首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteolysis of hexokinase in cell-free systems prepared from rabbit reticulocytes has been shown previously to be ATP-dependent and apparently mediated by the ubiquitin system (Magnani et al. J. Biol.Chem.261, 8327-8333). We have investigated this phenomenon, but found no substantial loss of hexokinase in cell-free systems prepared from fresh lysates. Storage of lysates at -20 degrees C or addition of a free radical generating system was required to demonstrate rapid ATP-dependent decay. It appears that initial oxidative damage to hexokinase does not abolish its activity but allows it to be recognized by an ATP-dependent proteolytic system. The relevance of this mechanism to in vivo degradation of hexokinase is discussed.  相似文献   

2.
Extracts made from Escherichia coli null dnaK strains contained elevated levels of ATP-dependent proteolytic activity compared with levels in extracts made from dnaK+ strains. This ATP-dependent proteolytic activity was not due to Lon, Clp, or Alp-associated protease. Comparison of the levels of ATP-dependent proteolytic activity present in lon rpoH dnaK mutants and in lon rpoH dnaK+ mutants showed that the level of ATP-dependent proteolytic activity was elevated in the lon rpoH dnaK mutant strain. These findings suggest that DnaK negatively regulates a new ATP-dependent proteolytic activity, independently of sigma 32. Other results indicate that an ATP-dependent proteolytic activity was increased in a lon alp strain after heat shock. It is not yet known whether the same protease is associated with the increased ATP-dependent proteolytic activity in the dnaK mutants and in the heat-shocked lon alph strain.  相似文献   

3.
An ATP-dependent proteolytic activity has been detected in both mouse erythroleukemia (Friend) cells and human (K562) erythroleukemia cells. Exposure of the Friend cells to dimethyl sulfoxide, which stimulates differentiation, increased ATP-dependent proteolysis approximately 2-fold although inducing differentiation in the K562 line had no significant effect on proteolysis. In contrast to the previously described soluble ATP-dependent proteolytic system of reticulocytes, the activity in the more primative erythroid cells is associated with a particulate fraction and is readily sedimentable by centrifugation at 100,000 X g for 1 h. Like the soluble reticulocyte system, the particulate activity requires divalent cation and is inhibited by hemin as well as vanadate. The activity was isolated on a sucrose cushion (30%) and did not appear to be associated with membranes, cytoskeleton, or polysomes. This enzymatic activity which degrades abnormal globin chains may initially reside in a particulate fraction and then become solubilized during erythroid maturation to the reticulocyte stage. Alternatively, the particulate activity may disappear with cell maturation being replaced by a distinct soluble activity. ATP-dependent proteolytic activity is eventually lost with reticulocyte maturation and further aging of erythrocytes.  相似文献   

4.
To investigate the existence of a ubiquitin-dependent protein degradation system in the brain, the proteolytic activity of the cerebral cortex was examined. The soluble extract of rat cerebral cortex degraded 125I-radiolabeled lysozyme in an ATP-dependent manner. The ATP-dependent proteolysis was suppressed with iodoacetamide, which inhibits ubiquitin conjugation, and was abolished by blocking of the amino residues of lysozyme. These results suggest the participation of ubiquitination in the proteolytic activity. An ATP-dependent 125I-ubiquitin-conjugating activity was detected in fraction II from the cerebral cortex. The presence of ATP-dependent proteolytic activity which acted preferentially on ubiquitinated lysozyme was demonstrated, using ubiquitin-125I-lysozyme conjugates as a substrate. The proteinase had a molecular mass of 1500 kDa and displayed nucleotide dependence and sensitivity to various proteinase inhibitors similar to those of the 26S proteinase complex found in reticulocytes. Dialysis of the soluble fraction caused a decrease in the proteolytic activity of ATP-dependent and preferential for ubiquitin-lysozyme conjugates and a reciprocal increase in the ATP-independent free 125I-lysozyme-degrading activity which was scarcely detected before dialysis. The former ATP-dependent proteolytic activity may play a physiological role in the brain.  相似文献   

