首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 323 毫秒
1.
Early embryonic development in Drosophila melanogaster is marked by a series of thirteen very rapid (10-15 min) and highly synchronous nuclear divisions, the last four of which occur just beneath the embryo surface. A total of some 6000 blastoderm nuclei result, which are subsequently enclosed by furrow membranes to form the cellular blastoderm. We have examined the fine structure of nuclear division in late syncytial embryos. The mitotic spindle forms adjacent to the nuclear envelope on the side facing the embryo surface. During prophase, astral microtubules deform the nuclear envelope which then ruptures at the poles at the onset of prometaphase. The nuclear envelope remains essentially intact elsewhere throughout mitosis. A second envelope begins to form around the nuclear envelope in prometaphase and is completed by metaphase; the entire double layered structure, referred to as the spindle envelope, persists through early in the ensuing interphase. Pole cell spindles are enclosed by identical spindle envelopes. Interphase and prophase nuclei contain nuclear pore complexes (PCs) of standard dimensions and morphology. In prometaphase PCs become much less electron-dense, although they retain their former size and shape. By metaphase, no semblance of PC structure remains, and instead, both layers of the spindle envelope are interrupted by numerous irregular fenestrae. PCs are presumably disassembled into their component parts during mitosis, and reassembled subsequently. Yolk nuclei remain among the central yolk mass when most nuclei migrate to the surface, cease to divide, yet become polyploid. These nuclei nonetheless lose and regain PCs in synchrony with the dividing blastoderm nuclei. In addition, they gain and lose a second fenestrated membrane layer with the same timing. Cytoplasmic membranes containing PCs (annulate lamellae) also lose and regain pores in synchrony with the two classes of nuclear envelopes. The factors that affect the integrity of PCs in dividing blastoderm nuclei appear to affect those in other membrane systems to an equivalent degree and with identical timing.  相似文献   

2.
SUN proteins reside in the inner nuclear membrane and form complexes with KASH proteins of the outer nuclear membrane that connect the nuclear envelope (NE) to the cytoskeleton. These complexes have well-established functions in nuclear anchorage and migration in interphase, but little is known about their involvement in mitotic processes. Our analysis demonstrates that simultaneous depletion of human SUN1 and SUN2 delayed removal of membranes from chromatin during NE breakdown (NEBD) and impaired the formation of prophase NE invaginations (PNEIs), similar to microtubule depolymerization or down-regulation of the dynein cofactors NudE/EL. In addition, overexpression of dominant-negative SUN and KASH constructs reduced the occurrence of PNEI, indicating a requirement for functional SUN–KASH complexes in NE remodeling. Codepletion of SUN1/2 slowed cell proliferation and resulted in an accumulation of morphologically defective and disoriented mitotic spindles. Quantification of mitotic timing revealed a delay between NEBD and chromatin separation, indicating a role of SUN proteins in bipolar spindle assembly and mitotic progression.  相似文献   

3.
Summary Immunofluorescence studies on microtubule arrangement during the transition from prophase to metaphase in onion root cells are presented. The prophase spindle observed at late preprophase and prophase is composed of microtubules converged at two poles near the nuclear envelope; thin bundles of microtubules are tracable along the nuclear envelope. Prior to nuclear envelope breakdown diffuse tubulin staining occurs within the prophase nuclei. During nuclear envelope breakdown the prophase spindle is no longer identifiable and prominent tubulin staining occurs among the prometaphase chromosomes. Patches of condensed tubulin staining are observed in the vicinity of kinetochores. At advanced prometaphase kinetochore bundles of microtubules are present in some kinetochore regions. At metaphase the mitotic spindle is mainly composed of kinetochore bundles of microtubules; pole-to-pole bundles are scarce. Our observations suggest that the prophase spindle is decomposed at the time of nuclear envelope breakdown and that the metaphase spindle is assembled at prometaphase, with the help of kinetochore nucleating action.  相似文献   

