首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The primitive pulmonate snail Amphibola crenata embeds embryos within a smooth mud collar on exposed estuarine mudflats in New Zealand. Development through hatching of free-swimming veliger larvae was monitored at 15 salinity and temperature combinations covering the range of 2-30 ppt salinity and 15-25 °C. The effect of exposure to air on developmental rate was also assessed. There were approximately 18,000 embryos in each egg collar. The total number of veligers released from standard-sized egg collar fragments varied with both temperature and salinity: embryonic survival was generally higher at 15 and 20 °C than at 25 °C; moreover, survival was generally highest at intermediate salinities, and greatly reduced at 2 ppt salinity regardless of temperature. Even at 2 ppt salinity, however, about one-third of embryos were able to develop successfully to hatching. Embryonic tolerance to low salinity was apparently a property of the embryos themselves, or of the surrounding egg capsules; there was no indication that the egg collars protected embryos from exposure to environmental stress. Mean hatching times ranged between 7 and 22 days, with reduced developmental rates both at lower temperature and lower salinity. At each salinity tested, developmental rate to hatching was similar at 20 and 25 °C. At 15 °C, time to hatching was approximately double that recorded at the two higher exposure temperatures. Exposing the egg collars to air for 6-9 h each day at 20 °C (20 ppt salinity) accelerated hatching by about 24 h, suggesting that developmental rate in this species is limited by the rates at which oxygen or wastes can diffuse into and from intact collars, respectively. Similarly, veligers from egg capsules that were artificially separated from egg collars at 20 °C developed faster than those within intact egg collars. The remarkable ability of embryos of A. crenata to hatch over such a wide range of temperatures and salinities, and to tolerate a considerable degree of exposure to air, explains the successful colonization of this species far up into New Zealand estuaries.  相似文献   

2.
Experiments were conducted to identify environmental factors that influence the survival of rainbow smelt Osmerus mordax during their early life stages. Developing rainbow smelt embryos and yolk-sac larvae were cultured under controlled conditions with different dissolved oxygen (DO; 1·09, 2·18, 4·37 and 6·55 mg l−1, pH (4·0, 4·5, 5·0, 5·5, 6·0 and 7·0), nitrate ( 0·7, 3·6, 7·3, 14·6 and 29·2 mg l−1), phosphate (0·04, 0·21, 0·42, 2·08 and 4·17 mg l−1) and salinity (0, 5, 10, 15, 20 and 30) levels. Rainbow smelt embryos were also incubated with simulated tidal salinity fluctuations (2–28), ultraviolet radiation (irradiances of 2·8, 6·2 and 5·1 W m−2) and under natural conditions in two rainbow smelt spawning rivers. In the laboratory, hatch was only impaired under the lowest DO and pH conditions (0 and 13% hatch, respectively) and at highest constant salinity levels (0% hatch). Larval survival was only affected by pH levels ≤5·0. The experiment that compared hatch under natural conditions was terminated when embryos became covered with silt and fungus. These results suggest that water acidification, sediment and fungal growth may affect rainbow smelt survival during their early life stages.  相似文献   

3.
This study assesses the influence of thermal regime on the development, survival rates and early growth of embryos of sea lamprey Petromyzon marinus incubated at five constant temperatures (7, 11, 15, 19 and 23° C). The time from fertilization to 50% hatching and from hatching to 50% burrowing were inversely related to incubation temperature. All the embryos incubated at 7° C died at very early stages, while those maintained at 11° C did not attain the burrowing stage. Survival from fertilization to hatching was 61, 89, 91 and 89% at 11, 15, 19 and 23° C, decreasing to 58, 70 and 70% from hatching to burrowing at 15, 19 and 23° C, respectively. Larvae reared during the first 3 months of exogenous feeding in a common environment at constant 21° C, revealed maximum survival for an incubation temperature of 15° C (43% of burrowed larvae) decreasing strongly at 19° C (16%) and 23° C (one suvivor among 240 larvae). Body length at the burrowing stage was maximum for embryos incubated at 19° C, but body mass increased in the interval 15–23° C. Mean incubation temperatures experienced by 117 broods during the embryonic development in the source river were estimated in 15·3±2·30° C and 16·7±1·76° C (mean±1 s.d .) for the periods fertilization-to-hatching and hatching-to burrowing, respectively.  相似文献   