5.
The mechanism involved in the decreased numbers of several trans-membrane proteins such as sodium pump sites, sodium-lithium countertransport, sodium potassium cotransport proteins, proteins mediating the passive efflux of sodium and insulin receptors in erythrocytes from patients with hyperthyroidism is not known. The ATP-dependent proteolytic system which is involved in the loss of trans-membrane proteins during the maturation of the reticulocyte may be involved in the accelerated loss of these membrane proteins. Therefore, the effect of thyroid hormones on the ATP-dependent proteolytic activity of reticulocyte lysates was examined in this study. Reticulocytosis was induced in 14 guinea pigs by phenylhydrazine hydrochloride injections for 5 consecutive days followed by 2 days of rest. T3 (10 micrograms/100 g body weight) was injected into 7 animals on day 4 and day 6. Reticulocyte-rich blood was withdrawn on day 8. Oxygen consumption determined 24 hours after injection of T3 was 25% higher (p less than 0.01) and T3 treated animals had a 2.5 fold higher (p less than 0.01) weight loss than control animals. The ATP-dependent proteolytic activity measured in reticulocyte lysates using 125I labelled lysozyme was 3.6 fold higher in the T3 than in the control group of guinea pigs (p less than 0.01). We conclude that thyroid hormones induce the ATP-dependent proteolytic activity of reticulocyte lysates which may be responsible for the reduced number of several trans-membrane proteins found in erythrocytes from patients with hyperthyroidism.  相似文献   

6.
The ubiquitin-dependent proteolysis of 125I-bovine serum albumin in rabbit reticulocytes has been investigated. Using various reticulocyte fractions (reticulocyte protease, inhibitor-free protease, "ubiquitin" and "inhibitor") in the presence or absence of ATP, we found that the repression of an endogenous inhibitor, as suggested by others for alpha-casein proteolysis, is unlikely for bovine serum albumin. Therefore, differences exist in the ATP-dependent proteolytic pathway of rabbit reticulocytes depending on the substrate. Fractionation of the reticulocyte ATP-dependent proteolytic system revealed at least two proteolytic and two inhibitory fractions involved in the proteolysis of bovine serum albumin.  相似文献   

7.
It is known that two types of high-molecular-mass protease complexes are present in the cytosol of mammalian cells; a 20S latent multicatalytic proteinase named the proteasome, and a large proteolytic complex with an apparent sedimentation coefficient of 26S that catalyzes ATP-dependent breakdown of proteins conjugated with ubiquitin. In this work, we first demonstrated that a low concentration of SDS was required for activation of the latent proteasome, whereas the 26S complex degraded substrates for proteasomes in the absence of SDS. Moreover, the 26S complex was greatly stabilized in the presence of 2 mM ATP and 20% glycerol. Based on these characteristics, we next devised a novel procedure for purification of the 26S proteolytic complexes from human kidney. In this procedure, the proteolytic complexes were precipitated from cytoplasmic extracts by ultracentrifugation for 5 h at 105000 x g, and the large 26S complexes were clearly separated from the 20S proteasomes by molecular-sieve chromatography on a Biogel A-1.5 m column. The 26S enzyme was then purified to apparent homogeneity by successive chromatographies on hydroxyapatite and Q Sepharose, then by glycerol density-gradient centrifugation. Electrophoretic and immunochemical analyses showed that the purified human 26S complex consisted of multiple subunits of proteasomes with molecular masses of 21-31 kDa and 13-15 protein components ranging in molecular mass over 35-110 kDa, which were directly associated with the proteasome. The purified 26S proteolytic complex degraded 125I-labeled lysozyme-ubiquitin conjugates in an ATP-dependent manner. The 26S enzyme also showed high ATPase activity, which was copurified with the complex. Vanadate and hemin strongly inhibited not only ATP cleavage, but also ATP-dependent breakdown of ubiquitinligated proteins, suggesting that the 26S complex hydrolyzes ATP and ubiquitinated proteins by closely linked mechanisms. These findings indicate that the 26S complex consists of a proteasome with proteolytic function and multiple other components including an ATPase that regulates energy-dependent, ubiquitin-mediated protein degradation.  相似文献   

8.
Chloroplasts contain a proteolytic system whose activity is ATP-dependent. The presence of genes encoding homologues of the ATP-dependent E. coli CIpA/P protease on the plastome and nuclear genome suggests that a similar protease is located in chloroplasts. Antibodies raised against a recombinant chloroplast-encoded proteolytic ClpP subunit detect this polypeptide in chloroplasts prepared from barley leaves or the eukaryotic algae Chlamydomonas reinhardtii and Euglena gracilis. Co-immunoprecipitation experiments using the anti-ClpP antibody and an antibody against the nuclear encoded regulatory CIpC component (a ClpA homologue) provide direct evidence for the existence of a CIpC/P complex in the chloroplast stroma. These results suggest that at least a part of the ATP-dependent proteolytic reactions in the chloroplast is catalyzed by an enzyme complex similar to the E. coli CIpA/P protease.  相似文献   

