inflammatory cytokines or viral infection promote RAX/PACT-dependent activation of the double-stranded RNA-dependent protein kinase, PKR, to phosphorylate eIF2α, resulting in translation inhibition and apoptosis. In addition, PKR has been reported to regulate p53, STAT1 and NFκB. Here, we report that RAX/PACT interacts with the SUMO E2 ligase Ubc9 to stimulate p53-Ubc9 association and reversible p53 sumoylation on lysine 386. In addition, expression of RAX/PACT in a variety of cell lines promotes p53 stability and activity to increase p53 target gene expression. Significantly, while the expression of RAX/PACT, PKR or p53 alone has little effect on the cell cycle of p53-null H1299 cells, co-expression of p53 with either RAX/PACT or PKR promotes a 25–35% increase of cells in G1. In contrast, co-expression of RAX/PACT with the sumoylation-deficient p53(K386R) mutant or with the desumoylase SENP1 fails to induce such a G1 arrest. Furthermore, co-expression of p53, RAX/PACT and the dominant-negative PKR(K296R) mutant inhibits RAX/PACT-induced, p53-dependent G1 growth arrest and expression of RAX/PACT in pkr+/+ but not pkr−/− MEF cells promotes p53 and p21 expression following gamma irradiation. Significantly, p53 stability is decreased in cells with reduced RAX/PACT or PKR following doxorubicin treatment, and expression of exogenous RAX/PACT promotes phosphorylation of wild-type but not p53(K386R) on serine 392. Collectively, results indicate that, in response to stress, the RAX/PACT-PKR signaling pathway may inhibit p53 protein turnover by a sumoylation-dependent mechanism with promotion of p53 phosphorylation and translational activation leading to G1 cell cycle arrest.Key words: p53, PKR, RAX, PACT, Ubc9, sumoylation  相似文献   

11.
12.
13.
14.
Lee YS  Choi KM  Choi MH  Ji SY  Lee S  Sin DM  Oh KW  Lee YM  Hong JT  Yun YP  Yoo HS 《Cell proliferation》2011,44(4):320-329
Objectives: Melanoma is the most aggressive form of skin cancer, and it resists chemotherapy. Candidate drugs for effective anti‐cancer treatment have been sought from natural resources. Here, we have investigated anti‐proliferative activity of myriocin, serine palmitoyltransferase inhibitor, in the de novo sphingolipid pathway, and its mechanism in B16F10 melanoma cells. Material and methods: We assessed cell population growth by measuring cell numbers, DNA synthesis, cell cycle progression, and expression of cell cycle regulatory proteins. Ceramide, sphingomyelin, sphingosine and sphingosine‐1‐phosphate levels were analysed by HPLC. Results: Myriocin inhibited proliferation of melanoma cells and induced cell cycle arrest in the G2/M phase. Expressions of cdc25C, cyclin B1 and cdc2 were decreased in the cells after exposure to myriocin, while expression of p53 and p21waf1/cip1 was increased. Levels of ceramide, sphingomyelin, sphingosine and sphingosine‐1‐phosphate in myriocin‐treated cells after 24 h were reduced by approximately 86%, 57%, 75% and 38%, respectively, compared to levels in control cells. Conclusions: Our results suggest that inhibition of sphingolipid synthesis by myriocin in melanoma cells may inhibit expression of cdc25C or activate expression of p53 and p21waf1/cip1, followed by inhibition of cyclin B1 and cdc2, resulting in G2/M arrest of the cell cycle and cell population growth inhibition. Thus, modulation of sphingolipid metabolism by myriocin may be a potential target of mechanism‐based therapy for this type of skin cancer.  相似文献   

15.
It has been proposed that the functions of the cyclin-dependent kinase inhibitors p21Cip1/Waf1 and p27Kip1 are limited to cell cycle control at the G1/S-phase transition and in the maintenance of cellular quiescence. To test the validity of this hypothesis, p21 was expressed in a diverse panel of cell lines, thus isolating the effects of p21 activity from the pleiotropic effects of upstream signaling pathways that normally induce p21 expression. The data show that at physiological levels of accumulation, p21, in addition to its role in negatively regulating the G1/S transition, contributes to regulation of the G2/M transition. Both G1- and G2-arrested cells were observed in all cell types, with different preponderances. Preponderant G1 arrest in response to p21 expression correlated with the presence of functional pRb. G2 arrest was more prominent in pRb-negative cells. The arrest distribution did not correlate with the p53 status, and proliferating-cell nuclear antigen (PCNA) binding activity of p21 did not appear to be involved, since p27, which lacks a PCNA binding domain, produced similar arrest Bs. In addition, DNA endoreduplication occurred in pRb-negative but not in pRb-positive cells, suggesting that functional pRb is necessary to prevent DNA replication in p21 G2-arrested cells. These results suggest that the primary target of the Cip/Kip family of inhibitors leading to efficient G1 arrest as well as to blockade of DNA replication from either G1 or G2 phase is the pRb regulatory system. Finally, the tendency of Rb-negative cells to undergo endoreduplication cycles when p21 is expressed may have negative implications in the therapy of Rb-negative cancers with genotoxic agents that activate the p53/p21 pathway.  相似文献   

16.
17.
The tumor suppressor ARF inhibits cell growth in response to oncogenic stress in a p53-dependent manner. Also, there is an increasing appreciation of ARF's ability to inhibit cell growth via multiple p53-independent mechanisms, including its ability to regulate the E2F pathway. We have investigated the interaction between the tumor suppressor ARF and DP1, the DNA binding partner of the E2F family of factors (E2Fs). We show that ARF directly binds to DP1. Interestingly, binding of ARF to DP1 results in an inhibition of the interaction between DP1 and E2F1. Moreover, ARF regulates the association of DP1 with its target gene, as evidenced by a chromatin immunoprecipitation assay with the dhfr promoter. By analyzing a series of ARF mutants, we demonstrate a strong correlation between ARF's ability to regulate DP1 and its ability to cause cell cycle arrest. S-phase inhibition by ARF is preceded by an inhibition of the E2F-activated genes. Moreover, we provide evidence that ARF inhibits the E2F-activated genes independently of p53 and Mdm2. Also, the interaction between ARF and DP1 is enhanced during oncogenic stress and "culture shock." Taken together, our results show that DP1 is a critical direct target of ARF.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号