4.
The dynein motor performs multiple functions in mitosis by engaging with a wide cargo spectrum. One way to regulate dynein’s cargo-binding selectivity is through the C-terminal domain (CTD) of its light intermediate chain 1 subunit (LIC1), which binds directly with cargo adaptors. Here we show that mitotic phosphorylation of LIC1-CTD at its three cdk1 sites is required for proper mitotic progression, for dynein loading onto prometaphase kinetochores, and for spindle assembly checkpoint inactivation in human cells. Mitotic LIC1-CTD phosphorylation also engages the prolyl isomerase Pin1 predominantly to Hook2-dynein-Nde1-Lis1 complexes, but not to dynein-spindly-dynactin complexes. LIC1-CTD dephosphorylation abrogates dynein-Pin1 binding, promotes prophase centrosome–nuclear envelope detachment, and impairs metaphase chromosome congression and mitotic Golgi fragmentation, without affecting interphase membrane transport. Phosphomutation of a conserved LIC1-CTD SP site in zebrafish leads to early developmental defects. Our work reveals that LIC1-CTD phosphorylation differentially regulates distinct mitotic dynein pools and suggests the evolutionary conservation of this phosphoregulation.  相似文献   

5.
Kathleen Church 《Chromosoma》1977,64(2):143-154
During premeiotic interphase in the male grasshopper Brachystola magna the nucleus is divided into two nuclear envelope bound compartments, one containing the X chromosome and one the autosomes. — The autosomal compartment is characterized by an invaginated nuclear envelope with nuclear pores distributed throughout the envelope. In a polarized region of the cell the pericentric heterochromatic chromocenters are associated with the inner membrane of the envelope invaginations. In this species the chromosomes are telocentric (acrocentric?) and the pericentric heterochromatin marks the proximal chromosome ends. It is concluded that the chromosome ends are attached to the nuclear envelope at premeiotic interphase. — Comparisons are made between the present observations on chromosome arrangements and the nuclear envelope at premeiotic interphase to earlier observations at early meiotic prophase in the same species (Church, 1976). It is concluded that a rearrangement of both the proximal chromosome ends and the nuclear envelope occurs as cells enter meiotic prophase.  相似文献   

6.
The ultrastructure of spindle formation during the first meiotic division in oocytes of the Strepsipteran insect Xenos peckii Kirby (Acroschismus wheeleri Pierce) was examined in serial thick (0.25- micron) and thin sections. During late prophase the nuclear envelope became extremely convoluted and fenestrated. At this time vesicular and tubular membrane elements permeated the nucleoplasm and formed a thin fusiform sheath, 5-7 micron in length, around each of the randomly oriented and condensing tetrads. These membrane elements appeared to arise from the nuclear envelope and/or in association with annulate lamellae in the nuclear region. All of the individual tetrads and their associated fusiform sheaths became aligned within the nucleus subsequent to the breakdown of the nuclear envelope. Microtubules (MTs) were found associated with membranes of the meiotic apparatus only after the nuclear envelope had broken down. Kinetochores, with associated MTs, were first recognizable as electron-opaque patches on the chromosomes at this time. The fully formed metaphase arrested Xenos oocyte meiotic apparatus contained an abundance of membranes and had diffuse poles that lacked distinct polar MT organizing centers. From these observations we conclude that the apparent individual chromosomal spindles--seen in the light microscope to form around each Xenos tetrad during "intranuclear prometaphase" (Hughes-Schrader, S., 1924, J. Morphol. 39:157-197)--actually form during late prophase, lack MTs, and are therefore not complete miniature bipolar spindles, as had been commonly assumed. Thus, the unique mode of spindle formation in Xenos oocytes cannot be used to support the hypothesis that chromosomes (kinetochores) induce the polymerization of their associated MTs. Our observation that MTs appeared in association with and parallel to tubular membrane components of the Xenos meiotic apparatus after these membranes became oriented with respect to the tetrads, is consistent with the notion that membranes associated with the spindle determine the orientation of spindle MTs and also play a part in regulating their formation.  相似文献   