9.
A soluble ATP-dependent system for protein degradation has been demonstrated in reticulocyte lysates, but not in extracts of nucleated cells. We report that extracts of undifferentiated murine erythroleukemia (MEL) cells contain a labile ATP-stimulated proteolytic system. The addition of ATP to MEL cell extracts at alkaline pH enhances degradation of endogenous cell proteins and various radiolabeled exogenous polypeptides from 2-15-fold. Nonhydrolyzable ATP analogs had no effect. In reticulocytes, one role of ATP in proteolysis is for ubiquitin conjugation to protein substrates. MEL cells also contain ubiquitin and extracts can conjugate 125I-ubiquitin to cell proteins; however, this process in MEL cells seems unrelated to protein breakdown. After removal of ubiquitin from these extracts by DEAE- or gel chromatography, the stimulation of proteolysis by ATP was maintained and readdition of purified ubiquitin had no further effect. In addition, these extracts degraded in an ATP-dependent fashion casein whose amino groups were blocked and could not be conjugated to ubiquitin. After gel filtration or DEAE-chromatography of the MEL cell extracts (unlike those from reticulocytes), we isolated a high molecular weight (600,000) ATP-dependent proteolytic activity, which exhibits many of the properties of energy-dependent proteolysis seen in crude cell extracts. For example, both the protease and crude extracts are inhibited by hemin and N-ethylmaleimide and both hydrolyze casein, globin, and lysozyme rapidly and denatured albumin relatively slowly. The protease, like the crude extracts, is also stimulated by UTP, CTP, and GTP, although not as effectively as ATP. Also, nonhydrolyzable ATP analogs and pyrophosphate do not stimulate the protease. Thus, some mammalian cells contain a cytosolic proteolytic pathway that appears independent of ubiquitin and involves and ATP-dependent protease, probably similar to that found in Escherichia coli or mitochondria.  相似文献   

10.
Radioiodinated, native and denatured bovine serum albumin (albumin) beta-lactoglobulin and cytochrome c were introduced into hepatoma tissue culture cells by erythrocyte-ghost-mediated microinjection, and their rates of degradation were compared. Denatured albumin was degraded at 20% of the rate of undenatured albumin, denatured beta-lactoglobulin was degraded three times faster than undenatured beta-lactoglobulin, while denatured and undenatured cytochrome c were degraded at the same rate. Thus, denaturation does not affect the rates of intracellular breakdown of microinjected proteins in a simple predictable way. Exhaustive methylation did not inhibit the degradation of denatured beta-lactoglobulin or albumin, indicating that, like their undenatured counterparts, they are not degraded via the ubiquitin pathway. In reticulocyte lysates, in the presence of ATP, denatured albumin and beta-lactoglobulin were broken down at slightly slower rates than the parent proteins. Exhaustive methylation of both denatured and undenatured proteins completely abolished their ATP-dependent breakdown. This inhibition is consistent with the hypothesis that free -NH2 groups are required for the attachment of ubiquitin prior to degradation in this system. Removal of an ammonium sulfate fraction from reticulocyte lysates produces a proteolytic system markedly different from the whole lysate [Speiser, S. & Etlinger, J. D. (1983) Proc. Natl Acad. Sci. USA 80, 3577-3580]. In this system both denatured and undenatured albumin and beta-lactoglobulin were degraded essentially independently of ATP. Methylation only slightly decreased the breakdown of denatured proteins, suggesting that they are not degraded via the ubiquitin pathway. A possible explanation of these results is that removal of the ammonium sulfate fraction unmasks an ATP-independent proteolytic system unrelated to the ubiquitin pathway.  相似文献   

11.
HslVU is a two-component ATP-dependent protease, consisting of HslV peptidase and HslU ATPase. CodW and CodX, encoded by the cod operon in Bacillus subtilis, display 52% identity in their amino acid sequences to HslV and HslU in Escherichia coli, respectively. Here we show that CodW and CodX can function together as a new type of two-component ATP-dependent protease. Remarkably, CodW uses its N-terminal serine hydroxyl group as the catalytic nucleophile, unlike HslV and certain beta-type subunits of the proteasomes, which have N-terminal threonine functioning as an active site residue. The ATP-dependent proteolytic activity of CodWX is strongly inhibited by serine protease inhibitors, unlike that of HslVU. Replacement of the N-terminal serine of CodW by alanine or even threonine completely abolishes the enzyme activity. These results indicate that CodWX in B.subtilis represents the first N-terminal serine protease among all known proteolytic enzymes.  相似文献   