4.
The horseshoe crab Limulus polyphemus spawns in the mid- to upper intertidal zone where females deposit eggs in nests below the sediment surface. Although adult crabs generally inhabit subtidal regions of estuaries with salinities from 5 to 34 ppt, developing embryos and larvae within nests are often exposed to more extreme conditions of salinity and temperature during summer spawning periods. To test whether these conditions have a negative impact on early development and survival, we determined development time, survival, and molt cycle duration for L. polyphemus embryos and larvae raised at 20 combinations of salinity (range: 30-60 ppt) and temperature (range: 25-40 degrees C). Additionally, the effect of hyperosmotic and hypoosmotic shock on the osmolarity of the perivitelline fluid of embryos was determined at salinities between 5 and 90 ppt. The embryos completed their development and molted at salinities below 60 ppt, yet failed to develop at temperatures of 35 degrees C or higher. Larval survival was high at salinities of 10-70 ppt but declined significantly at more extreme salinities (i.e., 5, 80, and 90 ppt). Perivitelline fluid remained nearly isoosmotic over the range of salinities tested. Results indicate that temperature and salinity influence the rate of crab development, but only the extremes of these conditions have an effect on survival.  相似文献   

5.
Temperature development relationships were determined for batches of Irish Sea cod Gadus morhua eggs incubated in flow-through incubators. Hatching began 16·4 days after fertilization (DAF) at 6° C, 10·3 DAF at 8° C, 9·4 DAF at 10° C and 7·4 DAF at 12° C. Egg mortality increased at the higher temperatures, but survival was >80%. Results were compared with published data at four comparable stage end points: the end of blastula, the end of gastrula, the point of growth of the embryo completely surrounding the yolk and the point when 50% of the eggs were hatched. All the studies showed a curvilinear relationship between age at stage and temperature. There was a 12 day inter-study difference in time to 50% hatch at 2° C and 4 day difference at 10° C. There were no consistent trends that differentiated eastern v. western, or northern v. southern populations. A single model for cod egg incubation time from fertilization to 50% hatch was derived based on data from six cod populations, but it is recommended that individual stock relationships should be used where possible.  相似文献   

6.
Episodic increases in temperature of 5°C above 20° C, over 48 h or declines in pH of 1·0 unit from pH 7·0 reduced survival of yolk-sac and feeding-stage larvae of American shad Alosa sapidissima . Over 16 days all measures of survival, growth, and production were more favourable at each higher temperature in the 15–25° C range. More favourable responses were also obtained at the higher prey level (500 v . 50 Artemia nauplii l-1) and at the higher pH (7·5 v . 6·5). Combinations of high temperature and high prey levels, at pH 7·5, led to highest larval production. Little growth or production occurred at 15° C, regardless of pH or prey level. The effect of pH was strong with respect to survival, but weak with respect to growth. In attempts to restore American shad populations by larval stocking, release times and sites can be critical to optimize survival and eventual returns. Releases of larvae potentially will be most effective when made at temperatures >20° C, pH>7·0, and prey levels >50 1-1. These conditions are most likely to occur in Maryland tributaries of Chesapeake Bay between mid-May and early June.  相似文献   

7.
The growth of 1-year-old Arctic cisco ( Coregonus autumnalis ) was monitored under laboratory conditions for fish acclimated to one of two temperatures (5 and 10° C) and one of five salinities (6, 12, 18,24, 30‰). Fish were maintained for 43 days at rations of 3% wet body weight per day at 5° C and 5% wet body weight per day at 10° C, with rations adjusted for weight gain every 7–12 days. Fish increased 9–11% in length and 55–71% in weight at 5° C, and 23–27% in length and 141–161% in weight at 10° C. Length and weight increased linearly over 43 days. There was a statistically significant effect of temperature on growth but no statistically significant effect of salinity. Higher growth rates at 10° C were partially attributable to significantly greater gross conversion efficiency at the higher temperature. Over the course of the experiment, the condition (weight per unit length) of all fish increased by 3·2 to 63·6% at 5° C and by 5·6 to 46·0% at 10° C. There was no discernible effect of salinity on condition at either temperature. These results demonstrate that, with salinity acclimation and high food ration, 1-year-old Arctic cisco can grow at equivalent rates across salinities ranging from 6 to 30‰. The ecological implications of the results are discussed.  相似文献   