7.
Clubb BH  Locke M 《Tissue & cell》1998,30(6):684-691
Nuclear envelope invaginations occur in many kinds of cell. Double-labeling of 3T3 cells with Hoechst 33342 strain for DNA and phalloidin-rhodamine for F-actin, show that some nuclei appear to contain tangled knots of F-actin. Concanavalin A-fluorescein staining for membranes shows that the knots are continuations of the nuclear envelope. Although they contain F-actin, the knots appear by electron microscopy to be cytoplasmic invaginations lacking microfilaments. Since we have shown previously that nuclear-membrane associated actin forms perinuclear shells in 3T3 cells, we propose that nuclear knots also are composed of actin associated with the nuclear membrane. 3T3 nuclei also contain nuclear invaginations of a second kind. These invaginations lie perpendicular to the first type and lack F-actin.  相似文献   

8.
The structure of dividing primary spermatocytes of Amphorophora tuberculata (Aphididae, Hemiptera) as determined by electron microscopy and serial sectioning is described. The developmental stages examined extend from late prophase I to late telophase I. We looked for any asymmetric organization that could be causally linked to the differences in chromatin behaviour between the two daughter nuclei towards the end of meiosis I of this species. In late prophase I, evaginations of the nuclear envelope in the vicinity of two neigh-bouring centrosomes develop into closed cytoplasmic compartments with a dense content. The compartments open in prometaphase I and come to lie together with fragments of the nuclear envelope within the spindle area. Since nuclear pores are preserved in the membranes, intraspindle annulate lamellae have formed. These and material of presumed nuclear origin associated with them are asymmetrically distributed within the cell. Although dispersed at stages beyond prometaphase I, the material may be largely incorporated into one of the two daughter cells and thus be decisive for further development. Some annulate lamellae form a cap at the chromosome surface opposite to the neighbouring centrosomes in prometaphase I. These membranes may prevent interaction between spindle microtubules and chromosomes until a bipolar spindle forms in metaphase I. At this stage, both the banana-shaped autosomal bivalent and the X univalent occupy the equatorial plane. This is strange, because the X univalent has microtubular connections with one spindle pole and would be expected to migrate towards that pole. Possibly, the kinetochore of the X chromosome is inactive, and remains so in anaphase I, when the X univalent remains located between the two autosomal half-bivalents.M.F. Trendelenburg  相似文献   

9.
A stable cell line expressing EB1-green fluorescent protein was used to image growing microtubule plus ends at the G(2)/M transition. By late prophase growing ends no longer extend to the cell periphery and were not uniformly distributed around each centrosome. Growing ends were much more abundant in the area surrounding the nuclear envelope, and microtubules growing around the nucleus were 1.5 fold longer than those growing in the opposite direction. The growth of longer ends toward the nucleus did not result from a localized faster growth rate, because this rate was approximately 11 microm/min in all directions from the centrosome. Rather, microtubule ends growing toward the nucleus seemed stabilized by dynein/dynactin associated with the nuclear envelope. Injection of p50 into late prophase cells removed dynein from the nuclear envelope, reduced the density of growing ends near the nuclear envelope and resulted in a uniform distribution of growing ends from each centrosome. We suggest that the cell cycle-dependent binding of dynein/dynactin to the nuclear envelope locally stabilizes growing microtubules. Both dynein and microtubules would then be in a position to participate in nuclear envelope breakdown, as described in recent studies.  相似文献   

10.
Dividing cells of Spirogyra sp. were examined with both the light and electron microscopes. By preprophase many of the typical transverse wall micro-tubules disappeared while others were seen in the thickened cytoplasmic strands. Microtubules appeared in the polar cytoplasm at prophase and by prometaphase they penetrated the nucleus. They were attached to chromosomes at metaphase and early anaphase, and formed a sheath surrounding the spindle during anaphase; they were seen in the interzonal strands and cytoplasmic strands at telophase. The interphase nucleolus, containing 2 distinct zones and chromatinlike material, fragmented at prophase; at metaphase and anaphase nucleolar material coated the chromosomes, obscuring them by late anaphase. The chromosomes condensed in the nucleoplasm at prophase, moving into the nucleolus at prometaphase. The nuclear envelope was finally disrupted at anaphase during spindle elongation; at telophase membrane profiles coated the reforming nuclei. During anaphase and early telophase the interzonal region contained vacuoles, a few micro-tubules, and sometimes eliminated n ucleolar material; most small organelles, including swollen endoplasmic reticulum and tubular membranes, were concentrated in the polar cytoplasm. Quantitative and qualitative cytological observations strongly suggest movement of intact wall rnicrotubules to the spindle at preprophase and then back again at telophase.  相似文献   