12.
Reticulocytes contain a nonlysosomal proteolytic pathway that requires ATP and ubiquitin. By DEAE chromatography and gel filtration, we were able to fractionate the ATP-dependent system into a 30-300-kDa fraction that catalyzes the ATP-dependent conjugation of ubiquitin to substrates ("Conjugation Fraction") and a high mass fraction (greater than 450 kDa) necessary for hydrolysis of the conjugated proteins. The latter contains two distinct proteases. One protease is unusually large, approximately 1500 kDa, and degrades proteins only when ATP and the conjugating fractions are added. This activity precipitates at 0-38% (NH4)2SO4 saturation and is essential for ATP-dependent proteolysis. Like crude extracts, it is labile in the absence of nucleotides and is inhibited by heparin, poly(Glu-Ala-Tyr), 3,4-dichloroisocoumarin, hemin, decavanadate, N-ethylmaleimide, and various peptide chloromethyl ketones. It lacks amino-peptidase and insulin-degrading activities and does not require tRNA for activity. The ubiquitin-conjugate degrading enzyme, which we suggest be named UCDEN, is inactive against substrates that cannot undergo ubiquitin conjugation. The smaller protease (670 kDa), which precipitates at 40-80% (NH4)2SO4 saturation, does not require ATP or ubiquitin and is therefore not required for ATP-dependent proteolysis. It is stimulated by N-ethylmaleimide and 3,4-dichloroisocoumarin and is stable at 37 degrees C. It hydrolyzes fluorometric tetrapeptides and proteins, including proteins which cannot be conjugated to ubiquitin. Thus, reticulocytes contain two large cytosolic proteases: one is essential for the degradation of ubiquitin conjugates, while the function of the other is uncertain.  相似文献   

13.
Previously, we isolated an ATP-dependent proteolytic pathway in muscle, liver, and reticulocytes that requires ubiquitin and the enzymes which conjugate ubiquitin to proteins. We report here that skeletal muscle contains another soluble alkaline energy-dependent (but ubiquitin-independent) proteolytic activity. The cleavage of non-ubiquitinated protein substrates by the partially purified protease requires ATP hydrolysis since ATP in the absence of Mg2+, nonhydrolyzable ATP analogs, and pyrophosphate all fail to stimulate proteolysis. Proteolytic activity is also stimulated by UTP, CTP, and GTP, although not as effectively as by ATP (Km(ATP) = 0.027 mM). The enzyme is inactivated by the serine protease inhibitors diisopropyl fluorophosphate and 3,4-dichloroisocoumarin, but not by specific inhibitors of aspartic, thiol, or metalloproteases. It is maximally active at pH 8 and has a molecular weight of approximately 600,000. This new activity differs from the 720-kDa multicatalytic proteinase, but resembles the soluble ATP-dependent proteolytic system that we previously isolated from murine erythroleukemia cells.  相似文献   

14.
Lon-, Clp- and FtsH-like proteases, members of three families of ATP-dependent proteases derived from bacterial ancestors, have been identified in plant mitochondria. Classifications of mitochondrial-specific paralogues of plant ATP-dependent proteases, based on targeting prediction programs and different experimental methods, are compared. Accumulating evidence points to similarities in the structure and the mechanisms of action used by various ATP-dependent proteases. Therefore, before focusing on plant mitochondrial ATP-dependent proteases, the paper discusses general features of ATP-dependent proteases. To date, information about structure and function of plant mitochondrial Lon-like, Clp-like and FtsH-like proteases is rather scarce, but indicates that these enzymes, like their bacterial and eukaryotic homologues, combine proteolytic and chaperone-like activities to form mitochondrial protein quantity and quality control system in plants.  相似文献   