8.
The effect of incubation temperature (8·6, 11·1, 13·2, 15·1 and 16·8° C) on north-east Atlantic mackerel Scomber scombrus development, growth and age at starvation during the yolk-sac larval period was investigated. Standard length at hatch was found to be inversely proportional to incubation temperatures within the natural thermal ranges of this species; it ranged from 3·76 mm at 11·1° C to 3·30 mm at 17·8° C. Following hatch, however, larval growth rate was positively related to temperature. Individual logistic models, as a function of temperature and age, were fitted to the development processes of gape, eye pigmentation, jaw mobility and yolk exhaustion. Thereafter, development was classified into different ordered stages and an extended continuation model was fitted to the multinomial ordered stage classification. In all cases, there was a difference of >23 h between the first and the last individual developing in certain stage. The probability of survival decreased with age and was inversely related to temperature. Yolk utilization varied from 4·5 to 8·6 days and individuals died between 7·9 and 12·2 days from 17·8 to 11·1° C. The study demonstrated the significant impact that temperature has on development, growth and survival rates, during the early life history.  相似文献   

9.
Grass carp were raised in 227-1 indoor tanks at 3,5,7 and 9%osalinities and 18·5 and 29·5°C temperatures at a density of five fish per tank. Growth rate did not differ under these conditions. Food consumption was similar between temperatures at a given salinity but differed among the salinities with most food intake at the 5%o salinity. An average of 40% of grass carp survived for 180 or more days.  相似文献   

10.
We have compared the species composition and diversity of the diets of black bream, Acanthopagrus butcheri, in three normally closed estuaries on the central south coast of Western Australia, which vary markedly in the extents to which they become hypersaline during dry periods. Although black bream was caught seasonally in Stokes Inlet during this 3-year study, it was obtained from the Hamersley and Culham inlets only during the earlier seasons because salinities in those two estuaries subsequently rose to levels that caused massive mortalities of this sparid. Although a wide range of taxa, including macrophytes, polychaetes, molluscs, crustaceans, insects and teleosts, were ingested by A. butcheri in each estuary, the frequencies of ingestion and volumetric dietary contributions of these taxa varied greatly among the fish in these three estuaries. Thus, for example, in comparison with other estuaries, relatively greater contributions were made to the diet by polychaetes and crustaceans in Stokes Inlet, by macrophytes in Hamersley Inlet, and by insects (mainly chironomid larvae) in Culham Inlet. The relatively greater contribution of teleosts to the diets of black bream in the Hamersley and Culham inlets than in Stokes Inlet, and also differences in the main teleost species ingested in the first two estuaries, are consistent with differences in the densities of fish overall and of the main fish species in those estuaries. The diversity of the diet was far greater in Stokes Inlet than in the other two far more variably saline estuaries, presumably reflecting a greater diversity of food. The dietary compositions of black bream in upstream pools in the tributary of Culham Inlet, which offer refuge when salinities increase markedly in the main body of the estuary, differ from those in those downstream regions, further emphasising the opportunistic nature of the feeding behaviour of black bream. The dietary compositions of black bream underwent size-related changes, but the taxa contributing most to those changes varied greatly among estuaries. Size-related changes would be particularly beneficial in reducing intraspecific competition for food in the two estuaries that vary greatly in salinity and would thus be likely to contain a less diverse range of prey.  相似文献   

11.
Planktonic larvae of estuarine crabs are commonly exported to the continental shelf for development and then return to coastal and estuarine areas as postlarvae (megalopae). Megalopae returning to estuaries must be adapted to survive in brackish water whereas those of coastally distributed species should not need such adaptations. We investigated 1) whether megalopae of the estuarine crab Callinectes sapidus and the coastal crab Callinectes similis undergo changes in salinity tolerance upon entry into an estuary and 2) what factors induce those changes. Megalopae were collected at a coastal site and a nearby estuarine site and exposed to a range of salinities (5, 10, 15, 20 and 30) for 6 h. Percent survival was determined after 24 h reintroduction to the collection site water. We also investigated 1) whether increased salinity tolerance was induced by reduced salinity or estuarine chemical cues, 2) the time to acclimation and 3) the salinity necessary for acclimation. C. sapidus megalopae from the estuarine site were more likely to survive exposure to low salinities than those from the coastal site. C. sapidus megalopae from the coastal site exhibited increased survival after acclimation to salinities of 27 and 23 for 12 h. Estuarine chemical cues had no effect on salinity tolerance. C. similis megalopae were less likely to survive at low salinities and did not exhibit an acclimation response upon exposure to reduced salinities. These results suggest that megalopae of C. sapidus are physiologically adapted to recruit to estuaries whereas megalopae of C. similis are unable to acclimate to low salinity conditions.  相似文献   