11.
Lis1 and Ndel1 are essential for animal development. They interact directly with one another and with cytoplasmic dynein. The developing brain is especially sensitive to reduced Lis1 or Ndel1 levels, as both proteins influence spindle orientation, neural cell fate decisions, and neuronal migration. We report here that Lis1 and Ndel1 reduction in a mitotic cell line impairs prophase nuclear envelope (NE) invagination (PNEI). This dynein-dependent process facilitates NE breakdown (NEBD) and occurs before the establishment of the bipolar spindle. Ndel1 phosphorylation is important for this function, regulating binding to both Lis1 and dynein. Prophase cells in the ventricular zone (VZ) of embryonic day 13.5 Lis1+/− mouse brains show reduced PNEI, and the ratio of prophase to prometaphase cells is increased, suggesting an NEBD delay. Moreover, prophase cells in the VZ contain elevated levels of Ndel1 phosphorylated at a key cdk5 site. Our data suggest that a delay in NEBD in the VZ could contribute to developmental defects associated with Lis1–Ndel1 disruption.  相似文献   

12.
Lamins, the type V nuclear intermediate filament proteins, are reported to function in both interphase and mitosis. For example, lamin deletion in various cell types can lead to an uneven distribution of the nuclear pore complexes (NPCs) in the interphase nuclear envelope, whereas deletion of B-type lamins results in spindle orientation defects in mitotic neural progenitor cells. How lamins regulate these functions is unknown. Using mouse cells deleted of different combinations or all lamins, we show that lamins are required to prevent the aggregation of NPCs in the nuclear envelope near centrosomes in late G2 and prophase. This asymmetric NPC distribution in the absence of lamins is caused by dynein forces acting on NPCs via the dynein adaptor BICD2. We further show that asymmetric NPC distribution upon lamin depletion disrupts the distribution of BICD2 and p150 dynactin on the nuclear envelope at prophase, which results in inefficient dynein-driven centrosome separation during prophase. Therefore lamins regulate microtubule-based motor forces in vivo to ensure proper NPC distribution in interphase and centrosome separation in the mitotic prophase.  相似文献   

13.
Chromosome and granule movements in meiotic prophase and prometaphase have been studied by time-lapse cinemicrography in live spermatocytes of the house cricket, Acheta domesticus. Chromosome movements in prophase cells, up to one hour or more before breakdown of the nuclear envelope, are described. These movements are frequent but saltatory; are based mostly at chromosome ends but also at kinetochores; occur in very intimate association with the inside of the nuclear envelope; are directed towards and away from the extranuclear centres (centrioles); tend weakly to accumulate bivalents round the two centres and reach a velocity of 0.65 m/sec. Saltatory movements in granules associated with extranuclear asters are remarkably similar in basic characteristics to the intranuclear chromosome movements. Surprisingly, the chromosome movements (and those of granules) are reversably blocked by colcemid (but not lumi-colcemid), and yet occur in the apparent absence of an intranuclear microtubule array. The movements cease at or shortly after breakdown of the nuclear envelope. However, kinetochore movements in very early prometaphase are similar in velocity and other respects to prophase movements; later prometaphase movements are clearly slower, and those of anaphase very much slower still. — The prophase movements suggest a two component model for motion: a non-microtubule, linear force producer together with microtubules with a skeletal, orientational role. Arguably, both these components are also necessary for chromosome movements in prometaphase and anaphase.This paper is dedicated to Dr. Sally Hughes-Schrader, whose beautiful work in mantids clearly presaged the existence of chromosome movements in late prophase of meiosis; and whose enthusiasm over chromosome movements in general it was my pleasure to share during my stay at Duke.  相似文献   