15.
Proteolytic activities in bovine adrenocortical mitochondria were investigated using [14C-methyl]casein as a substrate. Washed mitochondria showed a low proteolytic activity at pH 7.5 or 8.2. ATP (5 mM) plus MgCl2 (7.5 mM) stimulated the proteolysis 9 times at pH 8.2. It was further demonstrated unequivocally by various approaches that the ATP-dependent proteolytic activity localizes in mitochondrial matrix. The activity of the solubilized protease was sensitive to N-ethylmaleimide, mersalyl acid, phenylmethylsulfonyl fluoride, o-vanadate, m-vanadate, vanadyl sulfate, and quercetin but not by oligomycin and ouabain. The ATP-dependent proteolytic activity was eluted at the position of 650,000 daltons on an Ultrogel AcA 22 column as a single symmetrical peak. The gel-filtered enzyme showed high specificity to ATP. GTP and UTP partially substituted ATP. ADP, AMP, tripolyphosphate, alpha, beta-methylene ATP, and beta, gamma-methylene ATP had little or no stimulating activity. ATP did not stimulate the activity in the absence of MgCl2. We measured ATP-dependent proteolytic activities in mitochondrial fractions from several tissues in rat and bovine. Adrenal cortex was one of the tissues of highest activity. In addition, we investigated the effect of adrenal atrophy on the ATP-dependent protease activity in rat adrenal. The ATP-dependent protease activity/adrenal decreased by dexamethasone treatment. The extent of the decrease was similar to that of cytochrome oxidase and succinate dehydrogenase, but smaller than that of cytochrome P-450.  相似文献   

16.
Degradation of intracellular proteins via the ubiquitin- and ATP-dependent proteolytic pathway involves several steps. In the initial event, ubiquitin, an abundant 76-residue polypeptide is covalently linked to the protein substrate in an ATP-requiring reaction. Proteins marked by ubiquitin are selectively proteolyzed in a reaction that also requires ATP. Ubiquitin conjugation to proteins appears also to be involved in regulation of cell cycle and cell division, and probably in the regulation of gene expression at the level of chromatin structure. We have previously shown (Ciechanover, A., Wolin, S. L., Steitz, J. A., and Lodish, H. F. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 1341-1345) that transfer RNA is an essential component of the ubiquitin pathway. Ribonucleases strongly and specifically inhibited the degradation of 125I-labeled bovine serum albumin, while tRNA purified from reticulocyte extract could restore the proteolytic activity. Specifically, pure tRNAHis isolated by immunoprecipitation with human autoimmune serum could restore the proteolytic activity. Here we demonstrate that tRNA is required for conjugation of ubiquitin to some but not all proteolytic substrates of the ubiquitin mediated pathway. Conjugation of 125I-labeled ubiquitin to reduced carboxymethylated bovine serum albumin, alpha-lactalbumin, and soybean trypsin inhibitor was strongly and specifically inhibited by ribonucleases. Consequently, the ATP-dependent degradation of these substrates in the cell-free ubiquitin-dependent reticulocyte system was inhibited as well. Addition of tRNA to the ribonuclease inhibited system (following inhibition of the ribonuclease) restored both the conjugation activity and the ubiquitin- and ATP-dependent degradation of these substrates. Conjugation of ubiquitin to some endogenous reticulocyte proteins was also inhibited by ribonucleases and could be restored by the addition of tRNA. In striking contrast, the conjugation of radiolabeled ubiquitin to lysozyme, oxidized RNase A, alpha-casein, and beta-lactoglobulin was not affected by the ribonuclease treatment, and the degradation of these substrates was significantly accelerated by the ribonucleases. These findings indicate that there are at least two distinct ubiquitin conjugation systems. One requires tRNA, and the other is tRNA independent. These pathways, however, must share some common component(s) of the system, since the inhibition of one system accelerates the other. The possible function of tRNA in the selective conjugation reaction and the possible role of the two distinct ubiquitin marking mechanisms are discussed.  相似文献   

17.
The ATP-dependent proteolytic system present in reticulocytes can release the active hydrophilic domain of cytochrome b5 and NADH-cytochrome b5 reductase from the endoplasmic reticulum, that in mature erythrocytes act as methemoglobin reductase.  相似文献   

18.
A multiple-component, ATP-dependent protease from Escherichia coli   总被引:24,自引:0,他引:24  
A new ATP-dependent, casein-degrading proteolytic complex has been identified and partially purified from Escherichia coli. The proteolytic complex can be isolated from wild-type cells as well as from mutants in which the gene for the ATP-dependent Lon protease is deleted. The complex consists of at least two components (components I and II) that can be separated from each other (and from wild-type Lon protease) by phosphocellulose chromatography. Neither component has casein-degrading activity when added separately to assay solutions with or without ATP. Both components must be present simultaneously for casein degradation to occur. Of the nucleotides tested, only ATP activates the proteolytic complex, and the ATP must be present continuously for degradation to occur. Component II copurifies with an ATPase activity and binds to a Type 4 ATP affinity column. ATP protects component II from heat inactivation, suggesting that component II interacts with ATP. Proteolysis was not inhibited by any serine protease inhibitors but was inhibited by reagents such as the organomercurial Neohydrin and N-ethylmaleimide, which react with sulfhydryl groups. Our data provide convincing evidence that E. coli possesses a previously undescribed proteolytic system composed of at least two complementary components and absolutely dependent on ATP.  相似文献   