12.
Optimum temperature and salinity conditions for viable hatch were studied for turbot (Scophthalmus maximus L.) from the North Sea. Temperatures ranging from 6 to 22°C and salinities from 5 to 35‰ were used. Optimum conditions were observed to be between 12 and 18°C at salinities between 20 and 35‰. This contrasted with corresponding data for turbot from the southern Baltic proper, according to which survival sharply decreased in temperatures below 14°C and was high in salinities of 10 to 15‰. Thus, it is concluded that Baltic and Atlantic turbot should be considered as different races.  相似文献   

13.
The effects of the timing of initial feeding (0, 1, 2, 3 and 4 days after yolk exhaustion) and temperature (15, 18 and 21° C) on the point‐of‐no‐return (PNR), survival and growth of laboratory‐reared Japanese flounder Paralichthys olivaceus larvae were studied under controlled conditions. The larvae reached PNR on 7·7, 5·2 and 4·2 days‐post‐hatching (dph) at 15, 18 and 21° C, respectively. At each temperature, larval growth did not differ significantly among the delayed initial feedings 1 day before PNR but decreased significantly in larvae first fed after that. In the treatments where initial feeding was equally delayed, larvae grew significantly faster at 18 and 21° C than at 15° C. The larvae survived apparently better at 15 and 18° C than at 21° C when initial feeding was equally delayed. At each temperature, survival of the larvae first fed before PNR did not differ noticeably, while delayed initial feeding after that apparently reduced their survival. These results indicated that there existed a negatively temperature‐dependent PNR in the Japanese flounder larvae. Survival and growth of the larvae strongly depended on temperature as well as the timing of initial feeding. High temperature accelerated the yolk exhaustion and growth of the larvae and thus reduced their starvation tolerance and survival. To avoid potential starvation mortality and obtain good growth, the Japanese flounder larvae must establish successful initial feeding within 2 days after yolk exhaustion at 15° C and within 1 day at both 18 and 21° C.  相似文献   

14.
As a prevalent species complex in temperate estuaries and salt marshes of the Northern Hemisphere, populations of Eurytemora affinis that inhabit these environments must be adapted to salinity fluctuations. Some populations have invaded freshwater environments. In this work, we focus on the combined effects of temperature and salinity fluctuations on mortality rates and development time of the first naupliar stages under starvation. Two temperatures (10 and 15 °C) and eight salinities, ranging from 0 to 35 psu are investigated. We show (i) that among all experimental conditions the optimal temperature and salinity for naupliar survival and development are 15 psu and 15 °C, and (ii) that only the most extreme salinities (i.e. 0 and 35 psu) have a negative effect on naupliar survival. Nauplii develop faster and reach a higher developmental stage at 15 than at 10 °C, independent of salinity. The relevance of this metabolic adaptive pattern is discussed in the general framework of in situ behavior, tidal forcing and biogeographic variability, as well as the potential sources of the observed individual variability.  相似文献   

15.
Hypoxia is a widespread environmental stressor that affects marine, estuarine and freshwater systems worldwide. Investigating the effects of hypoxia on aquatic animals in the natural environment is difficult and expensive. Laboratory experiments provide an alternative that allows manipulation of environmental variables and simulation of altered conditions that are expected in the future. However, controlling dissolved oxygen (DO) levels precisely in laboratory test situations is challenging and generally costly and time intensive. In this paper, we describe a novel chamber design that is capable of maintaining low DO levels precisely for a period of at least 4 days with minimal re-adjustment and nitrogen gas requirement. The system is simple, inexpensive and easy to use, and offers the additional benefit of being portable. The utility of this design is demonstrated with an experiment to test the effects of hypoxia and high salinity on hatch rates and yolk-sac larvae survival in the estuarine fish black bream Acanthopagrus butcheri (Munro, 1949). The results show that early life-stage black bream are sensitive to hypoxia and increased salinity, indicating that deterioration in estuarine environmental conditions may have negative effects on spawning success and recruitment to fish populations. This new laboratory technique will be useful for testing future scenarios for the estuaries of southern Australia as predicted by climate change models. Other potential applications and modifications for further development of this new technique are discussed.  相似文献   