14.
When mammalian somatic cells enter mitosis, a fundamental reorganization of the Mt cytoskeleton occurs that is characterized by the loss of the extensive interphase Mt array and the formation of a bipolar mitotic spindle. Microtubules in cells stably expressing GFP-alpha-tubulin were directly observed from prophase to just after nuclear envelope breakdown (NEBD) in early prometaphase. Our results demonstrate a transient stimulation of individual Mt dynamic turnover and the formation and inward motion of microtubule bundles in these cells. Motion of microtubule bundles was inhibited after antibody-mediated inhibition of cytoplasmic dynein/dynactin, but was not inhibited after inhibition of the kinesin-related motor Eg5 or myosin II. In metaphase cells, assembly of small foci of Mts was detected at sites distant from the spindle; these Mts were also moved inward. We propose that cytoplasmic dynein-dependent inward motion of Mts functions to remove Mts from the cytoplasm at prophase and from the peripheral cytoplasm through metaphase. The data demonstrate that dynamic astral Mts search the cytoplasm for other Mts, as well as chromosomes, in mitotic cells.  相似文献   

15.
Formation of division spindles in higher plant meiosis   总被引:1,自引:0,他引:1  
Depolymerisation of the MT cytoskeleton during late prophase makes it impossible to follow the cytoskeleton cycle in centrosomeless plant meiocytes. This paper describes rearrangements of the MT cytoskeleton during plant meiotic spindle formation in normally dividing pollen mother cells in various higher plant species and forms in which the cytoskeleton does not depolymerise at prophase. In such variants of the wild-type, cytoskeleton rearrangements can be observed at late prophase/early prometaphase. Radial MT bundles coalesce in the meridian plane, reorientate tangentially, curve and give rise to a developed ring-shaped perinuclear cytoskeleton system at the meridian. During nuclear envelope breakdown this ring disintegrates and splits into a set of free MT bundles. Three sub-stages of prometaphase are indicated: early prometaphase (disintegration of perinuclear ring and invasion of MTs into the former nuclear area), middle prometaphase or chaotic stage (formation of bipolar spindle fibres), and late prometaphase (formation of bipolar spindle). Analysis of a range of abnormal phenotypes (disintegrated, multiple, polyarchal, chaotic spindles) reveals two previously unknown processes during late prometaphase: axial orientation and consolidation of the spindle fibres.  相似文献   

16.
Meiosis and the meiotic spindle pole body cycle were studied electron microscopically in basidia of the heterobasidiomycetePachnocybe ferruginea. Spindle pole body splitting in prometaphase I and II, and intermeiotic and postmeiotic duplication were investigated in particular detail. During prophase, the spindle pole body consists of two three-layered discs connected by a middle piece. At late prophase I and again in prometaphase II, the discs contact the nuclear envelope. Then, the nuclear membrane at the contact area is separated from the non-contacted part of the nuclear envelope and finally disappears. Each disc nests into the nuclear opening of the otherwise intact nuclear envelope. The disc remains in the gap and generates a half spindle. At late metaphase I, a co-disc develops eccentrically within the parent disc. The co-disc detaches from the parent disc during interphase I and becomes one of the metaphase II spindle pole bodies. Co-discs are absent during the second division. A cap of endoplasmic reticulum encloses each disc during prophase I through anaphase I. In the second meiotic division, the caps covering the spindle pole bodies of one nucleus of the pair, are developed from the neighbouring nucleus. Spindle pole bodies ofP. ferruginea are similar to those of the rusts, and especially to those ofEocronartium muscicola andHelicobasidium mompa. Part 73 of the series Studies inHeterobasidiomycetes.  相似文献   

17.
It is well established that multiple microtubule-based motors contribute to the formation and function of the mitotic spindle, but how the activities of these motors interrelate remains unclear. Here we visualize spindle formation in living Drosophila embryos to show that spindle pole movements are directed by a temporally coordinated balance of forces generated by three mitotic motors, cytoplasmic dynein, KLP61F, and Ncd. Specifically, our findings suggest that dynein acts to move the poles apart throughout mitosis and that this activity is augmented by KLP61F after the fenestration of the nuclear envelope, a process analogous to nuclear envelope breakdown, which occurs at the onset of prometaphase. Conversely, we find that Ncd generates forces that pull the poles together between interphase and metaphase, antagonizing the activity of both dynein and KLP61F and serving as a brake for spindle assembly. During anaphase, however, Ncd appears to have no effect on spindle pole movements, suggesting that its activity is down-regulated at this time, allowing dynein and KLP61F to drive spindle elongation during anaphase B.  相似文献   