19.
The accumulation of oxidatively modified proteins has been shown to be a characteristic feature of many neurodegenerative disorders and its regulation requires efficient proteolytic processing. One component of the mitochondrial proteolytic system is Lon, an ATP-dependent protease that has been shown to degrade oxidatively modified aconitase in vitro and may thus play a role in defending against the accumulation of oxidized matrix proteins in mitochondria. Using an assay system that allowed us to distinguish between basal and ATP-stimulated Lon protease activity, we have shown in isolated non-synaptic rat brain mitochondria that Lon protease is highly susceptible to oxidative inactivation by peroxynitrite (ONOO(-)). This susceptibility was more pronounced with regard to ATP-stimulated activity, which was inhibited by 75% in the presence of a bolus addition of 1mM ONOO(-), whereas basal unstimulated activity was inhibited by 45%. Treatment of mitochondria with a range of peroxynitrite concentrations (10-1000muM) revealed that a decline in Lon protease activity preceded electron transport chain (ETC) dysfunction (complex I, II-III and IV) and that ATP-stimulated activity was approximately fivefold more sensitive than basal Lon protease activity. Furthermore, supplementation of mitochondrial matrix extracts with reduced glutathione, following ONOO(-) exposure, resulted in partial restoration of basal and ATP-stimulated activity, thus suggesting possible redox regulation of this enzyme complex. Taken together these findings suggest that Lon protease may be particularly vulnerable to inactivation in conditions associated with GSH depletion and elevated oxidative stress.  相似文献   

20.
beta-Thalassemia is an inherited human disorder which is characterized by a deficient production of hemoglobin beta chains and an attendant accumulation of structurally normal alpha chains in the erythropoietic cells. The objective of this work is to understand the mechanism of intracellular proteolysis of these excess alpha chains. Dialyzed stroma-free hemolysates (32 mg/ml hemoglobin) of blood reticulocytes from four individuals with beta-thalassemia intermedia were incubated with human hemoglobin 3H-alpha chains (0.13 mg/ml) at 37 degrees C in a reaction mixture supporting protein degradation. In the presence of ATP and an ATP-generating system, the fraction of alpha chain 3H radioactivity made acid-soluble after 4 h ranged from 4 to 12% among the different hemolysates; in the absence of ATP or when hemolysates of normal human erythrocytes were used, only 1 to 2% of the 3H-alpha chains were degraded. It is likely that the ATP-dependent proteolysis of 3H-alpha chains in the beta-thalassemic hemolysates corresponds to the ATP-dependent turnover of newly synthesized soluble alpha chains in intact beta-thalassemic reticulocytes observed previously (Shaeffer, J. (1983) J. Biol. Chem. 258, 13172-13177) because of the following similarities between the two systems: (a) free 3H-alpha chains, but not 3H-labeled tetrameric hemoglobins, were readily degraded; (b) the rate of 3H-alpha chain proteolysis in the cell-free system was at least one-half of that observed for the turnover of newly synthesized alpha chains (t1/2 approximately 6 h) in intact cells; and (c) the ATP-dependent proteolytic activity of both systems was inhibited substantially by certain chemical agents (orthovanadate, N-ethylmaleimide, o-phenanthroline, and phenylmethylsulfonyl fluoride) but only slightly, if at all, by others (epsilon-aminocaproic acid and leupeptin). When excess human erythrocyte ubiquitin was added to the beta-thalassemic cell-free systems, a stimulation in ATP-dependent proteolysis of 3H-alpha chains ranging from 30 to 58% was observed. Conversely, addition of from 1.25 to 2.50 mg/ml affinity-purified rabbit antiubiquitin inhibited almost all (greater than 90%) of the ATP-dependent 3H-alpha chain proteolysis; in control experiments, antiubiquitin neutralized with excess ubiquitin inhibited only 13 to 30% of the total (including ubiquitin-stimulated) ATP-dependent proteolysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号