16.
Physiological adjustment to water of reduced salinity requires energy expenditure. In this study we sought to determine the fitness costs associated with such adjustment in the euryhaline polychaete Capitella sp. I, and the extent to which such costs could be explained by increased rates of energy expenditure. In a series of experiments conducted at 20 degrees C, salinity was reduced from 30 per thousand to either 25, 20, 15, 12, or 10 per thousand within 72 h after the larvae had been induced to metamorphose. Juveniles were reared on fine, organic-rich sediment. Over the next 15-30 days, we determined survival, growth, fecundity, and rates of respiration and feeding (via fecal pellet production). Larval salinity tolerance was also determined. Juvenile survival at salinities as low as 12-15 per thousand was comparable to that at 30 per thousand. The lower limit of salinity tolerance was 10-12 per thousand at 20 degrees C for both larvae and juveniles. Juveniles grew significantly more slowly at 12-15 per thousand in six of the seven experiments. Fecundity, however, was generally highest at intermediate salinities of 20-25 per thousand, and comparable at 30 and 15 per thousand. No individuals released embryos at 12 per thousand over the approximately 30-day observation periods in any of the three experiments in which the worms were reared at this low salinity. Reduced growth rates were not explained by differences in rates of respiration at different salinities: at reduced salinity, respiration rates were either statistically equivalent to (P>0.10) or significantly below (P<0.05) those recorded for animals maintained at 30 per thousand. Lower growth rates at lower salinities were best explained by reduced feeding rates. Further studies are required to determine whether digestive efficiency, growth hormone concentrations, or reproductive hormone concentrations are also altered by low salinity in this species.  相似文献   

17.
Listeria monocytogenes strains 1151 and Scott A were grown in broth at 30 °C and transferred to half cream, double cream and butter stored at 5 °C to determine the influence of dairy product composition on heat resistance at 52, 56, 60, 64 and 68 °C. Strain 1151 showed a higher heat resistance than strain Scott A. The heat resistance of both strains was higher in the dairy products than in broth, particularly at lower temperatures. A significant difference was observed between log 10 of the D -values in the different dairy products. The D -values obtained for both strains resuspended in all the dairy products would result in efficient elimination of the pathogen at 72·7 °C for 15 s. The highest D -value was 11·30 s at 68 °C and by using a z -value of 6·71 °C it can be determined that at 72·7 °C the D -value would be 1·5 s. The 15 s process would therefore achieve 10 log reductions. The effect of growth conditions on the heat resistance at 60 °C of L. monocytogenes Scott A was also investigated. When the cells were grown in the dairy products themselves, and particularly butter, the heat resistance of Scott A was enhanced; for example, the D -values were 7·15 times higher than in broth. Further studies are required to investigate if this protection against heating exists at higher temperatures, in which case the efficiency of pasteurization treatments or other heat treatments would be considerably lowered.  相似文献   

18.
The effects of temperature and diet on the specific growth rate and food consumption of 1-summer-old Arctic charr Salvelinus alpinus were studied. Fish were reared singly in aquaria at six different constant temperatures (5, 9, 13, 16, 18 and 20°C). They were fed Neomysis integer or commercial pelleted food for 2 weeks and growth and food consumption were measured. In both experiments, growth rate increased to an optimum at 15°C. Growth rates were high in the range 13–18°C, with no significant ( P >0·05) differences between temperatures. No significant ( P> 0·05) differences in growth were found between fish at 9 and 20°C. There were no effects of diet on size-adjusted growth rates. The growth efficiency decreased with increasing temperature in both treatments, but the decrease was faster in the Neomysis treatment. Charr seemed to compensate for the high water content (79·5%) of Neomysis by having a higher food intake.  相似文献   

19.
20.
Respiratory and gill ventilatory responses of Sacramento blackfish to three environmental temperatures (12, 20 and 28°C) and four environmental dissolved oxygen concentrations (130, 90, 65 and 40 torr PO2) were examined to determine physiological strategies of survival in eutrophic lakes and suitibility for culture conditions. Situated in van Dam-type respirometers, experimental blackfish showed increased gill ventilatory flows from increased ventilatory frequencies and stroke volumes to meet higher respiratory oxygen demands at increased temperatures. Ventilation volumes also increased at reduced environmental dissolved oxygen levels by increased ventilatory stroke volumes alone, except at 28°C where frequency increases were also measured. Oxygen consumption rates remained essentially constant with declining dissolved oxygen, except at 28°C where excitement elevated respiratory metabolism at 65 and 40 torr. Percentage utilization of oxygen increased with temperature from 12°C, but levels at 20 and 28°C were insignificantly different. Contrary to most studies on other species, there was no change in percentage utilization under hypoxic conditions even with 4.7-fold increases in ventilation volume in excited fish at 28°C. The ability of blackfish to survive in hypoxic waters is quantitatively compared with other species by calculation of a respiratory efficiency index (I), which includes the relationship between ventilation volume and percentage utilization of oxygen under normoxic and hypoxic conditions as well as the half-saturation value (P50) of the species' blood with oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号