18.
Intranuclear inclusions were observed in oocytes of Xiphophorus helleri during prophase I. In osmium-fixed leptotene nuclei, the inclusions were made up of groups of membrane-limited vesicles or tubules with pale contents, situated near the inner nuclear membrane with which some of them exhibited apparent continuities. In zygotene nuclei, larger vesicles also appeared bounded by two or three membranes and containing tubules apparently invaginated from their walls. In pachytene-dictyate nuclei most vesicular bodies had a wall formed by stratified membranes, or were entirely made up of membranous whorls. In glutaraldehyde-osmium fixed material some of these myeline-like bodies showed a peculiar arrangement, consisting of concentric bands each containing thick inner dense lamellae 2-0-3-0 nm thick and a 5-0 nm outer lamella. It is suggested that these inclusion bodies arise from the inner nuclear membrane of oocytes when cells start to grow intensely during prophase I. The bodies seem to become more complex at late prophase, probably by association of individual vesicles and the occurrence of multiple membrane invaginations, which may be related to active metabolic phenomena taking place at this stage in oocytes.  相似文献   

19.
Rat kangaroo (PtK2) cells were fixed and embedded in situ. Cells in mitosis were studied with the light microscope and thin sections examined with the electron microscope. Pericentriolar, osmiophilic material, rather than the centrioles, is probably involved in the formation of astral microtubules during prophase. Centriole migration occurs during prophase and early prometaphase. The nuclear envelope ruptures first in the vicinity of the asters. Nuclear pore complexes disintegrate as envelope fragments are dispersed to the periphery of the mitotic spindle. Microtubules invade the nucleus through gaps of the fragmented envelope. The number of microtubules and the degree of spindle organization increase during prometaphase and are maximal at metaphase. At this stage, chromosomes are aligned on the spindle equator, sister kinetochores facing opposite poles. Cytoplasmic organelles are excluded from the spindle. Prominent bundles of kinetochore microtubules converge towards the poles. Spindles in cold-treated cells consist almost exclusively of kinetochore tubules. Separating daughter chromosomes in early anaphase are connected by chromatin strands, possibly reflecting the rupturing of fibrous connections occasionally observed between sister chromatids in prometaphase. Breakdown of the spindle progresses from late anaphase to telophase, except for the stem bodies. Chromosomes decondense to form two masses. Nuclear envelope reconstruction, probably involving endoplasmic reticulum, begins on the lateral faces. Nuclear pores reappear on membrane segments in contact with chromatin. Microtubules are absent from reconstructed daughter nuclei.This report is to a large part based on a dissertation submitted by the author to the Graduate Council of the University of Florida in partial fulfillment of the requirements for the degree of Doctor of Philosophy.  相似文献   

20.
《The Journal of cell biology》1990,111(6):2815-2828
The spatial and temporal dynamics of diploid chromosome organization, microtubule arrangement, and the state of the nuclear envelope have been analyzed in syncytial blastoderm embryos of Drosophila melanogaster during the transition from prophase to metaphase, by three- dimensional optical sectioning microscopy. Time-lapse, three- dimensional data recorded in living embryos revealed that congression of chromosomes (the process whereby chromosomes move to form the metaphase plate) at prometaphase occurs as a wave, starting at the top of the nucleus near the embryo surface and proceeding through the nucleus to the bottom. The time-lapse analysis was augmented by a high- resolution analysis of fixed embryos where it was possible to unambiguously trace the three-dimensional paths of individual chromosomes. In prophase, the centromeres were found to be clustered at the top of the nucleus while the telomeres were situated at the bottom of the nucleus or towards the embryo interior. This polarized centromere-telomere orientation, perpendicular to the embryo surface, was preserved during the process of prometaphase chromosome congression. Correspondingly, breakdown of the nuclear envelope started at the top of the nucleus with the mitotic spindle being formed at the positions of the partial breakdown of the nuclear envelope. Our observation provide an example in which nuclear structures are spatially organized and their functions are locally and coordinately controlled in three dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号